Common Fixed Points of a Pair of H^{β}-Hausdorff Multivalued Operators in b-Metric Space and Application to Integral Equations

N.R. Alrashedi
Prince Sattam bin Abdulaziz University
F.S. Alshammari
Prince Sattam bin Abdulaziz University
R. George*
Prince Sattam bin Abdulaziz University

Abstract

A common fixed point theorem for a pair of H^{β}-Hausdorff multi-valued operators for $\beta \in[0,1]$ is proved in a b-metric space. Our result is a proper extension and new variants of many well known contraction conditions existing in literature. As an application of our main result, we have proved an existence result for a common solution of a pair of nonlinear Volterra type integral equations.

AMS Subject Classification: $47 \mathrm{H} 10,47 \mathrm{H} 20,54 \mathrm{H} 25$
Keywords and Phrases: b-metric space, H^{β}-Hausdorff b-metric, H^{β} Hausdorff function, common fixed point, Fredholm integral equation.

[^0]
1 Introduction

The study of a metric function on the set of closed and bounded subsets of a metric space was initiated by Pompeiu in [30] and then continued by Hausdorff [18]. Such a metric function is reffered to as the HausdorffPompeiu metric. On the other hand Bakhtin [7] introduced the concept of a b-metric space as a generalisation of metric space and proved Banach's contraction principle in a b-metric space. Some recent interesting results on contraction principles in a b-metric space and its applications can be found in $[1,4,5,8,13,16,17,22,29,32,34]$. Banach's contraction principle was extended to a multi-valued function in a metric space by Nadler [28] and in a b-metric space by Czerwik [11] using the Hausdorff-Pompieu metric H. Further generalized results of multivalued contractions can be found in [2, 12, 20, 21, 23, 25]. Czervik's contraction was also generalised in many directions, to name a few q-quasi contraction [6], Hardy Rogers contraction [27], weak quasi contraction [19], Ćirić contraction [26] etc . More results for multi-valued contraction mappings in a b-metric space can be found in [9, 10, 14, 24, 29]. In [15] the authors introduced the concept of H^{β}-Hausdorff-Pompeiu b-metric for some $0 \leq \beta \leq 1$ and proved fixed point theorems for multi-valued mappings belonging to various classes of multi-valued H^{β}-contractions in a b-metric space. The aim of this work is to prove common fixed point theorems for a pair of multivalued mappings in a b-metric space using H^{β}-Hausdorff Pompieu b-metric and thereby extend and introduce new variants of various fixed point results for multi-valued mappings existing in literature. An application of our main result is demonstrated by proving the existence of a common solution of a pair of nonlinear Volterra type integral equations.

2 Preliminaries

In this section we provide some preliminary definitions, lemmas and propositions required in our main results.
Definition 2.1. [7] Let X be a nonempty set and $d_{s}: X \times X \rightarrow[0, \infty)$ satisfy:

1. $d_{s}(x, y)=0$ if and only if $x=y$ for all $x, y \in X$;
2. $d_{s}(x, y)=d(y, x)$ for all $x, y \in X$;
3. there exists a real number $s \geq 1$ such that $d(x, y) \leq s\left[d_{s}(x, \ell)+\right.$ $\left.d_{s}(\ell, y)\right]$ for all $x, y, \ell \in X$.

Then d_{s} is a b-metric on X and $\left(X, d_{s}\right)$ is a b-metric space with coefficient s.

Let $C B^{d_{s}}(X)$ be the collection of all nonempty closed and bounded subsets of a b-metric space $\left(X, d_{s}\right)$. For $A, B \in C B^{d_{s}}(X)$, define $d_{s}(x, A)=$ $\inf \left\{d_{s}(x, a): a \in A\right\}, \delta_{d_{s}}(A, B)=\sup _{a \in A} d_{s}(a, B)$ and $H_{d_{s}}(A, B)=$ $\max \left\{\delta_{d_{s}}(A, B), \delta_{d_{s}}(B, A)\right\}$. Czerwik [11] has shown that $H_{d_{s}}$ is a b metric in the set $C B^{d_{s}}(X)$ and is called the the Hausdorff-Pompeiu b-metric induced by d_{s}. In [15], the authors introduced the function

$$
\begin{aligned}
H^{\beta}(A, B)= & \max \left\{\beta \delta_{d_{s}}(A, B)+(1-\beta) \delta_{d_{s}}(B, A), \beta \delta_{d_{s}}(B, A)\right. \\
& \left.+(1-\beta) \delta_{d_{s}}(A, B)\right\}
\end{aligned}
$$

for some $\beta \in[0,1]$ and showed that H^{β} form a metric for the set $C B^{d_{s}}(X)$. They called this function the H^{β}-Hausdorff Pompieu b-metric induced by the b-metric d_{s}. Note that for $\beta=0$ or $1, H^{\beta}$ metric is equal to the Hausdorff-Pompieu metric H.

Proposition 2.2. [15] For any $x, y \in X, H^{\beta}(\{x\},\{y\})=d_{s}(x, y)$.
Definition 2.3. [26] The b-metric d_{s} is $*$-continuous if and only if for any $A \in C B^{d_{s}}(X)$ and sequence $\left\{x_{n}\right\}$ in $\left(X, d_{s}\right)$ with $\lim _{n \rightarrow \infty} x_{n}=x$, we have $\lim _{n \rightarrow \infty} d_{s}\left(x_{n}, A\right)=d_{s}(x, A)$.

Proposition 2.4. [9] For any $A \subseteq X$,

$$
a \in \bar{A} \Longleftrightarrow d_{s}(a, A)=0
$$

Lemma 2.5. [26] Let $\left\{x_{n}\right\}$ be a sequence in (X, d_{s}). Then for any $n \in N$ and $k \in\left\{1,2,3 \ldots 2^{n}-1,2^{n}\right\}$, we have

$$
d\left(x_{0}, x_{k}\right) \leq s^{n} \sum_{i=0}^{k-1} d\left(x_{i}, x_{i+1}\right)
$$

Lemma 2.6. [26] Let $\left\{x_{n}\right\}$ be a sequence in (X, d_{s}). If there exists $\lambda \in[0,1)$ such that $d_{s}\left(x_{n}, x_{n+1}\right) \leq \lambda d_{s}\left(x_{n-1}, x_{n}\right)$ for all $n \in N$, then $\left\{x_{n}\right\}$ is a Cauchy sequence.

