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1 Introduction

The objective of this article is to give some results about existence and
uniqueness of solutions for the following problem{

Dα
−u (x) = f (x, u (x)) , x ∈ [1,+∞) ,
lim

x→+∞
xα−1u (x) = a, (1)

where Dα
−u (x) = − x2

Γ (1− α)

d

dx

+∞∫
x

(xt)α
u (t)

t2 (t− x)α
dt is the mod-

ified fractional Liouville derivative of order α with 0 < α < 1, f :
[1,+∞)× R → R is continuous and a ∈ R.

Fractional differential equations have great application in many sci-
entific areas, such as viscoelasticity, electrical circuits, electroanalytical
chemistry, biology, control theory, electromagnetic theory, biomedical
problems and so on (see [2], [19], [22], [23], [25] and the references cited
in [28]).

Differential equations have been studied by several authors using the
Leray-Schauder fixed point theorem, the coincidence degree theory of
Mawhin, fixed point theorems, the method of upper and lower solutions,
the method of upper and lower solutions coupled with monotone iterative
technique and numerical methods (see [1], [3], [5], [6], [11], [12], [13], [15],
[16], [20], [21], [24], [29] and [31]).

In [18], A. A. Kilbas and N. V. Kniaziuk studied the problem{
Dα

−u (x) = f̃ (x, u (x)) , x ∈ [1,+∞) ,

lim
x→+∞

(
J1−α
− u

)
(x) = ã, (2)

where
(
J1−α
− u

)
(x) =

+∞∫
x

(xt)α
u (t)

t2 (t− x)α
dt is the modified Liouville

fractional Integral of order 1 − α, f̃ : [1,+∞) × O → R, with O is an
open subset of R and ã ∈ C. By using Banach’s fixed point theorem, A.
A. Kilbas and N. V. Kniaziuk proved the uniqueness of solutions for the
problem (2) if the function f̃ is such that f̃ (x, y) ∈ £ (1;+∞) for any
y ∈ O , and globally Lipschitz with respect to the second variable. The
objective of this paper is to prove the existence of a unique solution for
the terminal value problem (1) by using Banach’s fixed point theorem,
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but the method of our proof is different to that used in [18]. Furthermore,
under some assumptions on f , we prove the existence of solutions for
the problem (1) by using Schauder’s fixed-point theorem.

This paper is organized as follows: in Section 2, we give some defini-
tions and preliminary results that will be used in the remainder of this
paper. In Section 3, we state and prove our main results. In Section 4,
we give two examples and, lastly, in Section 5, we give a conclusion.

2 Preliminaries

2.1 Modified Liouville fractional integrals and derivatives
on infinite intervals

Definition 2.1. ([18]). For α > 0, the modified Liouville fractional
Integral of order α of a function g is defined by

Jα
−g (x) =

1

Γ (α)

+∞∫
x

(xt)1−α g (t)

t2 (t− x)1−αdt, for all x ∈ [1,+∞) .

Property 1. For all α > 0, β < 1− α and x ≥ 1, we have

Jα
−x

β =
1

Γ (α)

+∞∫
x

(xt)1−α tβ

t2 (t− x)1−αdt

=
x1−α

Γ (α)

+∞∫
x

t1−α tβ

t2 (t− x)1−αdt

=
x1−α+β

Γ (α)

+∞∫
x

(
1− x

t

)α−1 (x
t

)−β dt

t2

=
Γ (−β + 1)

Γ (β − α+ 1)
xβ−α.

Notation 1 (See [18, Page 71]). For all c > 0, we note £ (c; +∞) the
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following space

£ (c; +∞) =

u : ∥u∥£(c;+∞) =

+∞∫
c

|u (x)|
x2

dx <∞

 .

We have the following results.

Lemma 2.2 (See [18, Lemma 2 page 70]). For all α > 0, β > 0 and
g ∈ £ (1;+∞), we have

Jα
−J

β
−g = Jα+β

− g.

Lemma 2.3 (See [18, Lemma 1 page 70]). If α > 0, then the he modified
Liouville fractional integral is bounded from £ (c; +∞) to £ (c; +∞) and
we have ∥∥Jα

−g
∥∥
£(c;+∞)

≤ 1

aαΓ (α+ 1)
∥g∥£(c;+∞) .

