Journal of Mathematical Extension Vol. 16, No. 11, (2022) (10)1-19 URL: https://doi.org/10.30495/JME.2022.2305 ISSN: 1735-8299 Original Research Paper

Common Fixed Points of a Pair of H^{β} -Hausdorff Multivalued Operators in *b*-Metric Space and Application to Integral Equations

N.R. Alrashedi

Prince Sattam bin Abdulaziz University

F.S. Alshammari

Prince Sattam bin Abdulaziz University

R. George^{*}

Prince Sattam bin Abdulaziz University

Abstract. A common fixed point theorem for a pair of H^{β} -Hausdorff multi-valued operators for $\beta \in [0, 1]$ is proved in a b-metric space. Our result is a proper extension and new variants of many well known contraction conditions existing in literature. As an application of our main result, we have proved an existence result for a common solution of a pair of nonlinear Volterra type integral equations.

AMS Subject Classification: 47H10, 47H20, 54H25 **Keywords and Phrases:** *b*-metric space, H^{β} -Hausdorff *b*-metric, H^{β} -Hausdorff function, common fixed point, Fredholm integral equation.

Received: February 2022 Accepted: June 2022 *Corresponding Author

1 Introduction

The study of a metric function on the set of closed and bounded subsets of a metric space was initiated by Pompeiu in [30] and then continued by Hausdorff [18]. Such a metric function is reffered to as the Hausdorff-Pompeiu metric. On the other hand Bakhtin [7] introduced the concept of a *b*-metric space as a generalisation of metric space and proved Banach's contraction principle in a *b*-metric space. Some recent interesting results on contraction principles in a *b*-metric space and its applications can be found in [1, 4, 5, 8, 13, 16, 17, 22, 29, 32, 34]. Banach's contraction principle was extended to a multi-valued function in a metric space by Nadler [28] and in a *b*-metric space by Czerwik [11] using the Hausdorff-Pompieu metric H. Further generalized results of multivalued contractions can be found in [2, 12, 20, 21, 23, 25]. Czervik's contraction was also generalised in many directions, to name a few q-quasi contraction [6], Hardy Rogers contraction [27], weak quasi contraction [19], Cirić contraction [26] etc. More results for multi-valued contraction mappings in a *b*-metric space can be found in [9, 10, 14, 24, 29]. In [15]the authors introduced the concept of H^{β} -Hausdorff-Pompeiu *b*-metric for some $0 \leq \beta \leq 1$ and proved fixed point theorems for multi-valued mappings belonging to various classes of multi-valued H^{β} -contractions in a *b*-metric space. The aim of this work is to prove common fixed point theorems for a pair of multivalued mappings in a *b*-metric space using H^{β} -Hausdorff Pompieu b-metric and thereby extend and introduce new variants of various fixed point results for multi-valued mappings existing in literature. An application of our main result is demonstrated by proving the existence of a common solution of a pair of nonlinear Volterra type integral equations.

2 Preliminaries

In this section we provide some preliminary definitions, lemmas and propositions required in our main results.

Definition 2.1. [7] Let X be a nonempty set and $d_s: X \times X \to [0, \infty)$ satisfy:

1. $d_s(x,y) = 0$ if and only if x = y for all $x, y \in X$;

- 2. $d_s(x,y) = d(y,x)$ for all $x, y \in X$;
- 3. there exists a real number $s \ge 1$ such that $d(x, y) \le s[d_s(x, \ell) + d_s(\ell, y)]$ for all $x, y, \ell \in X$.

Then d_s is a *b*-metric on X and (X, d_s) is a *b*-metric space with coefficient s.

Let $CB^{d_s}(X)$ be the collection of all nonempty closed and bounded subsets of a *b*-metric space (X, d_s) . For $A, B \in CB^{d_s}(X)$, define $d_s(x, A) =$ $\inf\{d_s(x, a) : a \in A\}, \ \delta_{d_s}(A, B) = \sup_{a \in A} d_s(a, B)$ and $H_{d_s}(A, B) =$ $\max\{\delta_{d_s}(A, B), \delta_{d_s}(B, A)\}$. Czerwik [11] has shown that H_{d_s} is a *b*metric in the set $CB^{d_s}(X)$ and is called the the Hausdorff-Pompeiu *b*-metric induced by d_s . In [15], the authors introduced the function

$$H^{\beta}(A,B) = \max\{\beta \delta_{d_s}(A,B) + (1-\beta)\delta_{d_s}(B,A), \beta \delta_{d_s}(B,A) + (1-\beta)\delta_{d_s}(A,B)\}$$

for some $\beta \in [0,1]$ and showed that H^{β} form a metric for the set $CB^{d_s}(X)$. They called this function the H^{β} -Hausdorff Pompieu *b*-metric induced by the *b*-metric d_s . Note that for $\beta = 0$ or 1, H^{β} metric is equal to the Hausdorff-Pompieu metric H.

Proposition 2.2. [15] For any $x, y \in X$, $H^{\beta}(\{x\}, \{y\}) = d_s(x, y)$.

Definition 2.3. [26] The *b*-metric d_s is *-continuous if and only if for any $A \in CB^{d_s}(X)$ and sequence $\{x_n\}$ in (X, d_s) with $\lim_{n\to\infty} x_n = x$, we have $\lim_{n\to\infty} d_s(x_n, A) = d_s(x, A)$.

Proposition 2.4. [9] For any $A \subseteq X$,

$$a \in A \iff d_s(a, A) = 0.$$

Lemma 2.5. [26] Let $\{x_n\}$ be a sequence in (X, d_s) . Then for any $n \in N$ and $k \in \{1, 2, 3...2^n - 1, 2^n\}$, we have

$$d(x_0, x_k) \le s^n \sum_{i=0}^{k-1} d(x_i, x_{i+1})$$

Lemma 2.6. [26] Let $\{x_n\}$ be a sequence in (X, d_s) . If there exists $\lambda \in [0, 1)$ such that $d_s(x_n, x_{n+1}) \leq \lambda d_s(x_{n-1}, x_n)$ for all $n \in N$, then $\{x_n\}$ is a Cauchy sequence.

Following the technique of [26], we now prove the following lemma.