Following the technique of [26], we now prove the following lemma.
Lemma 2.7. If for some $\lambda, \epsilon \in[0,1)$, with $\lambda<\epsilon, d_{s}\left(x_{n}, x_{n+1}\right) \leq$ $\lambda d_{s}\left(x_{n-1}, x_{n}\right)+\epsilon^{n}$ for all $n \in N$, then $\left\{x_{n}\right\}$ is a Cauchy sequence.
Proof. Note that $d_{s}\left(x_{n}, x_{n+1}\right) \leq \lambda d_{s}\left(x_{n-1}, x_{n}\right)+\epsilon^{n}$ implies

$$
\begin{equation*}
d_{s}\left(x_{n}, x_{n+1}\right) \leq \lambda^{n} d_{s}\left(x_{0}, x_{1}\right)+\frac{\epsilon^{n+1}}{\epsilon-\lambda} \tag{1}
\end{equation*}
$$

for all $n \in N$. Also for all $m, k \in N$ and $p=\left[\log _{2} k\right]$, we have

$$
\begin{align*}
& d_{s}\left(x_{m+1}, x_{m+k}\right) \leq s d_{s}\left(x_{m+1}, x_{m+2}\right)+s^{2} d_{s}\left(x_{m+2}, x_{m+2^{2}}\right) \\
& +s^{3} d_{s}\left(x_{m+2^{2}}, x_{m+2^{3}}\right)+\cdots \\
& \leq \sum_{n=1}^{p} s^{n} d_{s}\left(x_{m+2^{n-1}}, x_{m+2^{n}}\right)+s^{p+1} d_{s}\left(x_{m+2^{p}}, x_{m+k}\right) \tag{2}
\end{align*}
$$

Then using Lemma 2.5 and (1), we get

$$
\begin{aligned}
& d_{s}\left(x_{m+1}, x_{m+k}\right) \leq \sum_{n=1}^{p} s^{n}\left\{s^{n} \sum_{i=m}^{m+2^{n-1}-1} d_{s}\left(x_{2^{n-1}+i}, x_{2^{n-1}+i+1}\right)\right\} \\
& +s^{2(p+1)} \sum_{i=m}^{m+k-2^{p}-1} d_{s}\left(x_{2^{p}+i}, x_{2^{p}+i+1}\right) \\
& \leq \sum_{n=1}^{p+1} s^{2 n} \sum_{i=m}^{m+2^{n-1}-1} d_{s}\left(x_{2^{n-1}+i}, x_{2^{n-1}+i+1}\right) \\
& \leq \sum_{n=1}^{p+1} s^{2 n} d_{s}\left(x_{0}, x_{1}\right) \sum_{i=0}^{2^{n-1}-1}\left\{\lambda^{m+2^{n-1}+i}+\frac{\epsilon^{m+2^{n-1}+i+1}}{\epsilon-\lambda}\right\} \\
& \leq \frac{d_{s}\left(x_{0}, x_{1}\right) \lambda^{m}}{1-\lambda} \sum_{n=1}^{p+1} s^{2 n} \lambda^{2^{n-1}}+\frac{d_{s}\left(x_{0}, x_{1}\right) \epsilon^{m}}{(\epsilon-\lambda)(1-\epsilon)} \sum_{n=1}^{p+1} s^{2 n} \epsilon^{2^{n-1}} \\
& \leq \frac{d_{s}\left(x_{0}, x_{1}\right) \lambda^{m}}{1-\lambda} \sum_{n=1}^{p+1} \lambda^{2 n \log _{\lambda} s+2^{n-1}}+\frac{d_{s}\left(x_{0}, x_{1}\right) \epsilon^{m}}{(\epsilon-\lambda)(1-\epsilon)} \sum_{n=1}^{p+1} \epsilon^{2 n \log _{\epsilon} s+2^{n-1}}
\end{aligned}
$$

Note that $\lim _{n \rightarrow \infty} 2 n \log _{\lambda} s+2^{n-1}=\infty$ and $\lim _{n \rightarrow \infty} 2 n \log _{\epsilon} s+2^{n-1}=$ ∞. So for fixed $M>0$, there exists $n_{1}, n_{2} \in N$ such that $2 n \log _{\lambda} s+$ $2^{n-1} \geq M$ for all $n \geq n_{1}$ and $2 n \log _{\epsilon} s+2^{n-1} \geq M$ for all $n \geq n_{2}$, that is $\lambda^{2 n \log _{\lambda} s+2^{n-1}}<\lambda^{M}$ for all $n \geq n_{1}$ and $\epsilon^{2 n \log _{\epsilon} s+2^{n-1}}<\lambda^{M}$ for all $n \geq n_{2}$. Thus the series $\sum_{n=1}^{p+1} \lambda^{2 n} \log _{\lambda} s+2^{n-1}$ and $\sum_{n=1}^{p+1} \epsilon^{2 n \log _{\epsilon} s+2^{n-1}}$ are convergent. Let $\sum_{n=1}^{p+1} \lambda^{2 n \log _{\lambda} s+2^{n-1}}=S_{1}$ and $\sum_{n=1}^{p+1} \epsilon^{2 n \log _{\lambda} s+2^{n-1}}=S_{2}$. Then we get

$$
d_{s}\left(x_{m+1}, x_{m+k}\right) \leq \frac{d_{s}\left(x_{0}, x_{1}\right) \lambda^{m}}{1-\lambda} S_{1}+\frac{d_{s}\left(x_{0}, x_{1}\right) \epsilon^{m}}{(\epsilon-\lambda)(1-\epsilon)} S_{2}
$$

for all $m, k \in N$. Thus sequence $\left\{x_{n}\right\}$ is a Cauchy sequence.

3 Main Results

We introduce pairwise H^{β}-Hausdorff functions as follows:
Definition 3.1. Let $S, T: X \rightarrow C B^{d_{s}}(X)$. For any $x \in X, y \in$ $T x$ (or $S x$) and any $\epsilon>0$ if there exist $z \in S y$ (or $T y$) such that
$d(y, z) \leq H^{\beta}(T x, S y)+\epsilon$ or respectively $d(y, z) \leq H^{\beta}(S x, T y)+\epsilon$
then we say that T and S are pairwise H^{β}-Hausdorff functions .
For $S=T$, we get the following:
Definition 3.2. For any $x \in X, y \in T x$ and any $\epsilon>0$ if there exists $z \in T y$ such that

$$
\begin{equation*}
d(y, z) \leq H^{\beta}(T x, T y)+\epsilon \tag{4}
\end{equation*}
$$

then we say that T is a H^{β}-Hausdorff function.
Remark 3.3. (i) For $\beta=1, T: X \rightarrow C B(X)$ is always a H^{β} Hausdorff function.
(ii) If for any $0 \leq \beta_{1} \leq 1$, the function $T: X \rightarrow C B(X)$ is a H_{1}^{β}-Hausdorff function then for any $0 \leq \beta_{1} \leq \beta_{2} \leq 1$, the function $T: X \rightarrow C B(X)$ is a H_{2}^{β}-Hausdorff function.

