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1 Introduction

Recursive linear sequences are widely studied in pure mathematics,
presenting their generalizations and complexifications. Based on that,
in this work we will present algebraic properties around the sequences
of k-Perrin and k-Leonardo.

Leonardo’s sequence is discussed in Catarino and Borges (2020) [1],
where it is presented as a recurrent integer sequence that is related to
the Fibonacci and Lucas sequence.

Leonardo’s sequence corresponds to the following recurrence rela-
tionship:

Len = Len−1 + Len−2 + 1, n ≥ 2. (1)

For n + 1 we can rewrite this recurrence relationship as Len+1 =
Len + Len−1 + 1. And yet, subtracting Len − Len+1 we obtain another
equivalent recurrence relation for this sequence. Watch:

Len − Len+1 = Len−1 + Len−2 + 1− Len − Len−1 − 1

Len+1 = 2Len − Len−2 (2)

being Le0 = Le1 = 1 and Le2 = 2 it is initial conditions.
As for the Perrin sequence, this sequence was implicitly mentioned

by Édouard Lucas in 1876, known for creating the Lucas sequence and
mathematical games with the Tower of Hanoi, but only in 1899, François
Perrin defined this sequence. This sequence is defined by the recurrence
Pen = Pen−2 + Pen−3, n ≥ 3 and being Pe0 = 3, P e1 = 0 and Pe2 = 2
your initial conditions [5].

On the other hand, there are the quaternions, these numbers were
developed in 1843 by Willian Rowan Hamilton (1805-1865). The quater-
nions arise from the attempt to generalize complex numbers in the form
z = a + bi in three dimensions [6], the quaternions are presented as
formal sums of scalars with usual vectors of three-dimensional space,
existing four dimensions. Thus, a quaternion is described by:

q = a+ bi+ cj + dk

where a, b, c are real numbers and i, j, k the orthogonal part at the
base R3.
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And yet, Horadam (1993) [4] presents the quaternionic product being
i2 = j2 = k2 = −1, ij = k = −ij, jk = i = −kj and ki = j = −ik.

As for hyperbolic numbers, the set of these numbers H can be de-
scribed as:

H =
{
z = x+ hy|h /∈ R, h2 = 1, x, y ∈ R

}
.

Work on hyperbolic numbers can be found in [2, 3, 7].
Finally, in this article, we will define the hyperbolic quaternions of

k-Leonardo and k-Perrin and provide some properties around them.

2 The Hyperbolic Quaternions of k-Perrin and
k-Leonardo

The sequence of k-Perrin and k-Leonardo are defined by

Pek,n = Pek,n−2 + kPek,n−3, n ≥ 3,

Lek,n+1 = 2kLek,n − Lek,n−2, n ≥ 2,

being Pek,0 = 3, P ek,1 = 0, P ek,2 = 2, Lek,0 = Lek,1 = 1 and Lek,2 = 3
its initial terms.

In turn, we have the characteristic polynomial of the Perrin sequence
being x3 − x− k = 0 and Leonardo’s being z3 − 2kz2 + 1 = 0.

Definition 2.1. The hyperbolic quaternions of k-Perrin and k-Leonardo
are given by:

HPek,n = Pek,n + iPek,n+1 + jPek,n+2 + kPek,n+3,

HLek,n = Lek,n + iLek,n+1 + jLek,n+2 + kLek,n+3,

on what i2 = j2 = k2 = −1,ij = k = −ji,jk = i = −kj,ki = j = −ik.

According to these definitions, we will carry out a study around the
addition, subtraction and multiplication operations of the hyperbolic
k-Perrin quaternions.

HPek,n ±HPek,m = (Pek,n ± Pek,m) + i(Pek,n+1 ± Pek,m+1)+

j(Pek,n+2 ± Pek,m+2) + k(Pek,n+3 ± Pek,m+3),
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HPek,nHPek,m = (Pek,nPek,m − Pek,n+1Pek,m+1 − Pek,n+2Pek,m+2−
Pek,n+3Pek,m+3)+

i(Pek,nPek,m+1 + Pek,n+1Pek,m + Pek,n+2Pek,m+3−
Pek,n+3Pek,m+2) + j(Pek,nPek,m+2 + Pek,n+2Pek,m−
Pek,n+1Pek,m+3 + Pek,n+3Pek,m+1) + k(Pek,nPek,m+3+

Pek,n+3Pek,m + Pek,n+1Pek,m+2 − Pek,n+2Pek,m+1)

̸= HPek,mHPek,n

The addition, subtraction and multiplication operations of the hy-
perbolic k-Leonardo quaternions are performed in similar ways.