Lemma 2.7. If for some $\lambda, \epsilon \in [0, 1)$, with $\lambda < \epsilon$, $d_s(x_n, x_{n+1}) \leq \lambda d_s(x_{n-1}, x_n) + \epsilon^n$ for all $n \in N$, then $\{x_n\}$ is a Cauchy sequence.

Proof. Note that $d_s(x_n, x_{n+1}) \leq \lambda d_s(x_{n-1}, x_n) + \epsilon^n$ implies

$$d_s(x_n, x_{n+1}) \le \lambda^n \, d_s(x_0, x_1) + \frac{\epsilon^{n+1}}{\epsilon - \lambda} \tag{1}$$

for all $n \in N$. Also for all $m, k \in N$ and $p = \lfloor \log_2 k \rfloor$, we have

$$d_{s}(x_{m+1}, x_{m+k}) \leq s \, d_{s}(x_{m+1}, x_{m+2}) + s^{2} \, d_{s}(x_{m+2}, x_{m+2^{2}}) + s^{3} \, d_{s}(x_{m+2^{2}}, x_{m+2^{3}}) + \cdots \leq \sum_{n=1}^{p} s^{n} \, d_{s}(x_{m+2^{n-1}}, x_{m+2^{n}}) + s^{p+1} d_{s}(x_{m+2^{p}}, x_{m+k}).$$
(2)

Then using Lemma 2.5 and (1), we get

$$\begin{aligned} d_s(x_{m+1}, x_{m+k}) &\leq \sum_{n=1}^p s^n \left\{ s^n \sum_{i=m}^{m+2^{n-1}-1} d_s(x_{2^{n-1}+i}, x_{2^{n-1}+i+1}) \right\} \\ &+ s^{2(p+1)} \sum_{i=m}^{m+k-2^{p-1}} d_s(x_{2^{p}+i}, x_{2^{p}+i+1}) \\ &\leq \sum_{n=1}^{p+1} s^{2n} \sum_{i=m}^{m+2^{n-1}-1} d_s(x_{2^{n-1}+i}, x_{2^{n-1}+i+1}) \\ &\leq \sum_{n=1}^{p+1} s^{2n} d_s(x_0, x_1) \sum_{i=0}^{2^{n-1}-1} \left\{ \lambda^{m+2^{n-1}+i} + \frac{\epsilon^{m+2^{n-1}+i+1}}{\epsilon - \lambda} \right\} \\ &\leq \frac{d_s(x_0, x_1)\lambda^m}{1 - \lambda} \sum_{n=1}^{p+1} s^{2n}\lambda^{2^{n-1}} + \frac{d_s(x_0, x_1)\epsilon^m}{(\epsilon - \lambda)(1 - \epsilon)} \sum_{n=1}^{p+1} s^{2n}\epsilon^{2^{n-1}} \\ &\leq \frac{d_s(x_0, x_1)\lambda^m}{1 - \lambda} \sum_{n=1}^{p+1} \lambda^{2n\log_\lambda s + 2^{n-1}} + \frac{d_s(x_0, x_1)\epsilon^m}{(\epsilon - \lambda)(1 - \epsilon)} \sum_{n=1}^{p+1} \epsilon^{2n\log_\epsilon s + 2^{n-1}} \end{aligned}$$

Note that $\lim_{n\to\infty} 2n\log_{\lambda} s + 2^{n-1} = \infty$ and $\lim_{n\to\infty} 2n\log_{\epsilon} s + 2^{n-1} = \infty$. So for fixed M > 0, there exists $n_1, n_2 \in N$ such that $2n\log_{\lambda} s + 2^{n-1} \ge M$ for all $n \ge n_1$ and $2n\log_{\epsilon} s + 2^{n-1} \ge M$ for all $n \ge n_2$, that is $\lambda^{2n\log_{\lambda} s + 2^{n-1}} < \lambda^M$ for all $n \ge n_1$ and $\epsilon^{2n\log_{\epsilon} s + 2^{n-1}} < \lambda^M$ for all $n \ge n_2$. Thus the series $\sum_{n=1}^{p+1} \lambda^{2n\log_{\lambda} s + 2^{n-1}}$ and $\sum_{n=1}^{p+1} \epsilon^{2n\log_{\epsilon} s + 2^{n-1}}$ are convergent. Let $\sum_{n=1}^{p+1} \lambda^{2n\log_{\lambda} s + 2^{n-1}} = S_1$ and $\sum_{n=1}^{p+1} \epsilon^{2n\log_{\lambda} s + 2^{n-1}} = S_2$. Then we get

$$d_s(x_{m+1}, x_{m+k}) \leq \frac{d_s(x_0, x_1)\lambda^m}{1 - \lambda} S_1 + \frac{d_s(x_0, x_1)\epsilon^m}{(\epsilon - \lambda)(1 - \epsilon)} S_2$$

for all $m, k \in N$. Thus sequence $\{x_n\}$ is a Cauchy sequence.

3 Main Results

We introduce pairwise H^{β} -Hausdorff functions as follows:

Definition 3.1. Let $S,T : X \to CB^{d_s}(X)$. For any $x \in X$, $y \in Tx($ or Sx) and any $\epsilon > 0$ if there exist $z \in Sy($ or Ty) such that

 $d(y,z) \leq H^{\beta}(Tx,Sy) + \epsilon$ or respectively $d(y,z) \leq H^{\beta}(Sx,Ty) + \epsilon$ (3)

then we say that T and S are pairwise H^{β} -Hausdorff functions.

For S = T, we get the following:

Definition 3.2. For any $x \in X$, $y \in Tx$ and any $\epsilon > 0$ if there exists $z \in Ty$ such that

$$d(y,z) \le H^{\beta}(Tx,Ty) + \epsilon \tag{4}$$

then we say that T is a H^{β} -Hausdorff function.

Remark 3.3. (i) For $\beta = 1$, $T : X \to CB(X)$ is always a H^{β} -Hausdorff function.

(ii) If for any $0 \leq \beta_1 \leq 1$, the function $T : X \to CB(X)$ is a H_1^{β} -Hausdorff function then for any $0 \leq \beta_1 \leq \beta_2 \leq 1$, the function $T: X \to CB(X)$ is a H_2^{β} -Hausdorff function.