Example 3.4. Let $X=\left[0, \frac{33}{48}\right] \bigcup\{1\}$,

$$
d_{s}(x, y)=|x-y|^{2} \quad \text { for all } x, y \in X
$$

and $S, T: X \rightarrow C B(X)$ be as follows :

$$
\begin{gathered}
S(x)= \begin{cases}\left\{\frac{x}{4}\right\}, & \text { for } x \in\left(0, \frac{33}{48}\right] \\
\left\{\frac{33}{48}, 1\right\}, & \text { for } x \in\{0,1\},\end{cases} \\
T(x)=\left\{\begin{array}{ll}
\left\{\frac{x}{2}\right\}, & \text { for } \\
\left\{\frac{1}{3}, \frac{33}{48}, 1\right\}, & \text { for }
\end{array} \quad x \in\{0,1\} .\right.
\end{gathered}
$$

We will show that the functions S and T satisfies (3). We will consider the values of x in X as follows :
(i) $x \in\left(0, \frac{33}{48}\right]$. In this case $S x$ and $T y$ are singleton sets and so (3) is obviously true.
(ii) $x=0 . \quad S x=\left\{\frac{33}{48}, 1\right\}$. If $y=\frac{33}{48}, \quad T y=\left\{\frac{33}{96}\right\}$, then we have $z=\frac{33}{96}$ and $d_{s}(y, z)=\frac{1089}{9216}, \delta_{s}(S x, T y)=\frac{3969}{9216}, \delta_{s}(T y, S x)=\frac{1089}{9216}$ and $H^{\frac{3}{4}}(S x, T y)=\frac{3249}{9216}$. Thus (3) is true for all $\epsilon>0$. If $y=1$, $T y=\left\{\frac{1}{3}, \frac{33}{48}, 1\right\}$ then inequality (3) holds with $z=1$.
(iii) $x=1 . \quad S x=\left\{\frac{33}{48}, 1\right\}$ and the result follows in the same way as in (ii) above.
(iv) $x=0 . \quad T x=\left\{\frac{1}{3}, \frac{33}{48}, 1\right\}$. If $y=\frac{1}{3}, \quad S y=\left\{\frac{1}{12}\right\}$, then we have $z=\frac{1}{12}$ and $d_{s}(y, z)=\frac{9}{144}, \delta_{s}(T x, S y)=\frac{121}{144}, \delta_{s}(S y, T x)=\frac{9}{144}$ and $H^{\frac{3}{4}}(S x, T y)=\frac{93}{144}$. Thus (3) is true for all $\epsilon>0$. If $y=\frac{33}{48}, \quad S y=\left\{\frac{33}{192}\right\}$ then we take $z=\frac{33}{192}$ and Then $d_{s}(y, z)=\frac{1089}{4096}, \delta_{S}(T x, S y)=\frac{2809}{4096}$, $\delta_{s}(S y, T x)=\frac{961}{36864}$ and $H^{\frac{3}{4}}(T x, S y)=\frac{19201}{36864}$. Thus (3) is true for all $\epsilon>0$. If $y=1, \quad S y=\left\{\frac{33}{48}, 1\right\}$ and inequality (3) holds with $z=1$. Thus S and T are pairwise H^{β}-Hausdorff functions for $\beta=\frac{3}{4}$. However S and T are not pairwise H^{β}-Hausdorff functions for $\beta=\frac{1}{2}$, as we see that inequality (3) is not satisfied for $x=0, T x=\left\{\frac{1}{3}, \frac{33}{48}, 1\right\}$ and $y=\frac{33}{48}$. In fact S and T are not pairwise H^{β}-Hausdorff functions for $\frac{34}{95}<\beta<\frac{61}{95}$.

3.1 Fixed point results

We now present our main result.
Theorem 3.5. Let $\left(X, d_{s}\right)$ be a complete b-metric space with constant $s \geq 1$, d_{s} be $*$-continuous, $T, S: X \rightarrow P_{c l, b}(X)$ be multivalued pairwise H^{β}-Hausdorff functions for some $\frac{1}{2} \leq \beta \leq 1$. If there exist nonnegative real numbers α, γ, δ satisfying $\alpha+2 \gamma+2 s \delta<1, s(\gamma+\delta)<\beta$ and

$$
\begin{align*}
H^{\beta}(T x, S y) \leq & \alpha d_{s}(x, y)+\gamma\left[d_{s}(x, T x)+d_{s}(y, S y)\right] \\
& +\delta\left[d_{s}(x, S y)+d_{s}(y, T x)\right] \tag{5}
\end{align*}
$$

for all $x, y \in X$, then S and T has a common fixed point.
Proof. Let $x_{0} \in X, x_{1} \in T x_{0}$ and $0<\epsilon<1$. By (3) there exists $x_{2} \in S x_{1}$, such that $d\left(x_{1}, x_{2}\right) \leq H^{\beta}\left(T x_{0}, S x_{1}\right)+\epsilon$. By (3) again, there exists $x_{3} \in T x_{2}$, such that $d\left(x_{2}, x_{3}\right) \leq H^{\beta}\left(S x_{1}, T x_{2}\right)+\epsilon^{2}$

Continuing this way we construct the sequence $\left\langle x_{n}\right\rangle$ such that,

$$
\begin{array}{r}
x_{2 n+1} \in T x_{2 n}, x_{2 n+2} \in S x_{2 n+1} ; \\
d_{s}\left(x_{2 n+1}, x_{2 n+2}\right) \leq H^{\beta}\left(T x_{2 n}, S x_{2 n+1}\right)+\epsilon^{2 n+1} \\
d_{s}\left(x_{2 n+2}, x_{2 n+3}\right) \leq H^{\beta}\left(S x_{2 n+1}, T x_{2 n+2}\right)+\epsilon^{2 n+2} \tag{8}
\end{array}
$$

Then we have

$$
\begin{aligned}
& d_{s}\left(x_{2 n+1}, x_{2 n+2}\right) \leq H^{\beta}\left(T x_{2 n}, S x_{2 n+1}\right)+\epsilon^{2 n+1} \\
& \leq \alpha d_{s}\left(x_{2 n}, x_{2 n+1}\right)+\gamma\left[d_{s}\left(x_{2 n}, T x_{2 n}\right)+d_{s}\left(x_{2 n+1}, S x_{2 n+1}\right)\right] \\
& +\delta\left[d_{s}\left(x_{2 n}, S x_{2 n+1}\right)+d_{s}\left(x_{2 n+1}, T x_{2 n}\right)\right] \\
& \leq \alpha d_{s}\left(x_{2 n}, x_{2 n+1}\right)+\gamma\left[d_{s}\left(x_{2 n}, x_{2 n+1}\right)+d_{s}\left(x_{2 n+1}, x_{2 n+2}\right)\right] \\
& \left.+\delta d_{s}\left(x_{2 n}, x_{2 n+2}\right)+d_{s}\left(x_{2 n+1}, x_{2 n+1}\right)\right]+\epsilon^{2 n+1} \\
& \leq \alpha d\left(x_{2 n}, x_{2 n+1}\right)+\gamma\left[d_{s}\left(x_{2 n}, x_{2 n+1}\right)+d_{s}\left(x_{2 n+1}, x_{2 n+2}\right)\right] \\
& +\delta s\left[d_{s}\left(x_{2 n}, x_{2 n+1}\right)+d_{s}\left(x_{2 n+1}, x_{2 n+2}\right)\right]+\epsilon^{2 n+1} .
\end{aligned}
$$

