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1 Introduction

J.C. Abbott introduced a class of abstract algebras: implication alge-
bra in the sake to formalize the logical connective implication in the
classical propositional logic ([1]). W.Y. Chen et al. ([5]) proved that
in any implication algebra (X; ∗) the identity x ∗ x = y ∗ y holds for
all x, y ∈ X. We denote the identity x ∗ x = y ∗ y by the constant 0.
The notion of BCK-algebras was introduced by Y. Imai and K. Iséki
([9]). S. Tanaka introduced an essential class of BCK-algebras, called
commutative BCK-algebras, which forms a class of lower semilattices
[22] (see also [23], [24]). J. Meng showed that implication algebras are
dual to implicative BCK-algebras ([15]). A. Iorgulescu introduced many
interesting generalizations of BCI/BCK-algebras, and the basic prop-
erties of such algebras are studied in [10] (see also [11]). A. Walendziak
investigated the property of commutativity and implicativity for various
generalizations of BCK-algebras ([25], [26]). L.C. Ciungu in [6] defined
and investigated some classes of L-algebras and proved equivalent con-
ditions for commutative KL-algebras and CL-algebras. H.S. Kim et al.
([13]) introduced BE-algebras as an extension of commutative BCK-
algebras. The notion of d/B-algebras was introduced by J. Neggers and
H.S. Kim ([16], [17]). N. Galatos et al. discussed on the generalized
bunched implication algebras as residuated lattices with a Heyting im-
plication, and they investigated the relation between Boolean algebras
with operators and lattices with operators ([7]). In 2017, A. Borumand
Saeid et al. ([4]) introduced BI-algebras as an extension of both a (dual)
implication algebra and an implicative BCK-algebra, and they investi-
gated some ideals and congruence relations. They showed that every
implicative BCK-algebra is a BI-algebra, but the converse is not valid
in general. Then R.K. Bandaru introduce the concept of a QI-algebra,
which is a generalization of a BI-algebra, and gave the relation between
ideals and congruence kernels whenever aQI-algebra is distributive ([3]).
S.S. Ahn et al. discussed normal subalgebras in BI-algebras and ob-
tained several conditions for obtaining BI-algebra on the non-negative
real numbers by using an analytic method ([2]). In 2022, A. Rezaei
and S. Soleymani ([21]) defined state ideals on a BI-algebra and gave
a characterization of the least state ideal of a BI-algebra. In [18], the
authors defined and studied the concept of a (branch-wise) commutative
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BI-algebra and showed that commutative BI-algebras form a class of
lower semilattices. Recently, A. Rezaei et al. ([19], [20]) defined the
notion of a (strongly) right(left) independent subset of a groupoid, and
obtain a groupoid having a strongly right(left) independent doubleton’s.
Moreover, they discussed the notion of dynamic elements with indepen-
dence. The motivation of this study came from the idea of the converse
of “injective function”, and then we define the notion of the right(left)
independent subsets of BI-algebras. Additionally, new some the proper-
ties of BI-algebras are investigated. Moreover, we introduce the notion
of the right(left) absorbent subsets of BI-algebras. It is proved that a
right distributive BI-algebra X, every right(left) independent subset of
X absorbs X from the right. We show that these new concepts are
different by presenting several examples.

2 Preliminaries

In this section, we review the basic definitions and some elementary
aspects that are necessary for this paper.

Notice that there are several axiom systems for BCI-algebras. In
this paper, we will adopt the following axiom system, introduced by
H.S. Li in 1985 (see [14]). An algebra (X, ∗, 0) of type (2, 0) (i.e. a
non-empty set with a binary operation ∗ and a constant 0) is called a
BCI-algebra if it satisfies the following axioms (for all x, y, z ∈ X):
(BCI1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,
(BCI2) x ∗ 0 = x,
(BCI3) x ∗ y = 0 and y ∗ x = 0 imply x = y.

A BCI-algebra (X, ∗, 0) is called a BCK-algebra, if it satisfies the
following axiom:
(BCK) 0 ∗ x = 0, for all x ∈ X.

Y.B. Jun et al. ([12]) introduced the notion of a BH-algebra which is
a generalization of a BCK/BCI/BCH-algebra. An algebra (X, ∗, 0) of
type (2, 0) is called a BH-algebra if it satisfies (BCI2) and the following
axioms (for all x, y ∈ X):
(B) x ∗ x = 0,
(BH) x ∗ y = 0 and y ∗ x = 0 imply x = y.

Recall that a BI-algebra ([4]) is an algebra (X; ∗, 0) of type (2, 0)
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satisfies (B) and the following axiom (for all x, y ∈ X):
(BI) x ∗ (y ∗ x) = x.

Let (X; ∗, 0) be a BI-algebra. We introduce a relation ≤ on X by
x ≤ y if and only if x ∗ y = 0.

Notice that ≤ is not a partially ordered set (poset), but it is only
reflexive. A BI-algebra X is said to be right distributive if it satisfies
(x∗y)∗z = (x∗z)∗(y∗z) for all x, y, z ∈ X ([4]). A BI-algebra X is said
to be commutative if it satisfies x ∗ (x ∗ y) = y ∗ (y ∗ x) for all x, y ∈ X
([18]). As usual, a map f : X −→ Y , where (X, ∗, 0) and (Y, ◦, 0) are
BI-algebras, is called a homomorphism if f(x ∗ y) = f(x) ◦ f(y) for any
x, y ∈ X. If f is onto (resp., one to one), then f is called an epimorphism
(resp., monomorphism). Moreover, if f is a bijection, then f is called
an isomorphism.

In what follows, letX denote a BI-algebra unless otherwise specified.