Example 3.4. Let $X = [0, \frac{33}{48}] \bigcup \{1\},\$

6

 $d_s(x,y) = |x-y|^2$ for all $x, y \in X$.

and $S, T : X \to CB(X)$ be as follows :

$$S(x) = \begin{cases} \left\{\frac{x}{4}\right\}, & \text{for } x \in \left(0, \frac{33}{48}\right] \\ \left\{\frac{33}{48}, 1\right\}, & \text{for } x \in \left\{0, 1\right\}, \end{cases}$$
$$T(x) = \begin{cases} \left\{\frac{x}{2}\right\}, & \text{for } x \in \left(0, \frac{33}{48}\right] \\ \left\{\frac{1}{3}, \frac{33}{48}, 1\right\}, & \text{for } x \in \left\{0, 1\right\}. \end{cases}$$

We will show that the functions S and T satisfies (3). We will consider the values of x in X as follows :

(i) $x \in (0, \frac{33}{48}]$. In this case Sx and Ty are singleton sets and so (3) is obviously true.

(ii) x = 0. $Sx = \{\frac{33}{48}, 1\}$. If $y = \frac{33}{48}$, $Ty = \{\frac{33}{96}\}$, then we have $z = \frac{33}{96}$ and $d_s(y, z) = \frac{1089}{9216}$, $\delta_s(Sx, Ty) = \frac{3969}{9216}$, $\delta_s(Ty, Sx) = \frac{1089}{9216}$ and $H^{\frac{3}{4}}(Sx, Ty) = \frac{3249}{9216}$. Thus (3) is true for all $\epsilon > 0$. If y = 1, $Ty = \{\frac{1}{3}, \frac{33}{48}, 1\}$ then inequality (3) holds with z = 1.

(iii) x = 1. $Sx = \{\frac{33}{48}, 1\}$ and the result follows in the same way as in (ii) above.

(iv) x = 0. $Tx = \{\frac{1}{3}, \frac{33}{48}, 1\}$. If $y = \frac{1}{3}$, $Sy = \{\frac{1}{12}\}$, then we have $z = \frac{1}{12}$ and $d_s(y, z) = \frac{9}{144}$, $\delta_s(Tx, Sy) = \frac{121}{144}$, $\delta_s(Sy, Tx) = \frac{9}{144}$ and $H^{\frac{3}{4}}(Sx, Ty) = \frac{93}{144}$. Thus (3) is true for all $\epsilon > 0$. If $y = \frac{33}{48}$, $Sy = \{\frac{33}{192}\}$ then we take $z = \frac{33}{192}$ and Then $d_s(y, z) = \frac{1089}{4096}$, $\delta_s(Tx, Sy) = \frac{2809}{4096}$, $\delta_s(Sy, Tx) = \frac{961}{36864}$ and $H^{\frac{3}{4}}(Tx, Sy) = \frac{19201}{36864}$. Thus (3) is true for all $\epsilon > 0$. If y = 1, $Sy = \{\frac{33}{48}, 1\}$ and inequality (3) holds with z = 1. Thus S and T are pairwise H^{β} -Hausdorff functions for $\beta = \frac{3}{4}$. How-

ever S and T are not pairwise H^{β} -Hausdorff functions for $\beta = \frac{1}{2}$, as we see that inequality (3) is not satisfied for x = 0, $Tx = \{\frac{1}{3}, \frac{33}{48}, 1\}$ and $y = \frac{33}{48}$. In fact S and T are not pairwise H^{β} -Hausdorff functions for $\frac{34}{95} < \beta < \frac{61}{95}$.

3.1 Fixed point results

We now present our main result.

Theorem 3.5. Let (X, d_s) be a complete b-metric space with constant $s \geq 1$, d_s be *-continuous, $T, S : X \to P_{cl,b}(X)$ be multivalued pairwise H^{β} -Hausdorff functions for some $\frac{1}{2} \leq \beta \leq 1$. If there exist nonnegative real numbers α, γ, δ satisfying $\alpha + 2\gamma + 2s\delta < 1$, $s(\gamma + \delta) < \beta$ and

$$H^{\beta}(Tx, Sy) \leq \alpha d_s(x, y) + \gamma [d_s(x, Tx) + d_s(y, Sy)] + \delta [d_s(x, Sy) + d_s(y, Tx)]$$
(5)

for all $x, y \in X$, then S and T has a common fixed point.

Proof. Let $x_0 \in X$, $x_1 \in Tx_0$ and $0 < \epsilon < 1$. By (3) there exists $x_2 \in Sx_1$, such that $d(x_1, x_2) \leq H^{\beta}(Tx_0, Sx_1) + \epsilon$. By (3) again , there exists $x_3 \in Tx_2$, such that $d(x_2, x_3) \leq H^{\beta}(Sx_1, Tx_2) + \epsilon^2$

Continuing this way we construct the sequence $\langle x_n \rangle$ such that,

$$x_{2n+1} \in Tx_{2n}, x_{2n+2} \in Sx_{2n+1}; \tag{6}$$

$$d_s(x_{2n+1}, x_{2n+2}) \le H^\beta(Tx_{2n}, Sx_{2n+1}) + \epsilon^{2n+1}; \tag{7}$$

$$d_s(x_{2n+2}, x_{2n+3}) \le H^\beta(Sx_{2n+1}, Tx_{2n+2}) + \epsilon^{2n+2}.$$
(8)

Then we have

$$\begin{aligned} &d_s(x_{2n+1}, x_{2n+2}) \leq H^{\beta}(Tx_{2n}, Sx_{2n+1}) + \epsilon^{2n+1} \\ &\leq \alpha \, d_s(x_{2n}, x_{2n+1}) + \gamma [d_s(x_{2n}, Tx_{2n}) + d_s(x_{2n+1}, Sx_{2n+1})] \\ &+ \delta \, [d_s(x_{2n}, Sx_{2n+1}) + d_s(x_{2n+1}, Tx_{2n})] \\ &\leq \alpha \, d_s(x_{2n}, x_{2n+1}) + \gamma [d_s(x_{2n}, x_{2n+1}) + d_s(x_{2n+1}, x_{2n+2})] \\ &+ \delta \, d_s(x_{2n}, x_{2n+2}) + d_s(x_{2n+1}, x_{2n+1})] + \epsilon^{2n+1} \\ &\leq \alpha \, d(x_{2n}, x_{2n+1}) + \gamma [d_s(x_{2n}, x_{2n+1}) + d_s(x_{2n+1}, x_{2n+2})] \\ &+ \delta \, s [d_s(x_{2n}, x_{2n+1}) + d_s(x_{2n+1}, x_{2n+2})] + \epsilon^{2n+1}. \end{aligned}$$