The conjugates of the hyperbolic quaternary numbers of k-Perrin
and k-Leonardo are represented by:

HPek,n = Pek,n − iPek,n+1 − jPek,n+2 − kPek,n+3,

HLek,n = Lek,n − iLek,n+1 − jLek,n+2 − kLek,n+3.

The norms of the hyperbolic quaternary numbers of k-Perrin and
k-Leonardo are represented by:

∥HPek,n∥2 = HPek,nHPek,n

= Pe2k,n + Pe2k,n+1 + Pe2k,n+2 + Pe2k,n+3

∥HLek,n∥2 = HLek,nHLek,n

= Le2k,n + Le2k,n+1 + Le2k,n+2 + Le2k,n+3

Theorem 2.2. Let Pek,n be the n-th term of the sequence of k-Perrin
and Lek,n the n-th term of the sequence of k-Leonardo, HPek,n the n-th
term of the hyperbolic quaternionic sequence of k-Perrin and HLek,n the
n-th term of the hyperbolic quaternionic sequence of k-Lerrin, we have
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that for n ⩾ 1 the following relations are given:

(i)HPek,n+3 = HPek,n+1 + kHPek,n;

(ii)HPek,n − iHPek,n+1 − jHPek,n+2−
kHPek,n+3 = Pek,n + Pek,n+2 + Pek,n+4 + Pek,n+6;

(iii)HLek,n+1 = 2kHLek,n −HLek,n−2;

(iv)HLek,n − iHLek,n+1 + jHLek,n+2−
kHLek,n+3 = Lek,n + Lek,n+2 + Lek,n+4 + Lek,n+6.

Proof. (i) Based on Definition 2.1, we have to:

HPek,n+1 + kHPek,n = Pek,n+1 + iPek,n+2 + jPek,n+3 + kPek,n+4

+ k(Pek,n + iPek,n+1 + jPek,n+2 + kPek,n+3)

= (Pek,n+1 + kPek,n) + i(Pek,n+2 + kPek,n+1)

+ j(Pek,n+3 + kPek,n+2) + k(Pek,n+4 + kPek,n+3)

= Pek,n+3 + iPek,n+4 + jPek,n+5 + kPek,n+6

= HPek,n+3

For (ii), we have to:

HPek,n − iHPek,n+1 + jHPek,n+2 − kHPek,n+3 = Pek,n + iPek,n+1+

jPek,n+2 + kPek,n+3−
i(Pek,n+1 + iPek,n+2+

jPek,n+3 + kPek,n+4)+

j(Pek,n+2 + iPek,n+3+

jPek,n+4 + kPek,n+5)−
k(Pek,n+3 + iPek,n+4+

jPek,n+5 + kPek,n+6)

= Pek,n + Pek,n+2−
kPek,n+3 + jPek,n+4+

kPek,n+3 + Pek,n+4−
iPek,n+5 − jPek,n+4+

iPek,n+5 + Pek,n+6

= Pek,n + Pek,n+2+

Pek,n+4 + Pek,n+6
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The statements of items (iii) and (iv) are carried out in a similar
way. □

Theorem 2.3. The generating functions of the hyperbolic quaternary
numbers of k-Perrin and k-Leonardo, denoted by GHPek,n(x) and GHLen(x),
are:

GHPek,n(x) =
HPek,0 +HPek,1x+ (HPek,2 −HPek,0)x

2

1− x2 − kx3
, (3)

GHLen(x) =
(HLek,0 +HLek,1x)(1− 2kx) +HLek,2x

2

1− 2kx+ x3
. (4)

Proof. To define the generating function of the hyperbolic quater-
nary number k-Perrin (3) let’s assume the function:

GHPek,n(x) =
∞∑
n=0

HPek,nx
n = HPek,0 +HPek,1x+HPek,2x

2 + · · ·+

HPek,nx
n + · · ·

Multiplying both members of equality by −x2 and −kx3:

−x2GHPek,n(x) = −x2HPek,0 − x3HPek,1 − x4HPek,2 − · · · −
xn+2HPek,n − · · ·

−kx3GHPek,n(x) = −kx3HPek,0 − kx4HPek,1 − kx5HPek,2 − · · · −
kxn+3HPek,n − · · ·

So, writing (1− x2 − kx3)GHPek,n(x):

(1− x2 − kx3)GHPek,n(x) = HPek,0 +HPek,1x+ (HPek,2 −HPek,0)x
2

GHPek,n(x) =
HPek,0 +HPek,1x+ (HPek,2 −HPek,0)x

2

1− x2 − kx3

To define the generating function of the quaternary number k-Leonardo
hyperbolic (4), denoted by GHLek,n(x), let’s write a sequence where each
term in the sequence corresponds to the coefficients.