From ([4]) we have (for all x, y, z, u ∈ X):
(p1) x ∗ 0 = x,
(p2) 0 ∗ x = 0,
(p3) x ∗ y = (x ∗ y) ∗ y,
(p4) if y ∗ x = x, then X = {0},
(p5) if x ∗ (y ∗ z) = y ∗ (x ∗ z), then X = {0},
(p6) if x ∗ y = z, then z ∗ y = z and y ∗ z = y,
(p7) if (x ∗ y) ∗ (z ∗ u) = (x ∗ z) ∗ (y ∗ u), then X = {0}.

The subsequent list of basic properties of right distributive BI-
algebra is borrowed from [4, 18].
(p8) x ∗ y ≤ x,
(p9) y ∗ (y ∗ x) ≤ x,
(p10) x ∗ (x ∗ y) ≤ x,
(p11) (x ∗ z) ∗ (y ∗ z) ≤ x ∗ y,
(p12) if x ≤ y, then x ∗ z ≤ y ∗ z,
(p13) (x ∗ y) ∗ z ≤ x ∗ (y ∗ z), (i.e., X is a quasi-associative algebra),
(p14) if x ∗ y = z ∗ y, then (x ∗ z) ∗ y = 0,
(p15) if x ∗ y = x, then y ∗ x = y,
(p16) if x ∗ y ̸= x, then y ∗ x ̸= y,
(p17) if x ∗ y ̸= x, then z ∗ x ̸= y,
(p18) if x ∗ z = 0, then y ∗ z ̸= x.
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Table 1: Cayley table for the binary operation “∗”.

∗ 0 a b c

0 0 0 0 0
a a 0 a b
b b b 0 b
c c b c 0

3 Right(Left) Independent Subsets

Given BI-algebra X, we see that a property of an element 0 is if 0 ̸=
x ̸= y, then x ∗ 0 = x ̸= y = y ∗ 0. A question arises: is there a subset U
of X such that if x ̸= y ∈ U , then x ∗ u ̸= y ∗ u for all u ∈ X?
Similarly, is there a subset U of X such that if x ̸= y ∈ U , then u ∗ x ̸=
u ∗ y for all u ∈ X?

This motivated us to define the following definition and investigate
their properties.

Definition 3.1. A non-empty subset U of X is said to be right indepen-
dent if x ̸= y ∈ U , then x ∗u ̸= y ∗u, for all u ∈ X. Also, U is said to be
left independent if x ̸= y ∈ U , then u∗x ̸= u∗y, for all u ∈ X \{0}. U is
said to be independent subset of X if it both right and left independent
subset of X.

Notice that if U is a right(left) independent subset of X, then 0 ̸∈ U ,
since if x ̸= 0 ∈ U , by using (B) and (P2), we get x∗x = 0 = 0∗x (resp.,
0 ∗ x = 0 = 0 ∗ 0), for all x ∈ X.

Example 3.2. (i) Let X := {0, a, b, c} be a set with a binary operation
“∗” shown in Table 1. Then (X, ∗, 0) is a BI-algebra (see [4]), but not
a right(left) independent of itself, since b ̸= c, but b ∗ a = b = c ∗ a
(resp., since a ̸= c, but b ∗ a = b = b ∗ c). The set A = {a, b} is a left
independent subset of X (a ∗ a = 0 ̸= a = a ∗ b, b ∗ a = b ̸= 0 = b ∗ b,
and c∗a = b ̸= c = c∗ b), but not a right independent subset of X, since
a ̸= b, but a ∗ c = b = b ∗ c.

(ii) Let X := {0, a, b, c} be a set with a binary operation “∗” shown
in Table 2. Then (X, ∗, 0) is a BI-algebra (see [18]). The set A = {a, b}
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Table 2: Cayley table for the binary operation “∗”.

∗ 0 a b c

0 0 0 0 0
a a 0 a a
b b b 0 b
c c c c 0

Table 3: Cayley table for the binary operation “∗”.

∗ 0 a b

0 0 0 0
a a 0 a
b b b 0

is a right independent subset of X, but not a left independent subset of
X, since a ̸= b, but c ∗ a = c = c ∗ b.

(iii) Let X be a set with 0 ∈ X. Define a binary operation “ ∗ ” on
X by

x ∗ y =

{
0 if x = y,
x if x ̸= y.

Then (X, ∗, 0) is an implicative BCK-algebra (see [8]), and hence a BI-
algebra (see [4]). It is easy to check that X is not an independent subset
of X.

(iv) Let X := {0, a, b} be a set with a binary operation “∗” shown
in Table 3. Then (X, ∗, 0) is a BI-algebra (see [18]). The set A = {a, b}
is an independent subset of X.

(v) Let X := {0, a, b} be a set with a binary operation “∗” shown in
Table 4. Then (X, ∗, 0) is a BI-algebra (see [18]). The set A = {a, b} is
not a right independent subset of X, since a ̸= b, but a ∗ a = 0 = b ∗ a,
nor a left independent subset of X, since b ∗ a = 0 = b ∗ b.

(vi) Let P (X) be the power set of X. Define a binary operation ∗
on P (X) by A ∗ B = A \ B, for all A,B ∈ P (X). Then (P (X); ∗, ∅) is
a commutative BI-algebra (see [18]), but not an independent subset of
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Table 4: Cayley table for the binary operation “∗”.

∗ 0 a b

0 0 0 0
a a 0 0
b b 0 0

Table 5: Cayley table for the binary operation “∗”.

∗ 0 a b c d

0 0 0 0 0 0
a a 0 c a b
b b c 0 b b
c c c c 0 b
d d c d b 0

P (X). Let X := {0, 1, 2, 3, 4, 5}. Take A = {1, 2, 3} and B = {1, 2, 4},
and so A ̸= B ∈ P (X). Put C = {3, 4}, we have A∗C = A\C = {1, 2} =
B \C = B ∗C, and so P (X) is not a right independent subset of P (X).
Also, if D = {1, 2, 5}, then D ∗A = D \A = {5} = D \B = D ∗B, and
so P (X) is not a left independent subset of P (X).