Thus we have

$$d_s(x_{2n+1}, x_{2n+2}) \leq \frac{\alpha + \gamma + s\delta}{1 - \gamma - s\delta} d_s(x_{2n}, x_{2n+1}) + \epsilon^{2n+1}.$$

Again

$$\begin{aligned} &d_s(x_{2n+2}, x_{2n+3}) \leq H^{\beta}(Sx_{2n+1}, Tx_{2n+2}) + \epsilon^{2n+2} \\ &\leq \alpha \, d_s(x_{2n+1}, x_{2n+2}) + \gamma [d_s(x_{2n+2}, Tx_{2n+2}) + d_s(x_{2n+1}, Sx_{2n+1})] \\ &+ \delta [d_s(x_{2n+2}, Sx_{2n+1}) + d_s(x_{2n+1}, Tx_{2n+2})] + \epsilon^{2n+2} \\ &\leq \alpha \, d_s(x_{2n+1}, x_{2n+2}) + \gamma [d_s(x_{2n+2}, x_{2n+3}) + , d_s(x_{2n+1}, x_{2n+2})] \\ &+ \delta [d_s(x_{2n+2}, x_{2n+2}) + d_s(x_{2n+1}, x_{2n+3})] + \epsilon^{2n+2} \\ &\leq \alpha \, d_s(x_{2n+1}, x_{2n+2}) + \gamma [d_s(x_{2n+2}, x_{2n+3}) + d_s(x_{2n+1}, x_{2n+2})] \\ &+ \delta \, [d_s(x_{2n+1}, x_{2n+2}) + d_s(x_{2n+2}, x_{2n+3})] + \epsilon^{2n+2}. \end{aligned}$$

Thus we have

$$d(x_{2n+2}, x_{2n+3}) \leq \frac{\alpha + \gamma + s\delta}{1 - \gamma - s\delta} d_s(x_{2n+1}, x_{2n+2}).$$

Thus we have

$$d_s(x_n, x_{n+1}) \leq \lambda d_s(x_{n-1}, x_n) + \epsilon^n$$

where, $\lambda = \frac{\alpha + \gamma + s\delta}{1 - \gamma - s\delta} < 1.$

By Lemma 2.7 the sequence $\langle x_n \rangle$ is a Cauchy sequence. Since (X, d_s) is complete, there exist $\hbar \in X$ such that the sequence $\langle x_n \rangle$ converges to \hbar . We will show that $\hbar \in T\hbar \bigcap S\hbar$.

By the definition of H^{β} , we have

$$\begin{split} &\beta \delta_s(Sx_{2n+1}, T\hbar) + (1-\beta) \delta_s(T\hbar, Sx_{2n+1}) \leq H^{\beta}(Sx_{2n+1}, T\hbar) \\ &\leq \alpha \, d_s(x_{2n+1}, \hbar) + \gamma [d_s(\hbar, T\hbar + d_s(x_{2n+1}, Sx_{2n+1})] \\ &+ \delta [d_s(\hbar, Sx_{2n+1}) + d_s(x_{2n+1}, T\hbar)] + \epsilon^{2n+2} \\ &\leq \alpha \, d_s(x_{2n+1}, \hbar) + \gamma [d_s(\hbar, T\hbar + d_s(x_{2n+1}, x_{2n+2})] \\ &+ \delta [d_s(\hbar, x_{2n+2}) + d_s(x_{2n+1}, T\hbar)] + \epsilon^{2n+2}. \end{split}$$

It follows that

$$\lim_{n \to \infty} \beta \delta_s(Sx_{2n+1}, T\hbar) + (1 - \beta) \delta_s(T\hbar, Sx_{2n+1})$$

$$\leq \lim [\alpha \, d_s(x_{2n+1}, \hbar) + \gamma [d_s(\hbar, T\hbar + d_s(x_{2n+1}, x_{2n+2})] + \delta [d_s(\hbar, x_{2n+2}) + d_s(x_{2n+1}, T\hbar)] + \epsilon^{2n+2}]$$

$$\leq (\gamma + \delta) \, d_s(\hbar, T\hbar).$$

COMMON FIXED POINTS OF A PAIR OF $H^\beta\text{-}\text{HAUSDORFF}$ MULTIVALUED OPERATORS

Since

$$\lim_{n \to \infty} \beta \delta_s(Sx_{2n+1}, T\hbar) + \lim_{n \to \infty} (1 - \beta) \delta_s(T\hbar, Sx_{2n+1})$$

$$\leq \lim_{n \to \infty} \beta \delta_s(Sx_{2n+1}, T\hbar) + (1 - \beta) \delta_s(T\hbar, Sx_{2n+1}),$$

we have

$$\lim_{n \to \infty} \beta \delta_s(Sx_{2n+1}, T\hbar) + \lim_{n \to \infty} (1 - \beta) \delta_s(T\hbar, Sx_{2n+1}) \le (\gamma + \delta) d_s(\hbar, T\hbar).$$

This implies

$$\lim_{n \to \infty} \beta \delta_s(Sx_{2n+1}, T\hbar) \le (\gamma + \delta) \, d_s(\hbar, T\hbar).$$
(9)

Again we have

$$\begin{split} &\beta \delta_s(Tx_{2n}, S\hbar) + (1-\beta) \delta_s(S\hbar, Tx_{2n}) \leq H^{\beta}(Tx_{2n}, S\hbar) \\ &\leq \alpha \, d_s(x_{2n}, \hbar) + \gamma [d_s(x_{2n}, Tx_{2n}) + d_s(\hbar, S\hbar)] \\ &+ \delta [d_s(x_{2n}, S\hbar) + d_s(\hbar, Tx_{2n})] + \epsilon^{2n+1} \\ &\leq \alpha \, d_s(x_{2n}, \hbar) + \gamma [d_s(x_{2n}, x_{2n+1}) + d_s(\hbar, S\hbar)] \\ &+ \delta [d_s(x_{2n}, S\hbar) + d_s(\hbar, x_{2n+1})] + \epsilon^{2n+1} \end{split}$$

