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Abstract. In this article, we propose an approximation scheme for
solving fractional boundary value problems with a finite element called
the method of weighted residuals. The fractional derivatives are taken
in the Caputo and Riemann–Liouville sense. Numerical examples are
provided to show that the numerical method is easy to apply and com-
putationally efficient.
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1 Introduction

Recently, fractional-order models are palyed a crucial role more than
integer-order forms for many engineering sciences subjects. Fractional
derivatives supply an exceptional instrument for the explanation of mem-
ory and inherited properties of variant techniques and materials. This
is the principal benefit of fractional differential problems in analogy
with classical integer-order equations([1, 3, 9, 18]. Fractional differential
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equations appear in many science and engineering fields for modelling
of various processes in the areas of polymer rheology, electrodynamics,
chemistry, physics, aerodynamics and etc. Consequently, the subject
of fractional differential equations is achieving much attention and im-
portance. For instance see([1]-[8], [13]-[19], [22]-[24]) and the references
therein.

In this paper we utilize weighted residuals method with simple base,
for solving linear and nonlinear boundary value problems of fractional or-
der. Different kind of examples of linear and nonlinear fractional bound-
ary value problems are given to demonstrate the ability of the proposed
method.

This article has been arranged as follows: Section 2 gives preliminary
definitions. Section 3 discusses the principal results of this study, in
which weighted residuals method has been executed on the boundary
value problems of fractional order. Finally, in section 4 two practical
examples are provided.

2 Preliminaries

To being, we need to define fractional integrals and derivatives. First,
we introduce the Riemann-Liouville fractional derivative operator Jα

a .

Definition 2.1. Let α ∈ R+. The operator Jα
a , defined on the usual

Lebesgue space L1 [a, b] by

Jα
a f(t) =

1

Γ(α)

∫ t

a
(t− s)α−1f(s)ds, (1)

J0
af(t) = f(t),

for a ≤ t ≤ b, is called the Riemann-Liouville fractional integral operator
of order α.

Properties of this operator can be found in [13]. For f ∈ L1 [a, b] , α, β ≥
0 and γ > −1, we mention only the following:

Jα
a f(t) exists for almost every t ∈ [a, b] ,
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Jα
a J

β
a f(t) = Jα+β

a f(t),

Jα
a J

β
a f(t) = Jβ

a Jα
a f(t),

Jα
a (t− a)γ =

Γ(γ + 1)

Γ(α+ γ + 1)
(t− a)α+γ .

Definition 2.2. The fractional derivative of f(t) in the Riemann-Liouville
sense is defined by

Dα
a f(t) = DmJm−α

a f(t) =
dm

dtm
1

Γ(m− α)

∫ t

a
(t− s)m−α−1f(s)ds, (2)

where m ∈ N and satisfies the relation m−1 < α ≤ m, and f ∈ L1 [a, b].
For m− 1 < α ≤ m, t > a and γ > −1, we have:

Dα
a k =

k(t− a)−α

Γ(1− α)
,

Dα
a (t− a)γ =

Γ(γ + 1)

Γ(γ − α+ 1)
(t− a)γ−α,

Dα
aJ

α
a f(t) = f(t).

For more properties of this operator see [20, 21].

Certainly, we declare that the definition of Riemann-Liouville frac-
tional derivative play a main role in the progress of fractional calculus.
However, the initial conditions required for the physical interpretation
of fractional initial value problems can hardly provide. Likewise, The
same is true for fractional boundary value problems. The Caputo frac-
tional derivative Dα

∗ f(t) solves this problem. Importantly, the Caputo
fractional derivative converts the conventional nth derivative of the func-
tion f(t) as α → n and the initial conditions of fractional differential
equations are maintained like ordinary differential equations with integer
derivatives. Another difference between the two derivatives is that the
Caputo fractional derivative is zero for a constant, while the Riemann-
Liouville fractional derivative is not zero. For more details, see [7, 13, 15].
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Definition 2.3. The fractional derivative of f(t) in the Caputo sense
is defined by

Dα
∗ f(t) = Jm−αDmf(t) =

1

Γ(m− α)

∫ t

0
(t− s)m−α−1f (m)(s)ds, (3)

Dα
∗ J

αf(t) = f(t),

for m− 1 < α ≤ m,m ∈ N, t > 0. Also, if m− 1 < α ≤ m, t > a then

Dα
∗ k = 0,

Dα
∗ (J

α
a f(t)) = f(t),

Jα
a (D

α
∗ f(t)) = f(t)−

m−1∑
k=0

f (k)(a)
(t− a)k

k!
.