The following example shows that every right(left) independent sub-
set may not be closed, and so every right(left) independent subset may
not be a subalgebra. Also, we see that for every x ∈ A, x ∗ x = 0 ̸∈ A.

Example 3.3. Let X := {0, a, b, c, d} be a set with a binary operation
“∗” shown in Table 5. Then (X, ∗, 0) is a BI-algebra (see [18]). The
set A = {a, d} is an independent subset of X, but not closed, since
a ∗ d = b ̸∈ A and d ∗ a = c ̸∈ A. Also, X \ (A ∪ {0}) = {b, c} is a
left independent subset of X, not a right independent subset of X, since
b ̸= c, but b ∗ a = c = c ∗ a.

Notice that, for x ̸= 0 the singleton set {x} has no element y in X
such that x ̸= y. It follows that the independent criteria are fulfilled
vacuously, and so {x} is a right(left) independent subset of X.
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Table 6: Cayley table for the binary operation “∗”.

∗ 0 a b c d

0 0 0 0 0 0
a a 0 a d c
b b b 0 b b
c c b c 0 c
d d 0 d d 0

A. Rezaei et al. in [19, Th. 3.5] proved that for every groupoid (X, ∗)
there exists a maximal right(left) independent subsets {Mλ}λ∈Λ of X

such that X =
⋃
λ∈Λ

Mλ. Consequently, for every BI-algebra (X, ∗, 0)

there exists a maximal right(left) independent subsets {Mλ}λ∈Λ of X

such that X =
⋃
λ∈Λ

Mλ

⋃
{0}.

Remark 3.4. By routine calculation we can see that if Ai ⊆ X for

i ∈ Λ are right(left) independent subsets of X, then
⋂
i∈Λ

Ai and
⋃
i∈Λ

Ai

are right(left) independent subsets of X.

Proposition 3.5. Let A,B ⊆ X and A be a right(left) independent
subset of X. Then A ∩B is a right(left) independent subset of X.

Proof. Assume that A is a right(left) independent subset of X and B
is an arbitrary subset of X. Let x ̸= y ∈ A ∩ B. Since A ∩ B ⊆ A, we
get x ̸= y in A. Since A is a right(left) independent subset of X, for all
u ∈ X, we have x ∗ u ̸= y ∗ u (resp., u ∗ x ̸= u ∗ y), and so A ∩ B is a
right(left) independent subset of X. □

The following example shows that the converse of Proposition 3.5,
may not be true in general.

Example 3.6. Let X := {0, a, b, c, d} be a set with a binary operation
“∗” shown in Table 6. Then (X, ∗, 0) is a BI-algebra. The set A =
{a, b, c} is not a right(left) independent subset of X, since a∗d = c = c∗d
(resp., since b∗a = b = b∗c). Also, the setB = {a, b, d} is not a right(left)
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independent subset of X, since a ̸= d, but a ∗ a = 0 = d ∗ a (resp., since
b ∗ a = b = b ∗ d). It is easily seen that A ∩ B = {a, b} is a right(left)
independent subset of X.

As a result of the Proposition 3.5, the next corollary is deduced.

Corollary 3.7. Let A,B ⊆ X and A be a right(left) independent subset
of X. Then the following hold:

(a) A \ (B ∪ {0}) is a right(left) independent subset of X,

(b) if B ⊆ A, then B is a right(left) independent subset of X.

The following example show that for every right(left) independent
subset A, may not be A ∪ B a right(left) independent subset of X,
where B ⊆ X.

Example 3.8. Consider the Example 3.3, A = {a, d} and take B =
{b, c}. Hence B is not a right independent subset of X. Then (A ∪
B) ∪ {0} = X, which is not a right(left) independent subset of X, since
b ̸= c ∈ X, but b ∗ a = c = c ∗ a, but not a left independent subset of X,
since c ̸= d, but b ∗ c = b = b ∗ d. Thus, X is not an independent subset
of X. Also, A△B = (A ∪ B) \ (A ∩ B) = {a, b, c, d} \ ∅ = {a, b, c, d},
which is not a right(left) independent subset of X.

Notice that the extension property is not valid for a right(left) in-
dependent subset of X. Consider the Examples 3.3 and 3.8. If we take
B = {a, b, c, d}. Hence A = {a, d} ⊆ B = {a, b, c, d}, but B is not a
right(left) independent subset of X.

Proposition 3.9. Let (X, ∗, 0X) and (Y, ◦, 0Y ) be two BI-algebras, A ⊆
X and B ⊆ Y be right(left) independent subsets of X and Y , respectively.
Then A×B is a right(left) independent subset of X×Y , where X×Y =
{(x, y) : x ∈ X and y ∈ Y } and • is defined by (x, u)•(y, v) = (x∗y, u◦v).

Proof. Assume that A ⊆ X and B ⊆ Y are right independent subsets
of X and Y , respectively, and (x, y) ̸= (u, v) ∈ A × B. Thus, x ̸= u
or y ̸= v. Since A and B are right independent subsets of X and Y ,
respectively, we get for all z ∈ X and for all w ∈ Y , x ∗ z ̸= u ∗ z
or y ◦ w ̸= v ◦ w, respectively. Hence (x ∗ z, y ◦ w) = (x, y) • (z, w) ̸=
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(u ∗ z, v ◦ w) = (u, v) • (z, w), for all (z, w) ∈ X × Y. Therefore, A × B
is a right independent subset of X × Y.
Similarly, for the case left independent subset the proof holds. □

Proposition 3.10. Let (X, ∗, 0X) and (Y, ◦, 0Y ) be two BI-algebras,
f : X −→ Y be a homomorphism, A ⊆ X and B ⊆ Y be right(left)
independent subset of X and Y , respectively. The following statements
hold:

(a) If f is an isomorphism, then f(A) is a right(left) independent sub-
set of Y ,

(b) If f is a monomorphism, then f−1(B) is a right(left) independent
subset of X.