It follows that

$$\lim_{n \to \infty} \beta \delta_s(Tx_{2n}, S\hbar) + (1 - \beta) \delta_s(S\hbar, Tx_{2n})$$

$$\leq \lim [\alpha \, d_s(x_{2n}, \hbar) + \gamma [d_s(x_{2n}, x_{2n+1}) + d_s(\hbar, S\hbar)] + \delta [d_s(x_{2n}, S\hbar) + d_s(\hbar, x_{2n+1})\}] + \epsilon^{2n+1}]$$

$$\leq (\gamma + \delta) \, d_s(\hbar, S\hbar).$$

Since

$$\lim_{n \to \infty} \beta \delta_s(Tx_{2n}, S\hbar) + \lim_{n \to \infty} (1 - \beta) \delta_s(S\hbar, Tx_{2n})$$

$$\leq \lim_{n \to \infty} \beta \delta_s(Tx_{2n}, S\hbar) + (1 - \beta) \delta_s(S\hbar, Tx_{2n}),$$

we have

$$\lim_{n \to \infty} \beta \delta_s(Tx_{2n}, S\hbar) + \lim_{n \to \infty} (1 - \beta) \delta_s(S\hbar, Tx_{2n}) \le (\gamma + \delta) \, d_s(\hbar, S\hbar).$$

10 N.R. ALRASHEDI, F.S. ALSHAMMARI AND R. GEORGE

This implies

$$\lim_{n \to \infty} \beta \delta_s(T x_{2n}, S\hbar) \le (\gamma + \delta) \, d_s(\hbar, S\hbar). \tag{10}$$

Now

$$d_s(\hbar, T\hbar) \le s[d_s(\hbar, x_{2n+2}) + \delta_s(Sx_{2n+1}, T\hbar)]$$

$$d_s(\hbar, S\hbar) \le s[d_s(\hbar, x_{2n+1}) + \delta_s(Tx_{2n}, S\hbar))]$$

Using (9) and (10) we get

$$d_{s}(\hbar, T\hbar) \leq s \lim_{n \to \infty} d_{s}(\hbar, x_{2n+2}) + s \lim_{n \to \infty} \delta_{s}(Sx_{2n+1}, T\hbar)$$

$$\leq \frac{s(\gamma + \delta)}{\beta} d_{s}(\hbar, T\hbar).$$

$$d_{s}(\hbar, S\hbar) \leq s \lim_{n \to \infty} d_{s}(\hbar, x_{2n+1}) + s \lim_{n \to \infty} \delta_{s}(Tx_{2n}, S\hbar)$$

$$\leq \frac{s(\gamma + \delta)}{\beta} d_{s}(\hbar, T\hbar).$$

Since $s(\gamma + \delta) < \beta$, we get $d_s(\hbar, T\hbar) = 0$ and $d_s(\hbar, S\hbar) = 0$. Since T and S are closed we have $\hbar \in T$ and $\hbar \in S$.

Example 3.6. Let $X = [0, \frac{5}{12}] \bigcup \{2\}$, $d_s(x, y) = |x - y|^2$ for all $x, y \in X$ and $S, T : X \to CB(X)$ be as follows :

$$S(x) = \begin{cases} \left\{\frac{x}{4}\right\}, & \text{for } x \in [0, \frac{5}{12}] \\ \left\{0, \frac{1}{3}, 2\right\}, & \text{for } x = 2, \end{cases}$$
$$T(x) = \begin{cases} \left\{\frac{x}{4}\right\}, & \text{for } x \in [0, \frac{5}{12}] \\ \left\{0, \frac{5}{12}, 2\right\}, & \text{for } x = 2, \end{cases}$$

We will show that the functions S and T satisfy contraction condition (5) for $\beta = \frac{1}{2}$.

Case 1. $x, y \in [0, \frac{5}{12}]$. By Lemma (), we have

$$H^{\frac{1}{2}}(Sx, Ty) = H^{\frac{1}{2}}(\{\frac{x}{4}\}, \{\frac{y}{4}\})$$

= $d_s(\frac{x}{4}, \frac{y}{4})$
= $|\frac{x}{4} - \frac{y}{4}|^2$
 $\leq \alpha_1 |x - y|^2$, for any $\alpha \geq \frac{1}{16}$
= $\alpha d_s(x, y)$.

Case 2. $x \in [0, \frac{5}{12}], y = 2$. We have $d_s(x, y) = |2 - x|^2$. The minimum value of $d_s(x, y)$ for $x \in [0, \frac{5}{12}]$ is $\frac{361}{144}$. $\delta_s(Sx, Ty) = \delta_s(\{\frac{x}{4}\}, \{0, \frac{5}{12}, 2\}) = \frac{x^2}{16}$. $\delta_s(Ty, Sx) = \delta_s(\{0, \frac{5}{12}, 2\}, \{\frac{x}{4}\}) = (2 - \frac{x}{4})^2$. $H^{\frac{1}{2}}(Sx, Ty) = \frac{1}{2}(\frac{x^2}{16} + (2 - \frac{x}{4})^2)$ The maximum value of $H^{\frac{1}{2}}(Sx, Ty)$ for $x \in [0, \frac{5}{12}]$ is 2 (at x = 0). Thus $H^{\frac{1}{2}}(Sx, Ty) \le \alpha d_s(x, y)$ for any $\alpha \ge \frac{288}{361}$.

Case 3. $x = 2, y \in [0, \frac{5}{12}]$. We have $d_s(x, y) = |2 - y|^2$. The minimum value of $d_s(x, y)$ for $y \in [0, \frac{5}{12}]$ is $\frac{361}{144}$. $\delta_s(Sx, Ty) = \delta_s(\{0, \frac{5}{12}, 2\}, \{\frac{y}{4}\}) = (2 - \frac{y}{4})^2$. $\delta_s(Ty, Sx) = \delta_s(\{\frac{x}{4}\}, \{0, \frac{5}{12}, 1\}) = \frac{y^2}{16}$. $H^{\frac{1}{2}}(Sx, Ty) = \frac{1}{2}(\frac{y^2}{16} + (2 - \frac{y}{4})^2)$ The maximum value of $H^{\frac{1}{2}}(Sx, Ty)$ for $y \in [0, \frac{5}{12}]$ is 2 (at y = 0). Thus $H^{\frac{1}{2}}(Sx, Ty) \leq \alpha d_s(x, y)$ for any $\alpha \geq \frac{288}{361}$.