3 Weighted Residuals Method

Suppose that we have the boundary value problem of fractional order

Dα [y(t)] + L [y(t)] +N [y(t)] = f(t), m− 1 < α ≤ m, (4)

y(a) = α, y(b) = β, a ≤ t ≤ b,

where α and β are constants. The term Dα [y(t)] denotes a linear
fractional differential operator, L [y(t)] is a linear differential operator,
N [y(t)] is a nonlinear operator and f(t) is a given function.
We will approximate the solution y(t) as

ŷ(t) =
n∑

i=0

ciϕi(t), (5)

where n is the number of unknown parameters, and each ϕi is an in-
dependent basis function. Hence, we denote ŷ(t) as the trial functions.
The goal in method of weighted residuals is the determination of the
(n+ 1) scalars {ci}ni=0.
Therefore an error or residual will exist

E(t) = R(t) = Dα [ŷ(t)] + L [ŷ(t)] +N [ŷ(t)]− f(t) ̸= 0. (6)
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The notion in the method of weighted residuals is to force the residual
to zero over the domain T = [a, b] in some average sense. That is∫

T
R(t)Wi(t)dt = 0, i = 0, 1, · · · , n, (7)

where {Wi}ni=0 are the test functions or weights. A good choice of ba-
sis functions for boundary value problems of fractional order are the
fractional power polynomials

φi(t) =
{
t
c
d
+ e

f
i
}n

i=0

where c, d, e and f are constants. The result is a set of (n + 1) alge-
braic equations for the unknown constants ci. There are (at least) three
method of weighted residuals sub-methods, according to the choices for
the Wi’s. These three methods are:

1. Least Squares method
2. Sub− domain method,

3. Galerkin method.

Each of these will be explained below [10, 12].

3.1 Least squares method

If the continuous summation of all the squared residuals is minimized,
the reasonability behind the name can be observed. To put it another
way, a minimum of

S =

∫
T
R(t)R(t)dt =

∫
T
R2(t)dt. (8)

In order to reach a minimum of this scalar function, the derivatives of
S must be zero with respect to all the unknown parameters. That is,

0 =
∂S

∂ci

= 2

∫
T
R(t)

∂R

∂ci
dt. (9)



6 H. AZIZI

The weight functions are apeared to be

Wi = 2
∂R

∂ci
,

Nonetheless, 2 can be omitted because it cancels in the equation. Hence,
the weight functions for the method of least squares are only the residual
derivatives with regard to the unknown constants:

Wi =
∂R

∂ci
.

3.2 Sub-domain method

This method is not exactly a member of the weighted residual family
beacause doesn’t use weighting factors explicity. However, it can be
brought up a modification of the collocation method. The method is to
reduce the residual weight to zero at fixed points in the domain as well
as over different subsections of the domain. To achieve this, the weight
functions are set to unity, and for evaluateing all unknown parameters,
the integral is broken over the entire domain into a sufficient number of
subdomains.
That is,∫

T
R(t)Wi(t)dt =

∑
i

(∫
Ti

R(t)dt

)
= 0, i = 0, 1, · · · , n. (10)

3.3 Galerkin method

In this method, fractional power polynomials are selected as weight func-
tions. That is,

Wi = t
c
d
+ e

f
i
, i = 0, 1, · · · , n.

In which case, for approximating (the φ′
is) the basis functions were des-

ignated as fractional power polynomials.

4 Numerical Examples

In the present section, two examples are presented in order to show the
ability and efficiency of the proposed method. The algorithms are per-
formed by Maple 12 with 10 digits precision. For two examples, we take
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t0 = 0, ti = t0 + 0.05 i for i = 1, · · · , 20 and results for n = 1, 2 and 3
are reported.

RMS errors
The L2 norm or Euclidean norm is a suitable scalar index for show-

ing the closeness of two functions. Often in engineering, this measure is
called the root-mean squared (RMS) error and can be defined as

ERMS =

√∫
(y(t)− ŷ(t))2dt∫

dt
,

which in discrete terms can be evaluated as

ERMS =

√√√√√ n∑
i=1

(yi − ŷi)
2

n
.