Proof. (a) Assume that (X, ∗, 0X) and (Y, ◦, 0Y ) are two BI-algebras,
A ⊆ X is a right(left) independent subset of X and f is an isomorphism.
Let y1 ̸= y2 in f(A) and v ∈ Y . If v = 0, then u = 0, and so the proof
is obvious. Let v ̸= 0. Then there are a1, a2 ∈ A such that f(a1) = y1
and f(a2) = y2. Since f is a map, we get a1 ̸= a2 (for detail, if a1 = a2,
then y1 = f(a1) = f(a2) = y2, which is a contradiction). Also, since
f is an epimorphism, there is 0 ̸= u ∈ X such that f(u) = v. Since
A is a right independent subset of X, we have a1 ∗ u ̸= a2 ∗ u (resp.,
u∗a1 ̸= u∗a2), and since f is monomorphism, we get f(a1∗u) ̸= f(a2∗u)
(resp., f(u ∗ a1) ̸= f(u ∗ a2)). Thus,

y1 ◦ v = f(a1) ◦ f(u) = f(a1 ∗ u) ̸= f(a2 ∗ u) = f(a2) ◦ f(u) = y2 ◦ v,

and respectively,

v ◦ y1 = f(u) ◦ f(a1) = f(u ∗ a1) ̸= f(u ∗ a2) = f(u) ◦ f(a2) = v ◦ y1.

Therefore f(A) is a right(left) independent subset of Y .
(b) Assume that (X, ∗, 0X) and (Y, ◦, 0Y ) are two BI-algebras, B ⊆

Y is a right(left) independent subset of Y and f is a monomorphism.
Let a ̸= b in f−1(B) and u ∈ X. Hence f(a) ̸= f(b) in B, since f is
a monomorphism. So, f(a ∗ u) = f(a) ◦ f(u) ̸= f(b) ◦ f(u) = f(b ∗ u)
(resp., for u ∈ X \{0X}, f(u ∗a) = f(u) ◦ f(a) ̸= f(u) ◦ f(b) = f(u ∗ b)).
Since f is a map, we have a ∗ u ̸= b ∗ u (resp., u ∗ a ̸= u ∗ b). Thus,
f−1(B) is a right(left) independent subset of X. □
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Table 7: Cayley table for the binary operation “∗”.

∗ 0 a b

0 0 0 0
a a 0 a
b b b 0

Table 8: Cayley table for the binary operation “◦”.

◦ 0 x y z

0 0 0 0 0
x x 0 0 x
y y 0 0 y
z z z z 0

The following example shows that the condition isomorphism in the
Proposition 3.10(a), is necessary.

Example 3.11. Let X := {0, a, b} and Y := {0, x, y, z} be two sets with
the binary operations “∗” and “◦” shown in Tables 7 and 8. Then
(X, ∗, 0) and (Y, ◦, 0) are BI-algebras. The sets A = {a, b} and B =
{x, z} are independent subsets of X and Y , respectively. Define a map
f : X −→ Y by 0 7→ 0, a 7→ x, b 7→ 0. Then f is not an epimorphism and
nor a monomorphism. Also, f(A) = {0, x} is not a right independent
subset of Y , since x ̸= 0, but x ◦ y = 0 = 0 ◦ y.

The following example shows that the condition monomorphism in
the Proposition 3.10(b), is necessary.

Example 3.12. Let X := {0, a, b, c} and Y := {0, x, y, z} be two sets
with with the binary operations “∗” and “◦” shown in Tables 9 and
8, respectively. Then (X, ∗, 0) and (Y, ◦, 0) are two BI-algebras. The
sets A = {a, b} and B = {x, z} are independent subsets of X and Y
respectively. Define a map f : X −→ Y by 0 7→ 0, a 7→ x, b 7→ z and
c 7→ z. Then f is not a monomorphism, since f(b) = z = f(c), but b ̸= c.
Further, f−1(B) = {a, b, c} is not a left independent subset of X, since
b ̸= c, but a ∗ b = a = a ∗ c.
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Table 9: Cayley table for the binary operation “∗”.

∗ 0 a b c

0 0 0 0 0
a a 0 a a
b b b 0 0
c c c 0 0

Proposition 3.13. Let X \ {0} be a right(left) independent subset of
X. Then x ∗ y = x, for all x ̸= y in X \ {0}.

Proof. Assume that X \{0} is a right independent subset of X, by (P3)
we have x ∗ y = (x ∗ y) ∗ y. Let x ̸= y in X \ {0} such that x ∗ y ̸̸= x.
If we take u := y, then x ∗ u = x ∗ y = (x ∗ y) ∗ y = (x ∗ y) ∗ u. This
shows that X \ {0} is not a right independent subset of X, which is a
contradiction.

Now, let X \ {0} be a left independent subset of X and x ̸= y in
X \ {0} such that x ∗ y ̸̸= x. Using (P16), we get y ∗ x ̸= y, and so
y ∗ (y ∗ x) ̸= y ∗ y = 0. By (BI) and (P1) we have

y ∗ x = (y ∗ x) ∗ (y ∗ (y ∗ x)) ̸= (y ∗ x) ∗ 0 = y ∗ x,

which is a contradiction. □

Proposition 3.14. Let ∅ ≠ A ⊆ X and x ∈ X.

(i) If a ∗ x = a, for all a ∈ A, then A is a right independent subset of
X.

(ii) If x∗a = a, for all a ∈ A\{0}, then A is a left independent subset
of X.

Proof.(i) Assume that ∅ ≠ A ⊆ X, x ̸= y ∈ A and u ∈ X. Then
x ∗ u = x ̸= y = y ∗ u. Thus, A is a right independent subset of X.