Notation 2. We note C (1;+∞) the following space

C (1;+∞) =

{
u ∈ C ([1,+∞) ,R) , lim

x→+∞
xα−1u (x) = a

}
.

Note that (C (1;+∞) , ∥.∥0) is a Banach space, where

∥u∥0 = sup
x∈[1,+∞)

∣∣xα−1u (x)
∣∣ .

Remark 2.4. It is not difficult to prove that if u ∈ C (1;+∞), then
u ∈ £ (1;+∞).

Lemma 2.5. If α > 0, then the modified Liouville fractional integral is
bounded from C (1;+∞) to C (1;+∞) and we have

∥∥Jα
−g

∥∥
0
≤ Γ (α)

Γ (2α)
∥g∥0 .
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Proof. Let α > 0 and g ∈ C (1;+∞), we have

∣∣xα−1Jα
−g (x)

∣∣ =
1

Γ (α)

∣∣∣∣∣∣
+∞∫
x

t1−α g (t)

t2 (t− x)1−αdt

∣∣∣∣∣∣
≤

∥g∥0
Γ (α)

+∞∫
x

t1−α t1−α

t2 (t− x)1−αdt

=
Γ (α)

xαΓ (2α)
∥g∥0

≤ Γ (α)

Γ (2α)
∥g∥0 .

Which implies that ∥∥Jα
−g

∥∥
0
≤ Γ (α)

Γ (2α)
∥g∥0 .

□

Definition 2.6. ([18]). For 0 < α < 1, the modified Liouville fractional
derivative of order α of a function g is defined by

Dα
−g (x) = −x2 d

dx
I1−α
− g (x)

= − x2

Γ(1−α)

d

dx

+∞∫
x

(xt)α
g (t)

t2 (t− x)α
dt, for all x ∈ [1,+∞) .

Property 2 (See [18, Page 71]). For all 0 < α < 1, β < 1 with α+β < 1
and x ≥ 1, we have

Dα
−x

β = −x2 d
dx
I1−α
− xβ

= −x2 d
dx

Γ (1− β)

Γ (2− α− β)
xβ+α−1

= −x2 Γ (1− β)

Γ (2− β − α)

d

dx
xβ+α−1

=
Γ (1− β)

Γ (1− β − α)
xβ+α.
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Notation 3 (See [18, Page 71]). We note AC [1; +∞) the following space

g ∈ AC [1; +∞) ⇔ g (x) = c̃+

+∞∫
x

ψ (t)

t2
dt,

with ψ ∈ £ (1;+∞) and c̃ ∈ R.

We have the following result.

Theorem 2.7. ([18, Theorem 1]). Let 0 < α < 1. If g ∈ £ (1;+∞)
and J1−α

− g ∈ AC [1; +∞), then we have

(
Jα
−D

α
−g

)
(x) = g (x)−

lim
x→+∞

J1−α
− g (x)

Γ (α)
x1−α.

Lemma 2.8. Let 0 < α < 1 and assume that g : [1,+∞) → R is
continuous.

(i) If lim
x→+∞

xα−1g (x) = b with b ∈ R, then lim
x→+∞

J1−α
− g (x) = bΓ (α) .

(ii) If lim
x→+∞

J1−α
− g (x) = b with b ∈ R and if lim

x→+∞
xα−1g (x) exists,

then lim
x→+∞

xα−1g (x) =
b

Γ (α)
.

Proof. The proof is similar to that of Lemma 3.2 in [19], so we omit it.
□

Now, we consider the following problem{
Dα

−u (x) = h (x, u (x)) , x ∈ [1,+∞) ,
lim

x→+∞
xα−1g (x) = b2,

(3)

where 0 < α < 1, h : [1,+∞)×G→ R is a function such that h (x, y) ∈
£ (1;+∞) for any y ∈ G with G is an open set in R and b2 ∈ R.

As a consequence of Lemma 2.8 and Corollary 1 in [18, Page 73], we
obtain the following result.

Theorem 2.9. u ∈ C (1;+∞) is a solution for the problem (3) if, and
only if, is a solution of the following Volterra equation

u (x) = b2x
1−α +

1

Γ (α)

+∞∫
x

(xt)1−α h (t, u (t))

t2 (t− x)1−αdt.
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2.2 Compactness criterion in an unbounded interval and
fixed point theorems

Let

Cl =

{
u ∈ C

(
I,R

)
, lim

x→+∞
u (x) exists

}
.