GHLek,n(x) =
∞∑
n=0

HLek,nx
n
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Making algebraic manipulations due to the recurrence relation we can
write this sequence as:

GHLek,n(x) = HLek,0 +HLek,1x+HLek,2x
2 +

∞∑
n=3

HLek,nx
n

= HLek,0 +HLek,1x+HLek,2x
2 +

∞∑
n=3

(2kHLek,n−1 −HLek,n−3)x
n

= HLek,0 +HLek,1x+HLek,2x
2 + 2kx

∞∑
n=3

HLek,n−1x
n−1

−x3
∞∑
n=3

HLek,n−3x
n−3

= HLek,0 +HLek,1x+HLek,2x
2 +

2kx

( ∞∑
n=0

[HLek,nx
n]−HLek,0 −HLek,1x

)
−

x3
∞∑
n=0

HLek,nx
n

= HLek,0 +HLek,1x+HLek,2x
2 − 2kxHLek,0 −

2kx2HLek,1 + 2kx

∞∑
n=0

HLek,nx
n − x3

∞∑
n=0

HLek,nx
n

= HLek,0 +HLek,1x+HLek,2x
2 − 2kxHLek,0 − 2kx2HLek,1 +

2kxGHLek,n − t3GHLek,n

So, we have:

GHLek,n(x)− 2kxGHLek,n + x3GHLek,n = HLek,0 +HLek,1x+HLek,2x
2

−2kxHLek,0 − 2kx2HLek,1

GHLek,n(x)(1− 2kx+ x3) = HLek,0(1− 2kx) +HLek,1x(1− 2kx) +

HLek,2x
2

GHLek,n(x) =
(HLek,0 +HLek,1x)(1− 2kx) +HLek,2x

2

1− 2kx+ x3
.
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□

Theorem 2.4. For n ≥ 0, we have that Binet’s formula for the hyper-
bolic quaternary numbers of k-Perrin and k-Leonardo are:

HPek,n = φ(l1)
n + ω(l2)

n + θ(l3)
n,

HLek,n = α(x1)
n + β(x2)

n + γ(x3)
n.

where l1, l2 and l3 are the roots of the characteristic equation of the
quaternionic sequence of k-Perrin hyperbolic and x1, x2, x3 the roots of
the characteristic equation of the quaternionic sequence of k-Leonardo
hyperbolic and φ, ω, θ, α, β and γ the coefficients equal to:

φ =
HPek,0(l2l

2
3 − l22l3) +HPek,1(l

2
2 − l23) +HPek,2(l3 − l2)

l3l21 + l23l2 + l1l22 − l23l1 − l21l2 − l3l22
;

ω =
HPek,0(l3l

2
1 − l23l1) +HPek,1(l

2
3 − l21) +HPek,2(l1 − l3)

l3l21 + l23l2 + l1l22 − l23l1 − l21l2 − l3l22
;

θ =
HPek,0(l1l

2
2 − l21l2) +HPek,1(l

2
1 − l22) +HPek,2(l2 − l1)

l3l21 + l23l2 + l1l22 − l23l1 − l21l2 − l3l22
;

α =
HLek,2 + (−x2 − x3)HLek,1 + (x2x3)HLek,0

x21 − x1x2 − x1x3 + x2x3
;

β =
HLek,2 + (−x1 − x3)HLek,1 + (x1x3)HLek,0

x22 − x2x3 − x1x2 + x1x3
;

γ =
HLek,2 + (−x1 − x2)HLek,1 + (x1x2)HLek,0

x23 + x1x2 − x1x3 − x2x3
.

Proof. Binet’s formula can be represented as follows [9]:

HPek,n = φ(l1)
n + ω(l2)

n + θ(l3)
n.