Thus we have

$$
d_{s}\left(x_{2 n+1}, x_{2 n+2}\right) \leq \frac{\alpha+\gamma+s \delta}{1-\gamma-s \delta} d_{s}\left(x_{2 n}, x_{2 n+1}\right)+\epsilon^{2 n+1}
$$

Again

$$
\begin{aligned}
& d_{s}\left(x_{2 n+2}, x_{2 n+3}\right) \leq H^{\beta}\left(S x_{2 n+1}, T x_{2 n+2}\right)+\epsilon^{2 n+2} \\
& \leq \alpha d_{s}\left(x_{2 n+1}, x_{2 n+2}\right)+\gamma\left[d_{s}\left(x_{2 n+2}, T x_{2 n+2}\right)+d_{s}\left(x_{2 n+1}, S x_{2 n+1}\right)\right] \\
& +\delta\left[d_{s}\left(x_{2 n+2}, S x_{2 n+1}\right)+d_{s}\left(x_{2 n+1}, T x_{2 n+2}\right)\right]+\epsilon^{2 n+2} \\
& \leq \alpha d_{s}\left(x_{2 n+1}, x_{2 n+2}\right)+\gamma\left[d_{s}\left(x_{2 n+2}, x_{2 n+3}\right)+, d_{s}\left(x_{2 n+1}, x_{2 n+2}\right)\right] \\
& +\delta\left[d_{s}\left(x_{2 n+2}, x_{2 n+2}\right)+d_{s}\left(x_{2 n+1}, x_{2 n+3}\right)\right]+\epsilon^{2 n+2} \\
& \leq \alpha d_{s}\left(x_{2 n+1}, x_{2 n+2}\right)+\gamma\left[d_{s}\left(x_{2 n+2}, x_{2 n+3}\right)+d_{s}\left(x_{2 n+1}, x_{2 n+2}\right]\right. \\
& +\delta s\left[d_{s}\left(x_{2 n+1}, x_{2 n+2}\right)+d_{s}\left(x_{2 n+2}, x_{2 n+3}\right)\right]+\epsilon^{2 n+2} .
\end{aligned}
$$

Thus we have

$$
d\left(x_{2 n+2}, x_{2 n+3}\right) \leq \frac{\alpha+\gamma+s \delta}{1-\gamma-s \delta} d_{s}\left(x_{2 n+1}, x_{2 n+2}\right)
$$

Thus we have

$$
d_{s}\left(x_{n}, x_{n+1}\right) \leq \lambda d_{s}\left(x_{n-1}, x_{n}\right)+\epsilon^{n}
$$

where, $\quad \lambda=\frac{\alpha+\gamma+s \delta}{1-\gamma-s \delta}<1$.
By Lemma 2.7 the sequence $\left\langle x_{n}\right\rangle$ is a Cauchy sequence. Since (X, d_{s}) is complete, there exist $\hbar \in X$ such that the sequence $\left\langle x_{n}\right\rangle$ converges to \hbar. We will show that $\hbar \in T \hbar \bigcap S \hbar$.

By the definition of H^{β}, we have

$$
\begin{aligned}
& \beta \delta_{s}\left(S x_{2 n+1}, T \hbar\right)+(1-\beta) \delta_{s}\left(T \hbar, S x_{2 n+1}\right) \leq H^{\beta}\left(S x_{2 n+1}, T \hbar\right) \\
& \leq \alpha d_{s}\left(x_{2 n+1}, \hbar\right)+\gamma\left[d_{s}\left(\hbar, T \hbar+d_{s}\left(x_{2 n+1}, S x_{2 n+1}\right)\right]\right. \\
& +\delta\left[d_{s}\left(\hbar, S x_{2 n+1}\right)+d_{s}\left(x_{2 n+1}, T \hbar\right)\right]+\epsilon^{2 n+2} \\
& \leq \alpha d_{s}\left(x_{2 n+1}, \hbar\right)+\gamma\left[d_{s}\left(\hbar, T \hbar+d_{s}\left(x_{2 n+1}, x_{2 n+2}\right)\right]\right. \\
& +\delta\left[d_{s}\left(\hbar, x_{2 n+2}\right)+d_{s}\left(x_{2 n+1}, T \hbar\right)\right]+\epsilon^{2 n+2} .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \beta \delta_{s}\left(S x_{2 n+1}, T \hbar\right)+(1-\beta) \delta_{s}\left(T \hbar, S x_{2 n+1}\right) \\
& \leq \lim \left[\alpha d_{s}\left(x_{2 n+1}, \hbar\right)+\gamma\left[d_{s}\left(\hbar, T \hbar+d_{s}\left(x_{2 n+1}, x_{2 n+2}\right)\right]\right.\right. \\
& \left.+\delta\left[d_{s}\left(\hbar, x_{2 n+2}\right)+d_{s}\left(x_{2 n+1}, T \hbar\right)\right]+\epsilon^{2 n+2}\right] \\
& \leq(\gamma+\delta) d_{s}(\hbar, T \hbar)
\end{aligned}
$$

COMMON FIXED POINTS OF A PAIR OF H^{β}-HAUSDORFF

 MULTIVALUED OPERATORSSince

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \beta \delta_{s}\left(S x_{2 n+1}, T \hbar\right)+\lim _{n \rightarrow \infty}(1-\beta) \delta_{s}\left(T \hbar, S x_{2 n+1}\right) \\
& \leq \lim _{n \rightarrow \infty} \beta \delta_{s}\left(S x_{2 n+1}, T \hbar\right)+(1-\beta) \delta_{s}\left(T \hbar, S x_{2 n+1}\right)
\end{aligned}
$$

we have
$\lim _{n \rightarrow \infty} \beta \delta_{s}\left(S x_{2 n+1}, T \hbar\right)+\lim _{n \rightarrow \infty}(1-\beta) \delta_{s}\left(T \hbar, S x_{2 n+1}\right) \leq(\gamma+\delta) d_{s}(\hbar, T \hbar)$.
This implies

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \beta \delta_{s}\left(S x_{2 n+1}, T \hbar\right) \leq(\gamma+\delta) d_{s}(\hbar, T \hbar) . \tag{9}
\end{equation*}
$$