(ii) Assume that ∅ ̸= A ⊆ X, x ̸= y ∈ A and 0 ̸= u ∈ X. Then
u ∗ x = x ̸= y = u ∗ y. Thus, A is a left independent subset of X. □

Theorem 3.15. Let A be a right(left) independent subset of X and
x ≤ y (resp., y ≤ x), for some x, y ∈ A. Then x = y.



INDEPENDENT AND ABSORBENT SUBSETS · · · 13

Proof. Assume that A is a right(left) independent subset of X and
x ≤ y ∈ A (resp., y ≤ x ∈ A). Hence x ∗ y = 0 (resp., y ∗ x = 0). Let
x ̸= y in X. Since A is a right(left) independent subset of X and y ∈ X
(resp., x ∈ X), we get x∗y = 0 ̸= y ∗y = 0 (resp., y ∗x = 0 ̸= x∗x = 0),
which is a contradiction. □

Let A and B be two subsets of X. Define A ∗B as follows:

A ∗B = {a ∗ b : a ∈ A and b ∈ A}
=

⋃
a∈A

(a ∗B)

=
⋃
b∈B

(A ∗ b).

We use the notion a∗B (resp., A∗b) instead of {a}∗B (resp., A∗{b}).
Now, let A, B and C be subsets of X. Then one can see that:

� ∅ ∗ ∅ = ∅, ∅ ∗A = A ∗ ∅ = ∅,

� {0} ∗A = {0 ∗ a : a ∈ A} = {0} and A ∗ {0} = {a ∗ 0 : a ∈ A} = A,

� X ∗X ⊆ X,

� A ∗ A ̸= A, X ∗ A ̸= A ̸= A ∗ X, A ∗ B ̸= A, A ∗ B ̸= B and
A ∗B ̸= B ∗A, in general.

� if A ⊆ B, then A ∗ C ⊆ B ∗ C and C ∗A ⊆ C ∗B,

� (A ∩B) ∗ C ⊆ (A ∗ C) ∩ (B ∗ C),

� C ∗ (A ∩B) ⊆ (C ∗A) ∩ (C ∗B),

� (A ∪B) ∗ C = (A ∗ C) ∪ (B ∗ C),

� C ∗ (A ∪B) = (C ∗A) ∪ (C ∗B).

Also, if a ∈ A, since a ∗ a = 0, then 0 ∈ a ∗ A (resp., 0 ∈ A ∗ a),
and so a ∗ A (resp., A ∗ a) is not an independent subset of X. Also,
if A = {a} for some 0 ̸= a i.e., |A| = 1, then x ∗ {a} = {x ∗ a} and
{a} ∗ x = {a ∗ x} are also singleton sets, and so are independent subsets
of X, when x ∗ a ̸= 0 and a ∗ x ̸= 0. Further, take A = {0}, using (P2)
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we get {0} ∗ x = {0 ∗ x} = {0}, whence it is not an independent subset
of X and by (P1) we have x ∗ {0} = {x ∗ 0} = {x}, whence it is an
independent subset of X.

Theorem 3.16. Let u ∗ v = u, for all u, v ∈ X, ∅ ≠ A ⊆ X be an
independent subset of X and x ∈ X. Then A ∗ x (resp., x ∗A) is too.

Proof. Since A ̸= ∅, there is at least one element 0 ̸= a ∈ A. If
A∗x = {a}, and so is a singleton set, then the proof is obvious. Assume
that s ̸= r ∈ A∗x and A is an independent subset ofX. Hence there exist
a1, a2 ∈ A such that s = a1 ∗x = a1 and r = a2 ∗x = a2. Hence a1 ̸= a2,
and so s ∗ t = a1 ∗ t ̸= a2 ∗ t = r ∗ t (resp., t ∗ s = t ∗ a1 ̸= t ∗ a2 = t ∗ r)
for all t ∈ X. Thus, A ∗ x is an independent subset of X.

Now, suppose s ̸= r ∈ x ∗ A and A is an independent subset of X.
Then there exist a1, a2 ∈ A such that s = x ∗a1 = x and r = x ∗a2 = x,
which is a contradiction. Thus, x ∗ A is a singleton set, and so is an
independent subset of X. □

Corollary 3.17. Let X \ {0} be a right(left) independent subset of X
and x ∈ X. Then (X \ {0}) ∗ x (resp., x ∗ (X \ {0})) is too.

Corollary 3.18. Let (X, ∗, 0) be a BI-algebra. Then

(a) If x∗y = x (resp. x∗y = y) and A or B is a right(left) independent
subset of X, then A ∗B is too.

(b) If |A| = 1 or |B| = 1, then A∗B is a right(left) independent subset
of X.

4 Right(Left) Absorbent Subsets

In this section, we define absorbent concept on BI-algebras and investi-
gate several properties in detail. We show that this notions are different
with some examples.

Definition 4.1. Let A and B be two subsets of X. We say A absorbs
B from the right (resp., from the left) briefly right absorbent (resp., left
absorbent) subset of X if it satisfies:

A ∗B = A (resp., B ∗A = A).
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A subset A of X absorbs a subset B of X briefly absorbent if it is a right
and left absorbent of X (i.e., A ∗B = B ∗A = A).

Example 4.2. (i) Consider the Example 3.3, A = {a, d} is an indepen-
dent subset of X, but does not absorb X since

A ∗X = {0, a, b, c, d} ≠ A and X ∗A = {0, b, c} ≠ A.

Also, if take B = {0, b, c} and C = {a, b}. Then C∗B = {a, b}∗{0, b, c} =
{0, b, c} = B, and so B absorbs C from the left, but does not from the
right, since B ∗ C = {0, b, c} ∗ {a, b} = {0, c} ≠ B.

(ii) Consider the Example 3.2(iv), {0, a} ∗ X = {0, a}, and hence
{0, a} absorbs X from the right, but does not absorbs X from the left,
since X ∗ {0, a} = {0, a, b} ≠ A.