Example 4.1. Consider the linear boundary value problem of Riemann-
Liouville fractional order

y′′(t) + sin tD0.5y(t) + ty(t) = f(t), 0 < t < 1, (11)

with the boundary condition:

y(0) = y(1) = 0,

where

f(t) = t9 − t8 + 56t6 − 42t5 + sin t(
32768

6435
√
π
t7.5 − 2048

429
√
π
t6.5), (12)

and the exact solution is y(t) = t8 − t7[6].
Let’s solve the above example by the method of weighted residuals using
a fractional power polynomial functions as a basis. That is, let the
approximating function ŷ(t) be

ŷ(t) =
n∑

i=0

cit
c
d
+ e

f
i
.
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Table 1: Numerical results for Example 1 using φi(t) = {t6+
95
100

i}ni=0

n ERMS −Galerkin ERMS − LeastSquares ERMS − Subdomain

1 0.06337614509 0.06201871147 0.05913693352
2 0.01942054388 0.02013470606 0.01609329029
3 0.02147222606 0.02395010463 0.01667516339

Table 2: Numerical results for Example 1 using φi(t) = {t8−
95
100

i}ni=0

n ERMS −Galerkin ERMS − LeastSquares ERMS − Subdomain

1 0.02403628953 0.02342287470 0.01948231563
2 0.01895034797 0.01994715241 0.01654689139
3 0.02192845645 0.02441210961 0.01653205299

By applying the boundary condition and calculating the second deriva-
tive and 0.5 Riemann-Liouville derivative of ŷ(t) the residual R(t) could
be found:

R(t) = ŷ′′(t) + sin tD0.5 ŷ(t) + tŷ(t)− f(t), (13)

The numerical results are summarized in Tables 1 and 2.

Example 4.2. Consider the nonlinear boundary value problem of Ca-
puto fractional order

D0.25
∗ y(t) + ty2(t) = f(t), 0 < t < 1, (14)

with the boundary condition

y(0) = 0, y(1) = 1,

where

f(t) =
32

21Γ(0.75)
t1.75 + t5,

and the exact solution is y(t) = t2[11].
We solve the present example by the method of weighted residuals us-
ing a fractional power polynomial function as a basis. That is, let the
approximating function ŷ(t) be

ŷ(t) =
n∑

i=0

cit
c
d
+ e

f
i
.
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Table 3: Numerical results for Example 2 using φi(t) = {t
175
100

+ 25
100

i}ni=0

n ERMS −Galerkin ERMS − LeastSquares ERMS − Subdomain

1 0.0 0.0 0.000003244042158
2 0.0 0.0 0.000006365831408
3 0.0 0.0 0.000007910210400

Table 4: Numerical results for Example 2 using φi(t) = {t2−
95
100

i}ni=0

n ERMS −Galerkin ERMS − LeastSquares ERMS − Subdomain

1 0.0 0.00001625833120 0.000001214985793
2 0.00001292837411 0.00001901002242 0.000005589105048
3 - - -

By applying the boundary condition and calculating 0.25 Caputo deriva-
tive of ŷ(t) the residual R(t) could be found:

R(t) = D0.25
∗ ŷ(t) + tŷ2(t)− 32

21Γ(0.75)
t1.75 − t5. (15)

The computational results are summarized in Tables 3 and 4.
In the weighted residuals solutions, the basis of {t2−

95
100

i}ni=0 form for
n = 3, · · · are not used because the Caputo derivative of order 0.25 of
the approximated function ŷ(t)

ŷ(t) =

n∑
i=0

cit
2− 95

100
i, n = 3, 4, · · ·

does not exist.

5 Conclusion

In this paper, the method of weighted residuals for approximate solution
of linear and nonlinear boundary value problems of fractional order is
introduced and proposed. Moreover, a comparison between the exact
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solution and three sub-method of weighted residuals method using the
fractional power polynomials basis, shows that the error of the approxi-
mation is small and usually only a few iterations leading to very accurate
solutions. Two examples of boundary value problems of fractional order
were solved by weighted residuals to illustrate the efficiency and accu-
racy of the method. By this method in Example 2, we found the exact
solution.
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