So, one has to n = 0, get φ + ω + θ = HPek,0, for n = 1, got up
φl1 + ωl2 + θl3 = HPek,1 and for n = 2, has φl21 + ωl22 + θl23 = HPek,2.
With that, you can build a system of linear equations as follows:

φ+ ω + θ = HPek,0
φl1 + ωl2 + θl3 = HPek,1
φl21 + ωl22 + θl23 = HPek,2
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Solving the linear system, using Cramer’s rule, the coefficients found

were: φ =
HPek,0(l2l

2
3 − l22l3) +HPek,1(l

2
2 − l23) +HPek,2(l3 − l2)

l3l21 + l23l2 + l1l22 − l23l1 − l21l2 − l3l22
,

ω =
HPek,0(l3l

2
1 − l23l1) +HPek,1(l

2
3 − l21) +HPek,2(l1 − l3)

l3l21 + l23l2 + l1l22 − l23l1 − l21l2 − l3l22
and

θ =
HPek,0(l1l

2
2 − l21l2) +HPek,1(l

2
1 − l22) +HPek,2(l2 − l1)

l3l21 + l23l2 + l1l22 − l23l1 − l21l2 − l3l22
The proof for the quaternary number of k-Leonardo hyperbolic is

carried out in an analogous way. □

3 Properties of Hyperbolic k-Perrin and k-Leonardo
Quaternions

Next, some properties inherent to the hyperbolic quaternary numbers
of k-Perrin and k-Leonardo are studied.

Propriety 3.1. The sum of the n first quaternary numbers of hyperbolic
k-Leonardo is given by:

n∑
m=3

HLek,m = 2kHLek,n−2 + 2kHLek,n−1 − (HLek,0 +HLek,1) +

(2k − 1)
n−3∑
s=2

HLek,s.

Proof. Using the recurrence relation of the hyperbolic k-Leonardo
quaternions, with n ∈ N, we have that:

HLek,n+1 = 2kHLek,n −HLek,n−2 (5)
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Thus, evaluating the relationship given in Equation (5), in values of
n ≥ 2, we get:

HLek,3 = 2kHLek,2 −HLek,0

HLek,4 = 2kHLek,3 −HLek,1

HLek,5 = 2kHLek,4 −HLek,2

HLek,6 = 2kHLek,5 −HLek,3

HLek,7 = 2kHLek,6 −HLek,4
...

HLek,n−2 = 2kHLek,n−3 −HLek,n−5

HLen−1 = 2kHLek,n−2 −HLek,n−4

HLek,n = 2kHLek,n−1 −HLek,n−3

Through successive cancellations, the following results are obtained:

n∑
m=3

HLek,m = (2k − 1)HLek,2 −HLek,0 + (2k − 1)HLek,3

−HLek,1 + (2k − 1)HLek,4 + · · ·+ (2k − 1)HLek,n−3 +

(2k − 1)HLek,n−3 + 2kHLek,n−2 + 2kHLek,n−1

= 2kHLek,n−2 + 2kHLek,n−1 − (HLek,0 +HLek,1) +

(2k − 1)

n−3∑
s=2

HLek,s.

□

Propriety 3.2. The sum of the even indices numbers of the hyperbolic
k-Leonardo quaternions is given by:

n∑
m=3

HLek,2m = 2kHLek,2n−1 −HLek,1 + (2k − 1)
2n−3∑
s=3

HLek,s.

Proof. Using the recurrence relation of the hyperbolic k-Leonardo
quaternions, with n ∈ N, we have that:

HLek,n+1 = 2kHLek,n −HLek,n−2
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Thus, evaluating the recurrence relation, in values of n ≥ 2, we obtain:

HLek,4 = 2kHLek,3 −HLek,1

HLek,6 = 2kHLek,5 −HLek,3

HLek,8 = 2kHLek,7 −HLek,5

...

HLek,2n−2 = 2kHLek,2n−3 −HLek,2n−5

HLek,2n = 2kHLek,2n−1 −HLek,2n−3

Through successive cancellations, the following results are obtained:
n∑

m=2

HLek,2m = (2k − 1)HLek,3 −HLek,1 + (2k − 1)HLek,5 + · · ·+

(2k − 1)HLek,2n−3 + 2kHLek,2n−1

= 2kHLek,2n−1 −HLek,1 + (2k − 1)
2n−3∑
s=3

HLek,s.

□

Propriety 3.3. The sum of the odd index numbers of the hyperbolic
k-Leonardo quaternions is given by:

n∑
m=2

HLek,2m−1 = 2kHLek,2n−2 −HLek,0 + (2k − 1)

2n−4∑
s=2

HLek,s.

Proof. Using the recurrence relation of the hyperbolic k-Leonardo
quaternions, with n ∈ N, we have that:

HLek,n+1 = 2kHLek,n −HLek,n−2

Thus, evaluating the recurrence relationship, in values of n ≥ 2, we get:

HLek,3 = 2kHLek,2 −HLek,0

HLek,5 = 2kHLek,4 −HLek,2

HLek,7 = 2kHLek,6 −HLek,4
...