Again we have

$$
\begin{aligned}
& \beta \delta_{s}\left(T x_{2 n}, S \hbar\right)+(1-\beta) \delta_{s}\left(S \hbar, T x_{2 n}\right) \leq H^{\beta}\left(T x_{2 n}, S \hbar\right) \\
& \leq \alpha d_{s}\left(x_{2 n}, \hbar\right)+\gamma\left[d_{s}\left(x_{2 n}, T x_{2 n}\right)+d_{s}(\hbar, S \hbar)\right] \\
& +\delta\left[d_{s}\left(x_{2 n}, S \hbar\right)+d_{s}\left(\hbar, T x_{2 n}\right)\right]+\epsilon^{2 n+1} \\
& \leq \alpha d_{s}\left(x_{2 n}, \hbar\right)+\gamma\left[d_{s}\left(x_{2 n}, x_{2 n+1}\right)+d_{s}(\hbar, S \hbar)\right] \\
& +\delta\left[d_{s}\left(x_{2 n}, S \hbar\right)+d_{s}\left(\hbar, x_{2 n+1}\right)\right]+\epsilon^{2 n+1}
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \beta \delta_{s}\left(T x_{2 n}, S \hbar\right)+(1-\beta) \delta_{s}\left(S \hbar, T x_{2 n}\right) \\
& \leq \lim \left[\alpha d_{s}\left(x_{2 n}, \hbar\right)+\gamma\left[d_{s}\left(x_{2 n}, x_{2 n+1}\right)+d_{s}(\hbar, S \hbar)\right]\right. \\
&\left.\left.+\delta\left[d_{s}\left(x_{2 n}, S \hbar\right)+d_{s}\left(\hbar, x_{2 n+1}\right)\right\}\right]+\epsilon^{2 n+1}\right] \\
& \leq(\gamma+\delta) d_{s}(\hbar, S \hbar) .
\end{aligned}
$$

Since

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \beta \delta_{s}\left(T x_{2 n}, S \hbar\right)+\lim _{n \rightarrow \infty}(1-\beta) \delta_{s}\left(S \hbar, T x_{2 n}\right) \\
& \leq \lim _{n \rightarrow \infty} \beta \delta_{s}\left(T x_{2 n}, S \hbar\right)+(1-\beta) \delta_{s}\left(S \hbar, T x_{2 n}\right),
\end{aligned}
$$

we have

$$
\lim _{n \rightarrow \infty} \beta \delta_{s}\left(T x_{2 n}, S \hbar\right)+\lim _{n \rightarrow \infty}(1-\beta) \delta_{s}\left(S \hbar, T x_{2 n}\right) \leq(\gamma+\delta) d_{s}(\hbar, S \hbar)
$$

This implies

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \beta \delta_{s}\left(T x_{2 n}, S \hbar\right) \leq(\gamma+\delta) d_{s}(\hbar, S \hbar) \tag{10}
\end{equation*}
$$

Now

$$
\begin{aligned}
d_{s}(\hbar, T \hbar) & \leq s\left[d_{s}\left(\hbar, x_{2 n+2}\right)+\delta_{s}\left(S x_{2 n+1}, T \hbar\right)\right] \\
d_{s}(\hbar, S \hbar) & \left.\leq s\left[d_{s}\left(\hbar, x_{2 n+1}\right)+\delta_{s}\left(T x_{2 n}, S \hbar\right)\right)\right]
\end{aligned}
$$

Using (9) and (10) we get

$$
\begin{aligned}
& d_{s}(\hbar, T \hbar) \leq s \lim _{n \rightarrow \infty} d_{s}\left(\hbar, x_{2 n+2}\right)+s \lim _{n \rightarrow \infty} \delta_{s}\left(S x_{2 n+1}, T \hbar\right) \\
\leq & \frac{s(\gamma+\delta)}{\beta} d_{s}(\hbar, T \hbar) . \\
& d_{s}(\hbar, S \hbar) \leq s \lim _{n \rightarrow \infty} d_{s}\left(\hbar, x_{2 n+1}\right)+s \lim _{n \rightarrow \infty} \delta_{s}(T x 2 n, S \hbar) \\
\leq & \frac{s(\gamma+\delta)}{\beta} d_{s}(\hbar, T \hbar) .
\end{aligned}
$$

Since $s(\gamma+\delta)<\beta$, we get $d_{s}(\hbar, T \hbar)=0$ and $d_{s}(\hbar, S \hbar)=0$. Since T and S are closed we have $\hbar \in T$ and $\hbar \in S$.

Example 3.6. Let $X=\left[0, \frac{5}{12}\right] \bigcup\{2\}, d_{s}(x, y)=|x-y|^{2} \quad$ for all $x, y \in$ X and $S, T: X \rightarrow C B(X)$ be as follows :

$$
\begin{gathered}
S(x)=\left\{\begin{array}{l}
\left\{\frac{x}{4}\right\}, \quad \text { for } x \in\left[0, \frac{5}{12}\right] \\
\left\{0, \frac{1}{3}, 2\right\}, \quad \text { for } \quad x=2,
\end{array}\right. \\
T(x)=\left\{\begin{array}{l}
\left\{\frac{x}{4}\right\}, \quad \text { for } \quad x \in\left[0, \frac{5}{12}\right] \\
\left\{0, \frac{5}{12}, 2\right\}, \quad \text { for } \quad x=2,
\end{array}\right.
\end{gathered}
$$

We will show that the functions S and T satisfy contraction condition (5) for $\beta=\frac{1}{2}$.

Case 1. $\quad x, y \in\left[0, \frac{5}{12}\right]$. By Lemma (), we have

$$
\begin{aligned}
H^{\frac{1}{2}}(S x, T y)= & H^{\frac{1}{2}}\left(\left\{\frac{x}{4}\right\},\left\{\frac{y}{4}\right\}\right) \\
& =d_{s}\left(\frac{x}{4}, \frac{y}{4}\right) \\
& =\left|\frac{x}{4}-\frac{y}{4}\right|^{2} \\
& \leq \alpha_{1}|x-y|^{2}, \quad \text { for any } \alpha \geq \frac{1}{16} \\
& =\alpha d_{s}(x, y) .
\end{aligned}
$$

Case 2. $\quad x \in\left[0, \frac{5}{12}\right], y=2$. We have
$d_{s}(x, y)=|2-x|^{2}$. The minimum value of $d_{s}(x, y)$ for $x \in\left[0, \frac{5}{12}\right]$ is $\frac{361}{144}$.
$\delta_{s}(S x, T y)=\delta_{s}\left(\left\{\frac{x}{4}\right\},\left\{0, \frac{5}{12}, 2\right\}\right)=\frac{x^{2}}{16}$.
$\delta_{s}(T y, S x)=\delta_{s}\left(\left\{0, \frac{5}{12}, 2\right\},\left\{\frac{x}{4}\right\}\right)=\left(2-\frac{x}{4}\right)^{2}$.
$H^{\frac{1}{2}}(S x, T y)=\frac{1}{2}\left(\frac{x^{2}}{16}+\left(2-\frac{x}{4}\right)^{2}\right)$
The maximum value of $H^{\frac{1}{2}}(S x, T y)$ for $x \in\left[0, \frac{5}{12}\right]$ is 2 (at $x=0$). Thus $H^{\frac{1}{2}}(S x, T y) \leq \alpha d_{s}(x, y)$ for any $\alpha \geq \frac{288}{361}$.