Thus S and T satisfy contraction condition (5) for $\beta = \frac{1}{2}, \frac{288}{361} \leq \alpha < 1$ and $\gamma = \delta = 0$. Simple calculations shows that S and T are pairwise H^{β} -Hausdorff functions. All conditions of Theorem 3.5 are satisfied and 0 is a common fixed point of S and T. However we see that at x = 0, y = 2, S and T do not satisfy contraction condition (5) for $\beta = 1$ and so do not satisfy Nadler's contraction and Czerwic's contraction.

Remark 3.7. In Example 3.6 above, simple calculations show that S and T do not satisfy contraction condition (5) for $\frac{62}{100} < \beta \le 1$. However in view of Remark 3.3(i), there may exist functions S and T which satisfy

contraction condition (5) for $\beta = 1$ but may not satisfy for $\beta < 1$. Thus for $\beta = 1$ Theorem 3.5 is an extension of Nadler's contraction [28], Czervik's contraction [11] and many of its generalisations. For $\beta < 1$ Theorem 3.5 provides new variants of Nadler's contraction [28], Czervik's contraction [11] and many of its generalisations.

Taking $\gamma = \delta = 0$ in Theorem 3.5, we get the following extension and new variants of Nadler's contraction and Czerwik's contraction :

Corollary 3.8. Let (X, d_s) be a complete b-metric space with constant $s \ge 1, T, S : X \to P_{cl,b}(X)$ be multivalued pairwise H^{β} -Hausdorff functions for some $\frac{1}{2} \le \beta \le 1$ and satisfying the following condition:

$$H^{\beta}(Tx, Sy) \le \alpha d_s(x, y).$$

for all $x, y \in X$ and $0 \le \alpha < 1$, then S and T has a common fixed point.

Taking $\alpha = \delta = 0$ in Theorem 3.5, we get the following extension and new variants of Kannan's contraction :

Corollary 3.9. Let (X, d_s) be a complete b-metric space with constant $s \ge 1, T, S : X \to P_{cl,b}(X)$ be multivalued pairwise H^{β} -Hausdorff functions for some $\frac{1}{2} \le \beta \le 1$ and satisfying the following condition;

$$H^{\beta}(Tx, Sy) \le \gamma[d_s(x, Tx) + d_s(y, Sy)]$$

for all $x, y \in X$ and some real number γ with $0 \leq \gamma < \frac{1}{2}$, then S and T has a common fixed point.

Taking $\alpha = \gamma = 0$ in Theorem 3.5, we get the following extension and new variants of Kannan's contraction :

Corollary 3.10. Let (X, d_s) be a complete b-metric space with constant $s \ge 1, T, S : X \to P_{cl,b}(X)$ be multivalued pairwise H^{β} -Hausdorff functions for some $\frac{1}{2} \le \beta \le 1$ and satisfying the following condition;

$$H^{\beta}(Tx, Sy) \le \gamma[d_s(x, Sy) + d_s(y, Tx)]$$

for all $x, y \in X$ and some real number δ with $0 \leq s\delta < \frac{1}{2}$, then S and T has a common fixed point.

3.2 Application to integral equation

In this section, motivated by the applications given in [3, 31, 33], we establish the sufficient conditions for the existence of a common solution of a pair of nonlinear Volterra type integral equations.

For some real numbers a, b with $0 \le a < b$ and I = [a, b], let $X = C(I, \mathbb{R})$ be the Banach space of real continuous functions defined on I equipped with a norm given by $||x|| = \max_{t \in I} |x(t)|$. For some and some $p \ge 1$, define a b-metric d_s on X by

$$d_s(x,y) = \max_{t \in I} |x(t) - y(t)|^p, \text{ for all } x, y \in X.$$

Then $(X, d_s, 2^{p-1})$ is a complete *b*-metric space. Consider two Fredholm integral equations

$$\begin{cases} x(t) = q(t) + \int_{a}^{\mu(t)} \mathcal{P}(t,s)\mathcal{K}_{1}(t,s,x(s))ds + \int_{a}^{\sigma(t)} \mathcal{Q}(t,s)\mathcal{K}_{2}(t,s,y(s))ds \\ y(t) = q(t) + \int_{a}^{\mu(t)} \mathcal{P}(t,s)\mathcal{K}_{2}(t,s,y(s))ds + \int_{a}^{\sigma(t)} \mathcal{Q}(t,s)\mathcal{K}_{1}(t,s,y(s))ds \\ \end{cases}$$
(11)

for all $t, s \in I = [a, b] \subseteq \mathbb{R}, |\lambda| > 0, \mathcal{K}_{i=1,2} : I \times I \times X \to \mathbb{R} \text{ and } q : I \to \mathbb{R}$ and $\mathcal{P}, \mathcal{Q} : I \times I \to \mathbb{R}$ are continuous functions and $\mu, \sigma : I \to I$.

Suppose $T, S: X \to X$ be self-mappings defined by

$$\begin{cases} Tx(t) = q(t) + \int_{a}^{\mu(t)} \mathcal{P}(t,s)\mathcal{K}_{1}(t,s,x(s))ds + \int_{a}^{\sigma(t)} \mathcal{Q}(t,s)\mathcal{K}_{2}(t,s,y(s))ds \\ Sy(t) = q(t) + \int_{a}^{\mu(t)} \mathcal{P}(t,s)\mathcal{K}_{2}(t,s,y(s))ds + \int_{a}^{\sigma(t)} \mathcal{Q}(t,s)\mathcal{K}_{1}(t,s,y(s))ds, \\ \end{cases}$$
(12)

for all $x, y \in X$, where $t \in I$. It is obvious that $\hbar(t)$ is a solution of (11) if and only if it is a common fixed point of T and S.

Theorem 3.11. Suppose that the following hypotheses hold:

- (H_1) : T(X) and S(X) are closed in X;
- (H_2) : There exist nonnegative real numbers α, γ, δ satisfying $\alpha + 2\gamma + 2^p \delta < 1, 2^{p-1}(\gamma + \delta) < \beta$ such that

$$|\mathcal{K}_1(t, s, x(s)) - \mathcal{K}_2(t, s, y(s))|^p \le N(T, S, p, t)$$

14 N.R. ALRASHEDI, F.S. ALSHAMMARI AND R. GEORGE

$$(H_3): \int_a^{\mu(t)} \mathcal{P}(t,s) ds + \int_a^{\sigma(t)} \mathcal{Q}(t,s) ds \le \frac{1}{2^{p-1}}.$$

where,

$$N(T, S, p, t) = \alpha |x(t) - y(t)|^{p} + \gamma [|x(t) - Tx(t)|^{p} + |y(t) - Sy(t)|^{p}] + \delta [|x(t) - Sy(t)|^{p} + |y(t) - Tx(t)|^{p}].$$

Then the system (11) of integral equations has a common solution in X.