Theorem 4.3. Let ∅ ≠ A ⊆ X. Then X absorbs A ∗X from the right.

Proof. Assume that A ⊆ X. Let x ∈ X and a ∈ A. Using (BI), we get
x = x ∗ (a ∗ x) ∈ X ∗ (A ∗X), and so X ⊆ X ∗ (A ∗X). On the other
hand, since ∗ is a binary operation, we have X ∗ (A ∗ X) ⊆ X. Thus,
X ∗ (A ∗X) = X. □

Theorem 4.4. Let X be a right distributive BI-algebra, A ⊆ X and B
be an independent subset of X. Then A ∗B absorbs B from the right.

Proof. Assume that X be a right distributive BI-algebra and ∅ ≠ A,
∅ ≠ B ⊆ X. Let x ∈ A ∗ B. Then there are a ∈ A and b ∈ B such
that x = a ∗ b. By (P3), we get x = a ∗ b = (a ∗ b) ∗ b ∈ (A ∗ B) ∗ B,
and so x ∈ (A ∗ B) ∗ B. Thus, A ∗ B ⊆ (A ∗ B) ∗ B. On the other
hand, let x ∈ (A ∗ B) ∗ B. Then there are a ∈ A and b1, b2 ∈ B
such that x = (a ∗ b1) ∗ b2. If b1 = b2 = b, then by using (P3), we
get x = (a ∗ b) ∗ b = a ∗ b ∈ A ∗ B, and so (A ∗ B) ∗ B ⊆ A ∗ B. If
b1 ̸= b2, then x ∗ b2 = ((a ∗ b1) ∗ b2) ∗ b2 = (a ∗ b1) ∗ b2 = x. By (P15),
we get b2 ∗ x = b2. Since B is a left independent subset of X, we get
a∗ b1 ̸= a∗ b2. By using right independent property and (P3), we obtain
(a ∗ b1) ∗ b2 ̸= (a ∗ b2) ∗ b2 = a ∗ b2. Hence x ̸= a ∗ b2. By the left
independent property, we get b2 = b2 ∗ x ̸= b2 ∗ (a ∗ b2) = b2, which is a
contradiction. Thus, the proof is complete. □

As an immediate consequence of Definition 4.1, we give some of
properties right(left) absorbent subsets in the following:
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� if A = {0} and ∅ ≠ B ⊆ X, then {0} ∗B = {0} and B ∗ {0} = B,
(i.e., {0} absorbs every non-empty subset B of X from the right,
and every non-empty subset B of X absorbs {0} from the right,
and so {0} does not absorbs every non-empty subset B of X from
the left),

� if A = {x}, where x ̸= 0, then A does not absorbs X from the
right and left, since 0 = x ∗ x ∈ {x} ∗X ∩X ∗ {x}, but 0 ̸∈ A, and
so A ∗X ̸= A (resp., X ∗A ̸= A).

� if 0 ∈ A, then X ∗A = X,

� if A absorbs B from the right(left) and A ∩ B ̸= ∅, then 0 ∈ A,
and so X ∗A = X,

� if A absorbs B from the right and B absorbs A from the left, then
A = B,

� if A is a closed subset of X, then A ∗ A = A, (i.e., every closed
subset absorbs itself from the right and left),

� if A is a closed subset of X and absorbs B from the left, then
A ∗ (B ∗A) = A (i.e., A absorbs B ∗A from the right),

� if A ⊆ B and B is a closed subset of X, then A ∗B ⊆ B,

� if A ⊆ B and B is a closed subset of X and 0 ∈ A, then B ∗A = B,

� if Ai is closed subset of X, for i ∈ {1, 2, · · · , n}, 0 ∈ A1 and
A1 ⊆ A2 · · · ⊆ An = X, then X ∗ (An−1 ∗An−2 ∗ · · · ∗A1) = X,

� if A absorbs B from the right(left) and A ⊆ B, then A is a closed
subset of X,

� if A1 ⊆ A2 · · · ⊆ An = X, Ai−1 absorbs Ai, for 2 ≤ i ≤ n, from the
right(left), then Aj is a closed subset of X, for j ∈ {1, 2, · · · , n},

� if A absorbs B from the left and absorbs C from the right, then
(B ∗ A) ∗ C = B ∗ (A ∗ C) = A = B ∗ A = A ∗ C, and so B ∗ A
absorbs C from the right and A ∗ C absorbs B from the left,
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� if A absorbs B from the right and C absorbs B from the left, then
A ∗B ∗C = A (i.e., A ∗B absorbs C from the right and A absorbs
B ∗ C from the right),

� if A absorbs B from the right and left, then (B ∗ A)m = Am, for
all m ∈ N, where A1 = A, A2 = A ∗A, A3 = A ∗A ∗A etc.,

� if A absorbs B from the right, then A ∗B ∗A = A2,

� if A is a closed subset and absorbs B from the right and left, then
(B ∗A)m = A, for all m ∈ N,

� if A absorbs B from the left, then for all m, n ∈ N, Bm ∗ A = A,
B ∗An = An and Bm ∗An = An,

� if A absorbs C from the right, then for all m, n ∈ N, A ∗Cm = A,
An ∗ C = An and An ∗ Cm = A,

� if A absorbs B from the left and absorbs C from the right, then
B∗As∗C = Bm∗As∗C = As, and B∗As∗Cn = Bm∗As∗Cn = A,
for all m, n, s ∈ N,

Proposition 4.5. Let A and B absorbs C from the right(left). Then

(a) (A ∩B) ∗ C ⊆ A ∩B (resp., C ∗ (A ∩B) ⊆ A ∩B),

(b) (A ∪B) ∗ C = A ∪B (resp., C ∗ (A ∪B) = A ∪B).