Case 3. $x=2, y \in\left[0, \frac{5}{12}\right]$. We have
$d_{s}(x, y)=|2-y|^{2}$. The minimum value of $d_{s}(x, y)$ for $y \in\left[0, \frac{5}{12}\right]$ is $\frac{361}{144}$. $\delta_{s}(S x, T y)=\delta_{s}\left(\left\{0, \frac{5}{12}, 2\right\},\left\{\frac{y}{4}\right\}\right)=\left(2-\frac{y}{4}\right)^{2}$.
$\delta_{s}(T y, S x)=\delta_{s}\left(\left\{\frac{x}{4}\right\},\left\{0, \frac{5}{12}, 1\right\}\right)=\frac{y^{2}}{16}$.
$H^{\frac{1}{2}}(S x, T y)=\frac{1}{2}\left(\frac{y^{2}}{16}+\left(2-\frac{y}{4}\right)^{2}\right)$
The maximum value of $H^{\frac{1}{2}}(S x, T y)$ for $y \in\left[0, \frac{5}{12}\right]$ is 2 (at $y=0$). Thus $H^{\frac{1}{2}}(S x, T y) \leq \alpha d_{S}(x, y)$ for any $\alpha \geq \frac{288}{361}$.

Thus S and T satisfy contraction condition (5) for $\beta=\frac{1}{2}, \frac{288}{361} \leq \alpha<1$ and $\gamma=\delta=0$. Simple calculations shows that S and T are pairwise H^{β} Hausdorff functions. All conditions of Theorem 3.5 are satisfied and 0 is a common fixed point of S and T. However we see that at $x=0, y=2$, S and T do not satisfy contraction condition (5) for $\beta=1$ and so do not satisfy Nadler's contraction and Czerwic's contraction.

Remark 3.7. In Example 3.6 above, simple calculations show that S and T do not satisfy contraction condition (5) for $\frac{62}{100}<\beta \leq 1$. However in view of Remark 3.3(i), there may exist functions S and T which satisfy
contraction condition (5) for $\beta=1$ but may not satisfy for $\beta<1$. Thus for $\beta=1$ Theorem 3.5 is an extension of Nadler's contraction [28], Czervik's contraction [11] and many of its generalisations. For $\beta<1$ Theorem 3.5 provides new variants of Nadler's contraction [28], Czervik's contraction [11] and many of its generalisations.

Taking $\gamma=\delta=0$ in Theorem 3.5, we get the following extension and new variants of Nadler's contraction and Czerwik's contraction :

Corollary 3.8. Let $\left(X, d_{s}\right)$ be a complete b-metric space with constant $s \geq 1, T, S: X \rightarrow P_{c l, b}(X)$ be multivalued pairwise H^{β}-Hausdorff functions for some $\frac{1}{2} \leq \beta \leq 1$ and satisfying the following condition:

$$
H^{\beta}(T x, S y) \leq \alpha d_{s}(x, y)
$$

for all $x, y \in X$ and $0 \leq \alpha<1$, then S and T has a common fixed point.
Taking $\alpha=\delta=0$ in Theorem 3.5, we get the following extension and new variants of Kannan's contraction :

Corollary 3.9. Let $\left(X, d_{s}\right)$ be a complete b-metric space with constant $s \geq 1, T, S: X \rightarrow P_{c l, b}(X)$ be multivalued pairwise H^{β}-Hausdorff functions for some $\frac{1}{2} \leq \beta \leq 1$ and satisfying the following condition;

$$
H^{\beta}(T x, S y) \leq \gamma\left[d_{s}(x, T x)+d_{s}(y, S y)\right.
$$

for all $x, y \in X$ and some real number γ with $0 \leq \gamma<\frac{1}{2}$, then S and T has a common fixed point.

Taking $\alpha=\gamma=0$ in Theorem 3.5, we get the following extension and new variants of Kannan's contraction :

Corollary 3.10. Let $\left(X, d_{s}\right)$ be a complete b-metric space with constant $s \geq 1, T, S: X \rightarrow P_{c l, b}(X)$ be multivalued pairwise H^{β}-Hausdorff functions for some $\frac{1}{2} \leq \beta \leq 1$ and satisfying the following condition;

$$
H^{\beta}(T x, S y) \leq \gamma\left[d_{s}(x, S y)+d_{s}(y, T x)\right.
$$

for all $x, y \in X$ and some real number δ with $0 \leq s \delta<\frac{1}{2}$, then S and T has a common fixed point.

3.2 Application to integral equation

In this section, motivated by the applications given in [3, 31, 33], we establish the sufficient conditions for the existence of a common solution of a pair of nonlinear Volterra type integral equations.

For some real numbers a, b with $0 \leq a<b$ and $I=[a, b]$, let $X=$ $C(I, \mathbb{R})$ be the Banach space of real continuous functions defined on I equipped with a norm given by $\|x\|=\max _{t \in I}|x(t)|$. For some and some $p \geq 1$, define a b-metric d_{s} on X by

$$
d_{s}(x, y)=\max _{t \in I}|x(t)-y(t)|^{p}, \text { for all } x, y \in X
$$

Then $\left(X, d_{s}, 2^{p-1}\right)$ is a complete b-metric space. Consider two Fredholm integral equations

$$
\left\{\begin{array}{l}
x(t)=q(t)+\int_{a}^{\mu(t)} \mathcal{P}(t, s) \mathcal{K}_{1}(t, s, x(s)) d s+\int_{a}^{\sigma(t)} \mathcal{Q}(t, s) \mathcal{K}_{2}(t, s, y(s)) d s \tag{11}\\
y(t)=q(t)+\int_{a}^{\mu(t)} \mathcal{P}(t, s) \mathcal{K}_{2}(t, s, y(s)) d s+\int_{a}^{\sigma(t)} \mathcal{Q}(t, s) \mathcal{K}_{1}(t, s, y(s)) d s
\end{array}\right.
$$

for all $t, s \in I=[a, b] \subseteq \mathbb{R},|\lambda|>0, \mathcal{K}_{i=1,2}: I \times I \times X \rightarrow \mathbb{R}$ and $q: I \rightarrow \mathbb{R}$ and $\mathcal{P}, \mathcal{Q}: I \times I \rightarrow \mathbb{R}$ are continuous functions and $\mu, \sigma: I \rightarrow I$.

Suppose $T, S: X \rightarrow X$ be self-mappings defined by

$$
\left\{\begin{array}{l}
T x(t)=q(t)+\int_{a}^{\mu(t)} \mathcal{P}(t, s) \mathcal{K}_{1}(t, s, x(s)) d s+\int_{a}^{\sigma(t)} \mathcal{Q}(t, s) \mathcal{K}_{2}(t, s, y(s)) d s \tag{12}\\
S y(t)=q(t)+\int_{a}^{\mu(t)} \mathcal{P}(t, s) \mathcal{K}_{2}(t, s, y(s)) d s+\int_{a}^{\sigma(t)} \mathcal{Q}(t, s) \mathcal{K}_{1}(t, s, y(s)) d s
\end{array}\right.
$$

for all $x, y \in X$, where $t \in I$. It is obvious that $\hbar(t)$ is a solution of (11) if and only if it is a common fixed point of T and S.