Note that (Cl, ∥.∥) is a Banach space, where

∥v∥ = sup
x∈I

|v (x)| .

The following proposition gives the compactness criterion of Cor-
duneanu.

Proposition 2.10. [See [9, Page 62]]Let F ⊂ Cl be a set satisfying the
following conditions:

(i) F is bounded in Cl;

(ii) the functions belonging to F are equicontinuous on any compact
interval of I;

(iii) the functions from F are equiconvergent, i.e., given ε > 0, there

corresponds T (ε) > 0 such that

∣∣∣∣u (x)− lim
x→+∞

u (x)

∣∣∣∣ < ε, for any

x > T (ε) and u ∈ F.

Then F is compact in Cl.

From the preceding Proposition, we obtain the following result.

Lemma 2.11. Let X ⊂ C (1;+∞) be a nonempty set satisfying the
following conditions:

(i)
{
xα−1u (x) : u ∈ X

}
is uniformly bounded;

(ii)
{
xα−1u (x) : u ∈ X

}
is equicontinuous on any compact interval of

[1,+∞),

(iii)
{
xα−1u (x) : u ∈ X

}
is equiconvergent at +∞.

Then X is compact in C (1;+∞) .
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For the proof of our main results, we use the following fixed point
theorems.

Theorem 2.12. ([4]) (Schauder’s fixed point theorem). Let C be a
closed, convex subset of a normed linear space E. Then every compact,
continuous map F : C → C has at least one fixed point.

Definition 2.13. ([4]). Let (X, d) be a metric space. A map S : X → X
is a contraction if for all u1, u2 ∈ X, we have

d (S(u1), S(u2)) ≤ θd (u1, u2) with θ < 1. (4)

Theorem 2.14. ([4]). (Banach’s fixed point theorem). Let (X, d) be a
nonempty complete metric space and let S : X → X be a contraction.
Then S has a unique fixed point u ∈ X.

3 Main Results

Definition 3.1. A function u ∈ C (1;+∞) is a solution for the problem
(1) if Dα

−u ∈ C ([1,+∞) , R) and satisfies (1).

The first result of this paper is the following.

Theorem 3.2. Assume that the following hypothesis is satisfied

(H1) There exists L > 0 such that

|f (x, u)− f (x, v)| ≤ L |u− v| , for all x ∈ [1,+∞) and u, v ∈ R.

Then the problem (1) admits a unique solution.

Proof. We consider the operator T defined by

T : C (1;+∞) → C (1;+∞)

u 7→ Tu (x) = ax1−α +
1

Γ (α)

+∞∫
x

(xt)1−α f (t, u (t))

t2 (t− x)1−αdt,

and we use the following norm

∥v∥∗ = sup
x∈I

e
−
λ

x
∣∣xα−1v (x)

∣∣ ,
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where λ > 0 and v ∈ C (1;+∞).
Since the norms ∥.∥∗ and ∥.∥0 are equivalent, then (C (1;+∞) , ∥.∥∗)

is a Banach space.
Now we are going to show that T is a contraction on (C (1;+∞) , ∥.∥∗).
Let u1, u2 ∈ C (1;+∞), then for all x ∈ I, one has

e
−
λ

x
∣∣xα−1((Tu1) (x)− (Tu2) (x))

∣∣
=

e
−
λ

x

Γ (α)

∣∣∣∣∣∣
+∞∫
x

t1−α (f (t, u1 (t))− f (t, u2 (t)))

t2 (t− x)1−α dt

∣∣∣∣∣∣
≤ Le

−
λ

x

Γ (α)

∣∣∣∣∣∣
+∞∫
x

t1−α |u1 (t)− u2 (t)|
t2 (t− x)1−α dt

∣∣∣∣∣∣
≤

L ∥u1 − u2∥∗
Γ (α)

+∞∫
x

e
−λ

(
1

x
−
1

t

)
t2−2α

t2 (t− x)1−αdt

=
L ∥u1 − u2∥∗
xαΓ (α)

+∞∫
1

e
−
λ

x

(
1−

1

v

)
v2−2α

v2 (v − 1)1−αdv

=
L ∥u1 − u2∥∗
xαΓ (α)

+∞∫
1

e
−
λ

x

(
1−

1

v

)(
1− 1

v

)α−1

v1−αdv

v2
.