Corollary 4.6. Let Ai ̸= ∅, for i ∈ Λ and {Ai}i∈Λ be a family where

absorbs C from the right(left). Then
⋃
i∈Λ

Ai is too.

Proposition 4.7. Let A absorbs B1 and B2 from the right(left). Then
A absorbs B1 ∪B2 from the right(left).

(a) A ∗ (B1 ∩B2) ⊆ A (resp., (B1 ∩B2) ∗A ⊆ A),

(b) A ∗ (B1 ∪B2) = A (resp., (B1 ∪B2) ∗A = A).

Corollary 4.8. Let A absorbs the family of non-empty subsets {Ai}i∈Λ
of X, from the right(left). Then A absorbs

⋃
i∈Λ

Ai from the right(left).
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Proposition 4.9. Let A ̸= ∅ absorbs X from the right(left). Then A is
closed under ∗.

Proof. Assume that A ̸= ∅ absorbs X from the right and a, b ∈ A.
Hence a ∗ b ∈ A ∗ A ⊆ A ∗X = A (resp., a ∗ b ∈ A ∗ A ⊆ X ∗ A = A).
Thus, a ∗ b ∈ A.

Assume that A ̸= ∅ absorbs X from the left and a, b ∈ A. If a = 0
or b = 0, then using (P1), we get a ∗ 0 = a ∈ A or b ∗ 0 = b ∈ A. Let
a ̸= 0 and b ̸= 0. Then a ∗ b ∈ A ∗A ⊆ X ∗A = A. Thus, a ∗ b ∈ A. □

Theorem 4.10. If X is a right distributive BI-algebra, then every
right(left) independent subset ∅ ≠ A ⊆ X absorbs X from the right.

Proof. Assume that X is a right distributive BI-algebra and A ̸= ∅
absorbs X from the right. Let t ∈ A ∗ X. Then there exist 0 ̸= a ∈ A
and x ∈ X such that t = a ∗ x. Using right distributivity, (B) and (P2),
we get t∗a = (a∗x)∗a = (a∗a)∗(x∗a) = 0∗(x∗a) = 0, and so t ≤ a. If
t ̸= a, since A is a right independent subset of X, we get t∗a ̸= a∗a = 0,
which is a contradiction. Thus, t = a ∈ A. Therefore, A ∗ X ⊆ A. On
the other hand, let a ∈ A. By (P1), we have a = a ∗ 0 ∈ A ∗X, and so
A ⊆ A ∗X. Thus, A ∗X = A. □

The following example shows that in the Theorem 4.10, the condition
right distributivity is necessary.

Example 4.11. Consider the Example 3.2(i), A = {a, c} is a right
independent subset of X, but does not absorb X from the right, since
A ∗ X = {0, a, b, c} ≠ A. Notice that X is not a right distributive BI-
algebra, since

(b ∗ c) ∗ a = b ∗ a = b ̸= 0 = b ∗ b = (b ∗ a) ∗ (c ∗ a).

Also, X ∗A = {0, a, b, c} ≠ A.

The converse of the Theorem 4.10, may not be true in general. For
this, consider the Example 3.2(ii) and take A = {0}, we get A absorbs X
from the right, since {0} ∗X = {0}, but not a right independent subset
of X.

Proposition 4.12. Let ∅ ≠ A ⊆ X absorbs X from the left. Then A is
not an independent subset of X.
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Proof. Assume that ∅ ̸= A ⊆ X absorbs X from the left, and so
X ∗A = A. Let a ∈ A ⊆ X. Then 0 = a ∗ a ∈ X ∗A = A. Hence 0 ∈ A.
Thus, A is not an independent subset of X. □

Proposition 4.13. Let (X, ∗, 0X) and (Y, ◦, 0Y ) be two BI-algebras, A
absorbs C from the right(left) in X and B absorbs D from the right(left)
in Y. Then A×B absorbs C ×D from the right(left) in X × Y.

Proof. Assume that A absorbs C from the right(left) in X and B
absorbs D from the right(left) in Y. Then A ∗C = A (resp., C ∗A = A)
and B ◦D = B (resp., D ◦B = B), and so

(A×B) • (C ×D) = {r • s : r ∈ A×B, s ∈ C ×D}
= {r • s : r = (a, b) ∈ A×B, s = (c, d) ∈ C ×D}
= {(a, b) • (c, d) : ∃a ∈ A,∃b ∈ B, ∃c ∈ C,∃d ∈ D}
= {(a ∗ c, b ◦ d) : ∃a ∈ A,∃b ∈ B, ∃c ∈ C,∃d ∈ D}
= {(x, y) : x ∈ A, y ∈ B}
= A×B.

(resp., by a similar argument we have (C×D)• (A×B) = A×B). □

Proposition 4.14. Let (X, ∗, 0X) and (Y, ◦, 0Y ) be two BI-algebras,
f : X −→ Y be a homomorphism, A ⊆ X and B ⊆ Y. The following
statements hold:

(a) if A absorbs C from the right(left), then f(A) absorbs f(C) from
the right(left),

(b) if B absorbs D from the right(left), then f−1(B) absorbs f−1(D)
from the right(left).

Proof. (a) Assume that (X, ∗, 0X) and (Y, ◦, 0Y ) are two BI-algebras
and A ⊆ X absorbs C from the right(left). Then A ∗ C = A (resp.,
C∗A = A). Since f is a homomorphism, we get f(A)∗f(C) = f(A∗C) =
f(A) (resp., f(C) ∗ f(A) = f(C ∗A) = f(A)). Thus, f(A) absorbs f(C)
from the right(left).