Theorem 3.11. Suppose that the following hypotheses hold:
$\left(H_{1}\right): T(X)$ and $S(X)$ are closed in X;
$\left(H_{2}\right)$: There exist nonnegative real numbers α, γ, δ satisfying $\alpha+2 \gamma+$ $2^{p} \delta<1,2^{p-1}(\gamma+\delta)<\beta$ such that

$$
\left|\mathcal{K}_{1}(t, s, x(s))-\mathcal{K}_{2}(t, s, y(s))\right|^{p} \leq N(T, S, p, t)
$$

$\left(H_{3}\right): \int_{a}^{\mu(t)} \mathcal{P}(t, s) d s+\int_{a}^{\sigma(t)} \mathcal{Q}(t, s) d s \leq \frac{1}{2^{p-1}}$.
where,

$$
\begin{aligned}
& N(T, S, p, t)=\alpha|x(t)-y(t)|^{p}+\gamma\left[|x(t)-T x(t)|^{p}+|y(t)-S y(t)|^{p}\right] \\
& +\delta\left[|x(t)-S y(t)|^{p}+|y(t)-T x(t)|^{p}\right] .
\end{aligned}
$$

Then the system (11) of integral equations has a common solution in X.

Proof: Using $\left(H_{2}\right)$ and $\left(H_{3}\right)$ we have

$$
\begin{aligned}
& d_{s}(T x, S y)=\max _{t \in I}|T x(t)-S y(t)|^{p} \\
& \leq \max _{t \in I} \mid \int_{a}^{\mu(t)} \mathcal{P}(t, s) \mathcal{K}_{1}(t, s, x(s)) d s+\int_{a}^{\sigma(t)} \mathcal{Q}(t, s) \mathcal{K}_{2}(t, s, y(s)) d s \\
& -\int_{a}^{\mu(t)} \mathcal{P}(t, s) \mathcal{K}_{2}(t, s, y(s)) d s-\left.\int_{a}^{\sigma(t)} \mathcal{Q}(t, s) \mathcal{K}_{1}(t, s, y(s)) d s\right|^{p} \\
& \leq \max _{t \in I} 2^{p-1}\left\{\mid \int_{a}^{\mu(t)} \mathcal{P}(t, s) \mathcal{K}_{1}(t, s, x(s)) d s\right. \\
& -\left.\int_{a}^{\mu(t)} \mathcal{P}(t, s) \mathcal{K}_{2}(t, s, y(s)) d s\right|^{p} \\
& \left.+\left|\int_{a}^{\sigma(t)} \mathcal{Q}(t, s) \mathcal{K}_{2}(t, s, y(s)) d s-\int_{a}^{\sigma(t)} \mathcal{Q}(t, s) \mathcal{K}_{1}(t, s, y(s)) d s\right|^{p}\right\} \\
& \leq \max _{t \in I} 2^{p-1}\left\{\left|\int_{a}^{\mu(t)} \mathcal{P}(t, s)\left(\mathcal{K}_{1}(t, s, x(s))-\mathcal{K}_{2}(t, s, y(s))\right) d s\right|^{p}\right. \\
& \left.+\left|\int_{a}^{\sigma(t)} \mathcal{Q}(t, s)\left(\mathcal{K}_{2}(t, s, y(s))-\mathcal{K}_{1}(t, s, y(s))\right) d s\right|^{p}\right\} \\
& \leq \max _{t \in I} 2^{p-1}\left\{\int_{a}^{\mu(t)}|\mathcal{P}(t, s)|^{p}\left|\left(\mathcal{K}_{1}(t, s, x(s))-\mathcal{K}_{2}(t, s, y(s))\right)\right|^{p} d s\right. \\
& \left.+\int_{a}^{\sigma(t)}|\mathcal{Q}(t, s)|^{p}\left|\left(\mathcal{K}_{2}(t, s, y(s))-\mathcal{K}_{1}(t, s, y(s))\right)\right|^{p} d s\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { COMMON FIXED POINTS OF A PAIR OF } H^{\beta} \text {-HAUSDORFF } \\
& \quad \text { MULTIVALUED OPERATORS } \ldots \\
& \leq \max _{t \in I} 2^{p-1}\left\{\int_{a}^{\mu(t)}|\mathcal{P}(t, s)|^{p} N(T, S, p, t) d s\right. \\
& +\int_{a}^{\sigma(t)}|\mathcal{Q}(t, s)|^{p} N(T, S, p, t) d s \\
& \leq \max _{t \in I} 2^{p-1} N(T, S, p, t)\left\{\int_{a}^{\mu(t)}|\mathcal{P}(t, s)|^{p} d s+\int_{a}^{\sigma(t)}|\mathcal{Q}(t, s)|^{p} d s\right. \\
& \leq \max _{t \in I} N(T, S, p, t) \\
& \leq \alpha d_{s}(x, y)+\gamma\left[d_{s}(x, T x)+d_{s}(y, S y)\right]+\delta\left[d_{s}(x, S y)+d_{s}(y, T x)\right] .
\end{aligned}
$$

Thus conditions of Theorem 3.5 are satisfied. Theorem 3.5 therefore ensures a common fixed point of T and S, which in turn is a common solution of the pair of integral equations (11).

Remark 3.12. Taking $\mathcal{Q}(t, s)=0, \mathcal{P}(t, s)=1, q(t)=0, \mu(t)=t$ and $a=0$ in (11), we get the Volterra-type integral equations considered in Rasham et al [31] and Alshoraify et al [3].

Remark 3.13. Taking $\mathcal{Q}(t, s)=0, \mu(t)=1$ and $a=0$ in (11), we get the Fredholm-type integral equations (III.3) considered in Shoaib et al [33].

Remark 3.14. Taking $\mathcal{Q}(t, s)=0, \mathcal{P}(t, s)=1$ and $\mu(t)=b$ in (11), we get the Fredholm-type integral equations (III.1) considered in Shoaib et al [33].

Acknowledgements

The authors are thankful to the learned reviewers for their valuable comments which revised this paper into its present form.