If we put the change of variables w = 1− 1

v
, we obtain

e
−
λ

x
∣∣xα−1((Tu1) (x)− (Tu2) (x))

∣∣ ≤ L ∥u1 − u2∥∗
xαΓ (α)

J, (5)

where

J =

1∫
0

e
−
λw

x wα−1 (1− w)α−1 dw.
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Now, we have

J = J1 + J2,

where

J1 =

1
2∫

0

e
−
λw

x (w (1− w))α−1 dw,

and

J2 =

1∫
1
2

e
−
λw

x (w (1− w))α−1 dw.

We have

J1 ≤ 1

2α−1

1
2∫

0

e
−
λw

x wα−1dw

= 2
( x

2λ

)α

λ
2x∫
0

e−yyα−1dy

≤ 2
( x

2λ

)α
+∞∫
0

e−yyα−1dy

= 2
( x

2λ

)α
Γ (α) .

That is

J1 ≤ 2
( x

2λ

)α
Γ (α) . (6)
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On the other hand, we have

J2 ≤ 1

2α−1

1∫
1
2

e
−
λw

x (1− w)α−1 dw

≤ e
−
λ

2x

2α−1

1∫
1
2

(1− w)α−1 dw

=
e
−
λ

2x

α22α−1
.

That is

J2 ≤
e
−
λ

2x

α22α−1
. (7)
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Then from (5), (6) and (7), we obtain

e
−
λ

x
∣∣xα−1((Tu1) (x)− (Tu2) (x))

∣∣
≤

L ∥u1 − u2∥∗
xαΓ (α)

2
( x

2λ

)α
Γ (α) +

e
−
λ

2x

α22α−1



=
L ∥u1 − u2∥∗
2α−1xαΓ (α)

(x
λ

)α
Γ (α) +

e
−
λ

2x

α2α



=
L ∥u1 − u2∥∗
2α−1λαΓ (α)

Γ (α) +

(
λ

2x

)α e
−
λ

2x

α


≤

L ∥u1 − u2∥∗
2α−1λαΓ (α)

(
Γ (α) +

1

α

)
=

L ∥u1 − u2∥∗
2α−1λα

(
1 +

1

Γ (α+ 1)

)
.

Which implies that

∥Tu1 − Tu2∥ ≤ L

2α−1λα

(
1 +

1

Γ (α+ 1)

)
∥u1 − u2∥∗ .

Now if we choose λ >

(
L

2α−1

(
1 + 1

Γ(α+1)

)) 1
α

, we obtain

L

2α−1λα

(
1 +

1

Γ (α+ 1)

)
< 1.

Then by Banach’s fixed point theorem the operator T admits a unique
fixed point and consequently from Theorem 2.9, it follows that the prob-
lem (1) admits a unique solution.

The proof of our first result is complete. □



EXISTENCE AND UNIQUENESS OF SOLUTIONS... 13

Remark 3.3. The idea of the proof of Theorem 3.2 is similar to that of
Theorem 3.1 in [14].

Now our next result is based on Schauder’s fixed point theorem.

We put by definition

E = (C (1;+∞) , ∥.∥0) ,

and

X = {u ∈ C (1;+∞) : ∥u∥0 ≤ r} ,

where r > |a|.
We assume the following hypotheses are satisfied.

(H2) |f (x, u)| ≤ φ (x)F
(
xα−1 |u|

)
, for all x ∈ [1,+∞) and u ∈ R

with φ ∈ C (1;+∞) and F : [0,+∞) → [0,+∞) is continuous
nondecreasing.

(H3)
Γ (α)F (r)

Γ (2α)
∥φ∥0 ≤ r − |a| .

We have the following result.

Theorem 3.4. If the hypotheses (H2) and (H3) are satisfied, then the
problem (1) admits at least one solution.

Proof. We consider the operator T defined by

T : X −→ C (1;+∞)

u 7−→ (Tu) (x) = ax1−α +
1

Γ (α)

+∞∫
x

(xt)1−α f (t, u (t))

t2 (t− x)1−αdt.