HLek,2n−3 = 2kHLek,2n−4 −HLek,2n−6

HLek,2n−1 = 2kHLek,2n−2 −HLek,2n−4
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Through successive cancellations, the following results are obtained:

n∑
m=2

HLek,2m−1 = (2k − 1)HLek,2 −HLek,0 + (2k − 1)HLek,4 + · · ·+

(2k − 1)HLek,2n−4 + 2kHLek,2n−2

= 2kHLek,2n−2 −HLek,0 + (2k − 1)
2n−4∑
s=2

HLek,s.

□
For the properties of the hyperbolic k-Perrin quaterns, we will use

the recurrence relation of the hyperbolic k-Perrin quaterns, with n ∈ N,
we have that:

HPek,n = HPek,n−2 + kHPek,n−3

We can reorganize it and present it as:

HPek,n−2 = HPek,n+1 − kHPek,n−1 (6)

Thus, evaluating the relationship given in Equation (6), in values of
n ≥ 3, we obtain:

HPek,1 = HPek,4 − kHPek,2

HPek,2 = HPek,5 − kHPek,3

HPek,3 = HPek,6 − kHPek,4

HPek,4 = HPek,7 − kHPek,5
...

HPek,2n−1 = HPek,2n+2 − kHPek,2n

HPek,2n = HPek,2n+3 − kHPek,2n+1

HPek,2n+1 = HPek,2n+4 − kHPek,2n+2

Propriety 3.4. The sum of even-index hyperbolic k-Perrin quaternary
numbers can be described as:

n∑
m=1

HPek,2m = (1− k)HPek,5 − kHPek,3 + · · ·+ (1− k)HPek,2n+1 +

HPek,2n+3.



THE SEQUENCE OF THE HYPERBOLIC k-PERRIN AND
k-LEONARDO QUATERNIONS 13

Proof. Through successive cancellations, the following results are
obtained:

n∑
m=1

HPek,2m = HPek,2 +HPek,4 + · · ·+HPek,2n

= (HPek,5 − kHPek,3) + (HPek,7 − kHPek,5) + · · ·+
(HPek,2n+3 − kHPek,2n+1)

= (1− k)HPek,5 − kHPek,3 + · · ·+ (1− k)HPek,2n+1 +

HPek,2n+3.

□

Propriety 3.5. The sum of odd-index hyperbolic k-Perrin quaternary
numbers can be described as:

n∑
m=1

HPek,2m−1 = (1− k)HPek,4 − kHPek,2 + · · ·+ (1− k)HPek,2n +

HPek,2n+2.

Proof. Through successive cancellations, the following results are
obtained:

n∑
m=1

HPek,2m = HPek,1 +HPek,3 + · · ·+HPek,2n−1

= (HPek,4 − kHPek,2) + (HPek,6 − kHPek,4) + · · ·+
(HPek,2n+2 − kHPek,2n)

= (1− k)HPek,4 − kHPek,2 + · · ·+ (1− k)HPek,2n +

HPek,2n+2.

□

Propriety 3.6. The sum of the first n terms of the hyperbolic k-Perrin
quaternions is given by:

n∑
m=1

HPek,m = (1− k)(HPek,4 +HPek,5)− k(HPek,2 +HPek,3) + · · ·+

(1− k)HPek,2n+1 +HPek,2n+3.
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Proof. Through successive cancellations, the following results are
obtained:

n∑
m=1

HPek,m = HPek,1 +HPek,2 +HPek,3 + · · ·+HPek,n

= (HPek,4 − kHPek,2) + (HPek,5 − kHPek,3) +

(HPek,6 − kHPek,4) + · · ·+ (HPek,2n+3 −
kHPek,2n+1)

= (1− k)HPek,4 − kHPek,2 + (1− k)HPek,5 −
kHPek,3 + · · ·+ (1− k)HPek,2n+1 +HPek,2n+3

= (1− k)(HPek,4 +HPek,5)− k(HPek,2 +HPek,3) +

· · ·+ (1− k)HPek,2n+1 +HPek,2n+3.

□

4 Conclusion

The study discussed allowed the introduction of the hyperbolic qua-
ternary sequences of k-Perrin and k-Leonardo, thus carrying out an evo-
lution in light of the mathematical complexification process of these
generalized sequences. As soon as possible, it was possible to discuss
some mathematical properties and theorems, showing the mathematical
rigor of the primitive sequences, Perrin and Leonardo.

In fact, it can be noted that for the values of k = 1, we get the
Perrin and Leonardo sequences in their primitive form. Furthermore, to
emphasize the generalization of these hyperbolic quaternionic sequences,
their shape for the recurrence k and their respective properties were
studied.
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