References

[1] M.A. Alghamdi, S. Gulyaz-Ozyurt, E. Karapinar, A note on extended Z-contraction, Mathematics, 8(2020),195.
[2] P. Amiri and S. Rezapour, Fixed point of multivalued operators on partial metric spaces, Anal. Theory Appl., Vol. 29, No. 2 (2013), pp. 158-168.
[3] S. S. Alshoraify, A. Shoaib, M. Arshad, New types of Fcontraction for multivalued mappings and related fixed point results in abstract spaces, J. Funct. Spaces, 2019, Article ID 1812461, https://doi.org/10.1155/2019/1812461.
[4] H. Alsulami, Selma Gulyaz, E. Karapinar, I. Erhan, An Ulam stability result on quasi-b-metric-like spaces, Open Mathematics, 14(1), (2016).
[5] H. Aydi, M.F. Bota, E. Karapinar, S. Moradi, A common fixed point for weak phi-contractions on b-metric spaces, Fixed Point Theory, 13(2) (2012).
[6] H. Aydi, M. F. Bota, E. Karapinar, S. Mitrović, A fixed point theorem for set-valued quasi-contractions in b-metric spaces, Fixed Point Theory Appl., 88(2012), 8 pages.
[7] I. A. Bakhtin, The contraction mapping principle in quasimetric spaces, Funct. Anal., Unianowsk Gos. Ped. Inst. 30(1989), 26-37.
[8] D. Baleanu, R.P. Agarwal, H. Mohammadi, S. Rezapour, Some existence results for a nonlinear fractional differential equation on partially ordered Banach spaces,Boundary Value Problems, 112(2013)
[9] M. Boriceanu, A. Petrusel, I.A. Rus, Fixed point theorems for some multi-valued generalized contractions in b-metric spaces, Internat. J. Math. Statistics, 6(2010), 6576.
[10] C. Chifu, A. Petrusel, Fixed points for multi-valued contractions in b-metric space wit applications to fractals, Taiwanese J. Math., 18(5)(2014), 1365-1375.
[11] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Univ. Modena, 46(1998), 263-276.
[12] B. Damjanović, B. Samet, C. Vetro, Common fixed point theorems for multi-valued maps, Acta Math. Sci. Ser. B Engl. Ed., 32(2012), 818-824.

COMMON FIXED POINTS OF A PAIR OF H^{β}-HAUSDORFF MULTIVALUED OPERATORS
[13] Inci M. Erhan, Geraghty type contraction mappings on Branciari b-metric spaces, Adv. Theory of Nonlinear Anal. Appl., Vol. 1, Issue 2 (2017), 147-160.
[14] R. George, H.A Nabwey, R Ramaswamy and S Radenovic, Some generalized contraction classes and common fixed points in b-metric space endowed with a graph, Mathematics, $7(754)(2019)$, 19 pages.
[15] R. George and H.K Pathak, Some new extensions of multivalued contractions in a b-metric space and its applications, Mathematics, $9(2021), 12$. https://dx.doi.org/10.3390/math 9010012.
[16] R. George, I.D. Arandelović , V. Miic, and Z. D. Mitrovic, Some fixed points results in b-metric and quasi bmetric spaces, J. Function Spaces 2022, Article ID 1803348, https://doi.org/10.1155/2022/1803348.
[17] S. Gulyaz-Ozyurt, On some alpha-admissible contraction mappings on Branciari b-metric spaces, Adv. Theory of Nonlinear Anal. Appl., 1(1), (2017).
[18] F. Hausdorff. Grunclzuege der Mengenlehre. Viet, Leipzig, 1914.
[19] N. Hussain, Z.D Mitrović, On multi-valued weak quasi-contractions in b-metric spaces, J. Nonlinear Sci. Appl., 10(2017), 3815-3823.
[20] T. Kamran and Q. Kiran, Fixed point theorems for multi-valued mappings obtained by altering distances, Mathematical and Computer Modelling 54(2011), 2772-2777.
[21] D. Klim and D. Wardowski, Fixed point theorems for set valued contractions in complete metric spaces, J. Math. Anal. Appl., 334(2007), 132-139.
[22] E. Karapinar, A. Fulga, A. Petrusel, On Istratescu type contractions in b-metric spaces, Mathematics, 8(2020), 388.
[23] Z. Liu, X. Na, Y.C. Kwun and S.M. Kang, Fixed points of some set valued F-contractions, J. Nonlinear Sci. Appl., 9(2016), 579-5805.
[24] A.A. Mebawondu, C. Izuchukwu, K.O. Aremu, O.T. Mewomo, Some fixed point results for a generalized TAC-Suzuki-Berinde type F-contractions in b-metric spaces, Appl. Math. E-Notes, 19(2019), 629-653.
[25] M.A. Miandaragh, A. Pitea, S. Rezapour, Some approximate fixed point results for proximal valued beta-contractive multifunctions, Bull. Iran. Math. Soc., 41(5)(2015), pp.1161-1172.
[26] R. Miculescu, A. Mihail, New fixed point theorems for set-valued contractions in b-metric spaces, J. Fixed Point Theory Appl., 1A11(2015).
[27] A.K. Mirmostaffae, Fixed point theorems for set valued mappings in b-metric spaces, Fixed Point Theory, 18(1)(2017), 305-314.
[28] S.B. Nadler, Multivalued contraction mappings, Pacific J. Math., 30(1969), 475-488.
[29] H.K Pathak, R.George, H.A Nabwey, M.S El-Paoumy and K.P Reshma, Some generalized fixed point results in a b-metric space and application to matrix equations, Fixed Point Theory Appl., 101(2015), 17 pages.
[30] D. Pompieu, Sur la continuite' des fonctions de variables complexes (These). Gauthier- Villars, Paris, Ann. Fac. Sci. de Toulouse, 7(1905), 264-315.
[31] T. Rasham, A. Shoaib, N. Hussain, M. Arshad, S. U. Khan, Common fixed point results for new Ciric-type rational multivalued Fcontraction with an application, J. Fixed Point Theory Appl., 2018, https://doi.org/10.1007/s11784-018-0525-6.
[32] G.K Ranjbar, F. Lotfi, M. Samei, S. Rezapour, Fixed point theorems of contraction mappings in complete b-metric space of zero at infinity varieties, Afrika Matematika, 32(1-2)(2020), pp.229-239, DOI:10.1007/s13370-020-00822-0.

COMMON FIXED POINTS OF A PAIR OF H^{β}-HAUSDORFF MULTIVALUED OPERATORS

[33] M. Shoaib, T. Abdeljawad, M. Sarwar, F. Jarad, Fixed point theorems for multi-valued contractions in b-metric spaces with applications to fractional differential and integral equations, IEEE Access, 7 (2019).
[34] M. Younis, D. Singh, Afrah A. N. Abdou, A fixed point approach for tuning circuit problem in dislocated b-metric spaces, Math. Methods Appl. Sci., 2021, https://doi.org/10.1002/mma.7922.

Naif R Alrashedi
M.Sc Student of Mathematics

Department of Mathematics
College of Science and Humanities in Alkharj
Prince Sattam bin Abdulaziz University
11942, Alkharj, Saudi Arabia
E-mail: alrashedinaifrr@gmail.com

Fahad S Alshammari
Assistant Professor of Mathematics
Department of Mathematics
College of Science and Humanities in Alkharj
Prince Sattam bin Abdulaziz University
11942, Alkharj, Saudi Arabia
E-mail: f.alshammari@psau.edu.sa

Reny George

Professor of Mathematics
Department of Mathematics
College of Science and Humanities in Alkharj
Prince Sattam bin Abdulaziz University
11942, Alkharj, Saudi Arabia
E-mail: renygeorge02@yahoo.com

[^0]: Received: February 2022 Accepted: June 2022

 * Corresponding Author