Step 1: TX ⊆ X.
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For u ∈ X, we have

∣∣xα−1 (Tu) (x)
∣∣ =

∣∣∣∣∣∣a+ 1

Γ (α)

+∞∫
x

t1−α f (t, u (t))

t2 (t− x)1−αdt

∣∣∣∣∣∣
≤ |a|+ 1

Γ (α)

∣∣∣∣∣∣
+∞∫
x

φ (t)F
(
tα−1 |u (t)|

)
tα+1 (t− x)1−α dt

∣∣∣∣∣∣
≤ |a|+ F (r)

Γ (α)

∣∣∣∣∣∣
+∞∫
x

φ (t)

tα+1 (t− x)1−αdt

∣∣∣∣∣∣
≤ |a|+ Γ (α)F (r)

xαΓ (2α)
∥φ∥0

≤ |a|+ Γ (α)F (r)

Γ (2α)
∥φ∥0

≤ r.

Which implies that
∥Tu∥0 ≤ r,

and consequently, we have TX ⊆ X.
Step 2: TX is uniformly bounded in E.

The proof follows from Step 1.
Step 3: The set TX is equiconvergent at +∞.

Let u ∈ X, we have

∣∣xα−1 (Tu) (x)− a
∣∣ =

∣∣∣∣∣∣ 1

Γ (α)

+∞∫
x

(
1− x

t

)α−1 f (t, u (t))

t2
dt

∣∣∣∣∣∣
≤ Γ (α)F (r)

xαΓ (2α)
∥φ∥0 .

Which implies that

lim
x→+∞

∣∣xα−1 (Tu) (x)− a
∣∣ = 0.

Which means that
lim

x→+∞
xα−1 (Tu) (x) = a.
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Step 4: The set TX is equicontinuous on any compact interval of
[1,+∞).

For u ∈ TX and 1 ≤ x1 ≤ x2 < +∞, one has∣∣xα−1
2 (Tu) (x2)− xα−1

1 (Tu) (x1)
∣∣

=
1

Γ (α)

∣∣∣∣∣∣
+∞∫
x2

t1−α f (t, u (t))

t2 (t− x2)
1−αdt−

+∞∫
x1

t1−α f (t, u (t))

t2 (t− x1)
1−αdt

∣∣∣∣∣∣
≤ 1

Γ (α)

∣∣∣∣∣∣
+∞∫
x2

((t− x2)
α−1 − (t− x1)

α−1)
f (t, u (t))

tα+1
dt

∣∣∣∣∣∣
+

1

Γ (α)

∣∣∣∣∣∣
x2∫

x1

t1−α f (t, u (t))

t2 (t− x1)
1−αdt

∣∣∣∣∣∣
≤ 1

Γ (α)

+∞∫
x2

((t− x2)
α−1 − (t− x1)

α−1)
|f (t, u (t))|

tα+1
dt

+
1

Γ (α)

x2∫
x1

t1−α |f (t, u (t))|
t2 (t− x1)

1−αdt.

That is∣∣xα−1
2 (Tu) (x2)− xα−1

1 (Tu) (x1)
∣∣ ≤ F1 (x1, x2) + F2 (x1, x2) ,

where

F1 (x1, x2) =
1

Γ (α)

+∞∫
x2

((t− x2)
α−1 − (t− x1)

α−1)
|f (t, u (t))|

tα+1
dt,

and

F2 (x1, x2) =
1

Γ (α)

x2∫
x1

t1−α |f (t, u (t))|
t2 (t− x1)

1−αdt.
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On the other hand, we have

F1 (x1, x2)

≤ 1

Γ (α)

+∞∫
x2

((t− x2)
α−1 − (t− x1)

α−1)
|f (t, u (t))|

tα+1
dt

=
1

Γ (α)

+∞∫
1

χ[x2,+∞[ (t) ((t− x2)
α−1 − (t− x1)

α−1)
|f (t, u (t))|

tα+1
dt.

Since

+∞∫
1

χ[x2,+∞[ (t) (t− x1)
α−1 |f (t, u (t))|

tα+1
dt

≤
+∞∫
1

χ[x2,+∞[ (t) (t− x2)
α−1 |f (t, u (t))|

tα+1
dt < +∞,

and

lim
x1→x2

χ[x2,+∞[ (t) (t− x1)
α−1 |f (t, u (t))|

tα+1

= χ[x2,+∞[ (t) (t− x2)
α−1 |f (t, u (t))|

tα+1
,

we get

lim
x1→x2

+∞∫
1

χ[x2,+∞[ (t) (t− x1)
α−1 |f (t, u (t))|

tα+1
dt

=

+∞∫
1

χ[x2,+∞[ (t) (t− x2)
α−1 |f (t, u (t))|

tα+1
dt.