(b) Assume that (X, ∗, 0X) and (Y, ◦, 0Y ) are two BI-algebras and
B ⊆ Y absorbs D from the right(left). Hence B ◦D = B (resp., D ◦B =
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B). Let x ∈ f−1(B◦D) (resp., x ∈ f−1(D◦B)). Then f(x) ∈ B◦D = B,
and so x ∈ f−1(B) (resp., f(x) ∈ D ◦B = B, and so x ∈ f−1(B)). This
shows that f−1(B ◦ D) ⊆ f−1(B) (resp., f−1(D ◦ B) ⊆ f−1(B)). On
the other hand, let x ∈ f−1(B). Then f(x) ∈ B = B ◦ D (resp.,
f(x) ∈ B = D ◦ B). Hence x ∈ f−1(B ◦ D) (resp., x ∈ f−1(D ◦ B)).
It follows that f−1(B) ⊆ f−1(B ◦ D) (resp., f−1(B) ⊆ f−1(D ◦ B)).
Therefore f−1(B) = f−1(B ◦ D) (resp., f−1(B) = f−1(D ◦ B)). □
Let A ⊆ X and t ∈ X. Define At (resp., At) as follows:

At = {x ∈ X : x ∗ t ∈ A}, (resp., At = {x ∈ X : t ∗ x ∈ A}).

Also, we can define:

At
t = At ∩At = {x ∈ X : {x ∗ t, t ∗ x} ⊆ A}.

In what follows, we are going to characterize concepts of independent
and absorbent with these subsets:

� ∅t = ∅t = ∅, Xt = Xt = X,

� if 0 ∈ At, then 0 ∈ A,

� if 0 ∈ A, then t ∈ At ∩At = At
t,

� A ⊆ At∗a, for all a ∈ A,

� A0 = A,

� for all t ∈ X, t ∈ {0}tt,

� if 0 ∈ A, then A0 = X,

� if 0 ̸∈ A, then A0 = ∅,

� if ∅ ≠ {a}t, then a ∈ {a}t,

� if x ∈ At, then x ∗ t ∈ At,

� if A ⊆ B, then At ⊆ Bt and At ⊆ Bt, and so At
t ⊆ Bt

t

� (At)t = At,
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� (A ∩B)t = At ∩Bt, (A ∪B)t ⊆ At ∪Bt, (A \B)t = At \Bt,

� (A ∩B)t = At ∩Bt, (A ∪B)t ⊆ At ∪Bt, (A \B)t = At \Bt,

� (A ∩B)tt = At
t ∩Bt

t , (A ∪B)tt ⊆ At
t ∪Bt

t , (A \B)tt = At
t \Bt

t ,

� (A×B)t = At ×Bt and (A×B)t = At ×Bt,

� (A×B)tt = At
t ×Bt

t ,

� x ≤ t if and only if x ∈ {0}t,

� t ≤ x if and only if x ∈ {0}t,

� x ≤ t and t ≤ x if and only if x ∈ {0}tt,

� if x ∈ {0}tt and X is a commutative BI-algebra (or BH-algebra),
then x = t,

� if ∅ ≠ A is a closed subset of right distributive BI-algebra X, then
At is too,

� if ∅ ≠ {a}t and X is a right distributive BI-algebra, then a ≤ t,

� if ∅ ≠ {a}t and |{a}t| ≥ 2, then it is not a right independent subset
of X,

� if ∅ ≠ {a}t and |{a}t| ≥ 2, then it is not a left independent subset
of X,

� if ∅ ≠ {a}tt and |{a}tt| ≥ 2, then it is not an independent subset of
X.

Theorem 4.15. Let ∅ ≠ A ⊆ X absorbs X from the right(left). Then
X = At, for t ∈ A (resp., X = At, for 0 ̸= t ∈ A).

Proof. Assume that ∅ ≠ A ⊆ X absorbs X from the right(left) and
t ∈ A. Then t ∗ x ∈ A ∗X = A (resp., x ∗ t ∈ X ∗A = A, for 0 ̸= t ∈ A),
for all x ∈ X. Hence x ∈ At (resp., x ∈ At), and so X ⊆ At (resp.,
X ⊆ At). Thus, X = At (resp., X = At). □

As a result of the Theorem 4.15, the next corollary is deduced.
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Table 10: Cayley table for the binary operation “∗”.

∗ 0 a b c

0 0 0 0 0
a a 0 a 0
b b b 0 0
c c 0 a 0

Corollary 4.16. Let ∅ ≠ A ⊆ X absorbs X. Then X = At
t, for 0 ̸= t ∈

A.

Example 4.17. (i) Consider the Example 3.2(i), and take A = {0, b, c}.
Then A absorbs X from the right, but does not absorb X from the left.
Sine X ∗A = X ̸= A. Also, we have A0 = Ab = Ac = X (resp., Ab = A
and Ac = X).

(ii) Let X := {0, a, b, c} be a set with a binary operation “∗” shown
in Table 10. Then (X, ∗, 0) is a BI-algebra. If we take A = {0, a, b},
then A absorbs X from the right and left. So, we can see that A0 =
Aa = Ab = X (resp., Aa = Ab = X). Also, Aa

a = Ab
b = X.

Open problem.
There is a partition {Ai}i∈Λ, where Ai absorbs X from the right(left),
for i ∈ Λ?

5 Conclusions and Future Works

In this paper, we have considered the notion of the right(left) indepen-
dent subsets of BI-algebras as a new concept. Moreover, we have defined
the notion of the right(left) absorbent subsets. We have shown that these
new concepts are different by presenting several examples. Some interre-
lationships between some subsets of a BI-algebra with these definitions
are visualized, and some of the properties are investigated and we have
got more results in BI-algebras. As we mentioned in Theorem 4.10, if
X is a right distributive BI-algebra, then every right(left) independent
subset ∅ ≠ A ⊆ X absorbs X from the right and the converse may not
be true in general. As another result of the research, in Proposition 4.12,
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it is shown that if a subset A absorbs X from the left, then A is not an
independent subset of X.

As concerning future works, we will generalize these notions to other
algebraic structures and study the relation between them by character-
izing the new concepts of independent and absorbent subsets.
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