Proof: Using (H_2) and (H_3) we have

$$\begin{split} &d_{s}(Tx,Sy) = \max_{t\in I} |Tx(t) - Sy(t)|^{p} \\ &\leq \max_{t\in I} |\int_{a}^{\mu(t)} \mathcal{P}(t,s)\mathcal{K}_{1}(t,s,x(s))ds + \int_{a}^{\sigma(t)} \mathcal{Q}(t,s)\mathcal{K}_{2}(t,s,y(s))ds \\ &- \int_{a}^{\mu(t)} \mathcal{P}(t,s)\mathcal{K}_{2}(t,s,y(s))ds - \int_{a}^{\sigma(t)} \mathcal{Q}(t,s)\mathcal{K}_{1}(t,s,y(s))ds|^{p} \\ &\leq \max_{t\in I} 2^{p-1}\{|\int_{a}^{\mu(t)} \mathcal{P}(t,s)\mathcal{K}_{1}(t,s,x(s))ds \\ &- \int_{a}^{\mu(t)} \mathcal{P}(t,s)\mathcal{K}_{2}(t,s,y(s))ds|^{p} \\ &+ |\int_{a}^{\sigma(t)} \mathcal{Q}(t,s)\mathcal{K}_{2}(t,s,y(s))ds - \int_{a}^{\sigma(t)} \mathcal{Q}(t,s)\mathcal{K}_{1}(t,s,y(s))ds|^{p}\} \\ &\leq \max_{t\in I} 2^{p-1}\{|\int_{a}^{\mu(t)} \mathcal{P}(t,s)(\mathcal{K}_{1}(t,s,x(s)) - \mathcal{K}_{2}(t,s,y(s)))ds|^{p} \\ &+ |\int_{a}^{\sigma(t)} \mathcal{Q}(t,s)(\mathcal{K}_{2}(t,s,y(s)) - \mathcal{K}_{1}(t,s,y(s)))ds|^{p}\} \\ &\leq \max_{t\in I} 2^{p-1}\{\int_{a}^{\mu(t)} |\mathcal{P}(t,s)|^{p}|(\mathcal{K}_{1}(t,s,x(s)) - \mathcal{K}_{2}(t,s,y(s)))|^{p}ds \\ &+ \int_{a}^{\sigma(t)} |\mathcal{Q}(t,s)|^{p}|(\mathcal{K}_{2}(t,s,y(s)) - \mathcal{K}_{1}(t,s,y(s)))|^{p}ds \} \end{split}$$

$$\leq \max_{t \in I} 2^{p-1} \{ \int_{a}^{\mu(t)} |\mathcal{P}(t,s)|^{p} N(T, S, p, t) ds \\ + \int_{a}^{\sigma(t)} |\mathcal{Q}(t,s)|^{p} N(T, S, p, t) ds \\ \leq \max_{t \in I} 2^{p-1} N(T, S, p, t) \{ \int_{a}^{\mu(t)} |\mathcal{P}(t,s)|^{p} ds + \int_{a}^{\sigma(t)} |\mathcal{Q}(t,s)|^{p} ds \\ \leq \max_{t \in I} N(T, S, p, t) \\ \leq \alpha \, d_{s}(x, y) + \gamma [d_{s}(x, Tx) + d_{s}(y, Sy)] + \delta [d_{s}(x, Sy) + d_{s}(y, Tx)].$$

Thus conditions of Theorem 3.5 are satisfied. Theorem 3.5 therefore ensures a common fixed point of T and S, which in turn is a common solution of the pair of integral equations (11).

Remark 3.12. Taking Q(t,s) = 0, $\mathcal{P}(t,s) = 1$, q(t) = 0, $\mu(t) = t$ and a = 0 in (11), we get the Volterra-type integral equations considered in Rasham et al [31] and Alshoraify et al [3].

Remark 3.13. Taking $Q(t, s) = 0, \mu(t) = 1$ and a = 0 in (11), we get the Fredholm-type integral equations (III.3) considered in Shoaib et al [33].

Remark 3.14. Taking Q(t, s) = 0, $\mathcal{P}(t, s) = 1$ and $\mu(t) = b$ in (11), we get the Fredholm-type integral equations (III.1) considered in Shoaib et al [33].

Acknowledgements

The authors are thankful to the learned reviewers for their valuable comments which revised this paper into its present form.

References

- M.A. Alghamdi, S. Gulyaz-Ozyurt, E. Karapinar, A note on extended Z-contraction, *Mathematics*, 8(2020),195.
- [2] P. Amiri and S. Rezapour, Fixed point of multivalued operators on partial metric spaces, *Anal. Theory Appl.*, Vol. 29, No. 2 (2013), pp. 158-168.

- [3] S. S. Alshoraify, A. Shoaib, M. Arshad, New types of Fcontraction for multivalued mappings and related fixed point results in abstract spaces, J. Funct. Spaces, 2019, Article ID 1812461, https://doi.org/10.1155/2019/1812461.
- [4] H. Alsulami, Selma Gulyaz, E. Karapinar, I. Erhan, An Ulam stability result on quasi-b-metric-like spaces, *Open Mathematics*, 14(1), (2016).
- [5] H. Aydi, M.F. Bota, E. Karapinar, S. Moradi, A common fixed point for weak phi-contractions on b-metric spaces, *Fixed Point Theory*, 13(2) (2012).
- [6] H. Aydi, M. F. Bota, E. Karapinar, S. Mitrović, A fixed point theorem for set-valued quasi-contractions in b-metric spaces, *Fixed Point Theory Appl.*, 88(2012), 8 pages.
- [7] I. A. Bakhtin, The contraction mapping principle in quasimetric spaces, *Funct. Anal., Unianowsk Gos. Ped. Inst.* 30(1989), 26-37.
- [8] D. Baleanu, R.P. Agarwal, H. Mohammadi, S. Rezapour, Some existence results for a nonlinear fractional differential equation on partially ordered Banach spaces, *Boundary Value Problems*, 112(2013)
- [9] M. Boriceanu, A. Petrusel, I.A. Rus, Fixed point theorems for some multi-valued generalized contractions in b-metric spaces, *Internat.* J. Math. Statistics, 6(2010), 6576.
- [10] C. Chifu, A. Petrusel, Fixed points for multi-valued contractions in b-metric space wit applications to fractals, *Taiwanese J. Math.*, 18(5)(2014), 1365-1375.
- [11] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Univ. Modena, 46(1998), 263-276.
- [12] B. Damjanović, B. Samet, C. Vetro, Common fixed point theorems for multi-valued maps, Acta Math. Sci. Ser. B Engl. Ed., 32(2012), 818-824.