Then if we put by definition δ3 (ε) = εΓ (α), we obtain

∀ε > 0, ∃ δ3 (ε) > 0, (|x1 − x2| < δ3 (ε) ⇒ F1 (x1, x2)) < ε) . (8)



EXISTENCE AND UNIQUENESS OF SOLUTIONS... 17

Also, we have

F2 (x1, x2) ≤ 1

Γ (α)

x2∫
x1

t1−α |f (t, u (t))|
t2 (t− x1)

1−αdt

≤
F (r) ∥φ∥0

Γ (α)

x2∫
x1

(t− x1)
α−1 dt

=
F (r) ∥φ∥0
Γ (α+ 1)

(x2 − x1)
α .

Then if we put by definition δ4 (ε) =
εΓ (α+ 1)

F (r) ∥φ∥0 + 1
, we obtain

∀ε > 0, ∃ δ4 (ε) > 0, (|x1 − x2| < δ4 (ε) ⇒ F2 (x1, x2)) < ε) . (9)

Then by (8) and (9) and if we put δ5 (ε) = min (δ3 (ε) , δ4 (ε)), we obtain
∀ε > 0, ∃ δ5 (ε) > 0 such that

|x1 − x2| < δ5 (ε) ⇒
∣∣xα−1

2 (Tu) (x2)− xα−1
1 (Tu) (x1)

∣∣ < ε.

Step 5: The operator T is continuous.

The proof follows from Lemma 2.5.

In conclusion the operator T satisfies the assumptions of Schauder’s
fixed point theorem and consequently from Theorem 2.9 it follows that
problem (1) admits at least one solution. □

4 Application

To illustrating the application of our results, we give two examples.

4.1 Example 1

We consider the problem{
Dα

−u (x) = h1 (u (x)) + h̃ (x) , x ∈ [1,+∞) ,
lim

x→+∞
xα−1u (x) = a, (10)
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where 0 < α < 1, h1 : R → R is of class C1 with bounded derivative,
h̃ : [1,+∞) → R is continuous and a ∈ R. In this example, we have

f (x, u) = h1 (u (x)) + h̃ (x) .

For u1, u2 ∈ R and x ∈ [1,+∞), one has

|f (x, u1)− f (x, u2)| = |h1 (u1 (x))− h1 (u2 (x))|
≤ sup

v∈R

∣∣h′1 (v)∣∣ . |u1 − u2|

≤ k. |u1 − u2| ,

where k is a real number.
Then the assumption of Theorem 3.2 is satisfied and therefore we

obtain the existence of a unique solution for the problem (10).

4.2 Example 2

We consider the following problem
D

1
2
−u (x) = φ (x) .F

(
|u (x)|√

x

)
, x ∈ [1,+∞) ,

lim
x→+∞

u (x)√
x

= a,
(11)

where φ (x) =

√
x

π
and F

(
|u (x)|√

x

)
= ln

(
1 +

|u (x)|√
x

)
− a with a ∈ R.

We have

Γ
(
1
2

)
F (r)

Γ (1)
∥φ∥0 =

Γ
(
1
2

)
√
π

(ln (1 + r)− a)

≤ r − a.

Then from Theorem 3.4, we obtain the existence of solutions for the
problem (11).

5 Conclusion

In this paper based on Banach’s and Schauder’s fixed point theorems,
we gave some results concerning the existence and uniqueness of solu-
tions for a class of terminal value problems involving modified Liouville
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fractional derivatives. We note that our result can be applied to termi-
nal value problems for fractional differential equations involving mod-
ified Liouville fractional derivatives with advanced arguments and we
can generalize the results obtained in [27] . Also, we note that termi-
nal value problems for differential equations with advanced arguments
arise, for example in biological cellular growth models and theoretical
physics (see [8] and [26]). On the other hand, it could be interesting to
generalize the results obtained in ([7], [10], [17] and [30]) to study the
qualitative analysis of fractional integro-differential equations involving
modified Liouville fractional derivatives.
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