- [13] Inci M. Erhan, Geraghty type contraction mappings on Branciari b-metric spaces, Adv. Theory of Nonlinear Anal. Appl., Vol. 1, Issue 2 (2017), 147 - 160.
- [14] R. George, H.A Nabwey, R Ramaswamy and S Radenovic, Some generalized contraction classes and common fixed points in b-metric space endowed with a graph, *Mathematics*, 7(754)(2019), 19 pages.
- [15] R. George and H.K Pathak, Some new extensions of multivalued contractions in a b-metric space and its applications, *Mathematics*, 9(2021), 12. https://dx.doi.org/10.3390/math 9010012.
- [16] R. George, I.D. Arandelović, V. Miic, and Z. D. Mitrovic, Some fixed points results in b-metric and quasi bmetric spaces, J. Function Spaces 2022, Article ID 1803348, https://doi.org/10.1155/2022/1803348.
- [17] S. Gulyaz-Ozyurt, On some alpha-admissible contraction mappings on Branciari b-metric spaces, Adv. Theory of Nonlinear Anal. Appl., 1(1), (2017).
- [18] F. Hausdorff. Grunclzuege der Mengenlehre. Viet, Leipzig, 1914.
- [19] N. Hussain, Z.D Mitrović, On multi-valued weak quasi-contractions in b-metric spaces, J. Nonlinear Sci. Appl., 10(2017), 3815-3823.
- [20] T. Kamran and Q. Kiran, Fixed point theorems for multi-valued mappings obtained by altering distances, *Mathematical and Computer Modelling* 54(2011), 2772-2777.
- [21] D. Klim and D. Wardowski, Fixed point theorems for set valued contractions in complete metric spaces, J. Math. Anal. Appl., 334(2007), 132-139.
- [22] E. Karapinar, A. Fulga, A. Petrusel, On Istratescu type contractions in b-metric spaces, *Mathematics*, 8(2020), 388.
- [23] Z. Liu, X. Na, Y.C. Kwun and S.M. Kang, Fixed points of some set valued F-contractions, J. Nonlinear Sci. Appl., 9(2016), 579-5805.

- [24] A.A. Mebawondu, C. Izuchukwu, K.O. Aremu, O.T. Mewomo, Some fixed point results for a generalized TAC-Suzuki-Berinde type F-contractions in b-metric spaces, *Appl. Math. E-Notes*, 19(2019), 629-653.
- [25] M.A. Miandaragh, A. Pitea, S. Rezapour, Some approximate fixed point results for proximal valued beta-contractive multifunctions, *Bull. Iran. Math. Soc.*, 41(5)(2015), pp.1161-1172.
- [26] R. Miculescu, A. Mihail, New fixed point theorems for set-valued contractions in b-metric spaces, J. Fixed Point Theory Appl., 1A-11(2015).
- [27] A.K. Mirmostaffae, Fixed point theorems for set valued mappings in b-metric spaces, *Fixed Point Theory*, 18(1)(2017), 305-314.
- [28] S.B. Nadler, Multivalued contraction mappings, Pacific J. Math., 30(1969), 475-488.
- [29] H.K Pathak, R.George, H.A Nabwey, M.S El-Paoumy and K.P Reshma, Some generalized fixed point results in a b-metric space and application to matrix equations, *Fixed Point Theory Appl.*, 101(2015), 17 pages.
- [30] D. Pompieu, Sur la continuite' des fonctions de variables complexes (These). Gauthier- Villars, Paris, Ann. Fac. Sci. de Toulouse, 7(1905), 264-315.
- [31] T. Rasham, A. Shoaib, N. Hussain, M. Arshad, S. U. Khan, Common fixed point results for new Ciric-type rational multivalued Fcontraction with an application, *J. Fixed Point Theory Appl.*, 2018, https://doi.org/10.1007/s11784-018-0525-6.
- [32] G.K Ranjbar, F. Lotfi, M. Samei, S. Rezapour, Fixed point theorems of contraction mappings in complete b-metric space of zero at infinity varieties, *Afrika Matematika*, 32(1-2)(2020), pp.229-239, DOI:10.1007/s13370-020-00822-0.

COMMON FIXED POINTS OF A PAIR OF $H^\beta\text{-}\text{HAUSDORFF}$ MULTIVALUED OPERATORS

- [33] M. Shoaib, T. Abdeljawad, M. Sarwar, F. Jarad, Fixed point theorems for multi-valued contractions in b-metric spaces with applications to fractional differential and integral equations, *IEEE Access*, 7(2019).
- [34] M. Younis, D. Singh, Afrah A. N. Abdou, A fixed point approach for tuning circuit problem in dislocated b-metric spaces, *Math. Methods Appl. Sci.*, 2021, https://doi.org/10.1002/mma.7922.

Naif R Alrashedi

M.Sc Student of Mathematics Department of Mathematics College of Science and Humanities in Alkharj Prince Sattam bin Abdulaziz University 11942, Alkharj, Saudi Arabia E-mail: alrashedinaifrr@gmail.com

Fahad S Alshammari

Assistant Professor of Mathematics Department of Mathematics College of Science and Humanities in Alkharj Prince Sattam bin Abdulaziz University 11942, Alkharj, Saudi Arabia E-mail: f.alshammari@psau.edu.sa

Reny George

Professor of Mathematics Department of Mathematics College of Science and Humanities in Alkharj Prince Sattam bin Abdulaziz University 11942, Alkharj, Saudi Arabia E-mail: renygeorge02@yahoo.com