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Abstract. This paper is concerned with the relation between local
cohomology modules defined by a pair of ideals and Serre classes of
R-modules. Let R be a commutative Noetherian ring, I , J be two
ideals of R and M be an R-module. Let a ∈ W̃ (I, J) and t ∈ N0

be such that Extt
R(R/a, M) ∈ S and Extj

R(R/a, Hi
I,J(M)) ∈ S for all

i < t and all j > 0. Then for any submodule N of Ht
I,J(M) such that

Ext1R(R/a, N) ∈ S, we obtain HomR(R/a, Ht
I,J(M)/N) ∈ S.
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1. Introduction

Throughout this paper, R denotes a commutative Noetherian ring, I, J denote
two ideals of R, and M denotes an arbitrary R-module. By N0, we shall mean
the set of non-negative integers. For basic results, notations and terminologies
not given in this paper, the reader is referred to [7, 21], if necessary.
As a generalization of the usual local cohomology modules, Takahashi, Yoshino
and Yoshizawa [21], introduce the local cohomology modules with respect to a
pair of ideals (I, J). To be more precise, let W (I, J) = {p ∈ Spec(R) | In ⊆
p + J for some positive integer n} and W̃ (I, J) denotes the set of ideals a of
R such that In ⊆ a + J for some integer n. For an R-module M , we consider
the (I, J)-torsion submodule ΓI,J(M) of M which consists of all elements x
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of M with Supp(Rx) in W (I, J). Furthermore, for an integer i, the local
cohomology functor Hi

I,J with respect to (I, J) is defined to be the i-th right
derived functor of ΓI,J . Also Hi

I,J(M) is called the i-th local cohomology
module of M with respect to (I, J). If J = 0, then Hi

I,J coincides with the
ordinary local cohomology functor Hi

I with the support in the closed subset
V (I).
Recently, some authors approached the study of properties of these extended
modules, see for Example [8, 9, 18, 22].
It is well known that an important problem in commutative algebra is to deter-
mine when the R-module HomR(R/I,Hi

I(M)) is finite. Grothendieck in [13]
conjectured the following:
If R is a Noetherian ring, then for any ideal I of R and any finite R-module
M , the modules HomR(R/I,Hi

I(M)) are finite for all i > 0.
In [14], Hartshorne gave a counterexample to Grothendieck,s conjecture and
he defined the concept of I-cofinite modules to generalize the conjecture. In
[6], Brodmann and Lashgari showed that if, for a finite R-module M and an
integer t, the local cohomology modules H0

I (M) , H1
I (M) , · · · , Ht−1

I (M) are
finite, then R-module HomR(R/I,Ht

I(M)) is finite and so Ass(Ht
I(M)/N) is a

finite set for any finite submodule N of Ht
I(M). A refinement of this result for

I-minimax R-modules which has been proved in [4] is as follows. Recall that
an R-module M is said to be an I-minimax if the I-relative Goldie dimension
of any quotient module of M is finite, see [4].

Theorem 1.1. Let M be an I-minimax R-module and t be a non-negative
integer such that Hi

I(M) is I-minimax for all i < t. Then for any I-minimax
submodule N of Ht

I(M), the R-module

HomR(R/I,Ht
I(M)/N)

is I-minimax.

Also authors in [1, 3] studied local cohomology modules by means of Serre
subcategories. As a consequence, for an arbitrary Serre subcategory S, authors
in [3] showed the following result.

Theorem 1.2. Let s ∈ N0 be such that

ExtsR(R/I,M) ∈ S

and
ExtjR(R/I,Hi

I(M)) ∈ S

for all i < s and all j > 0. Let N be a submodule of Hs
I (M) such that

Ext1R(R/I,N) ∈ S. Then HomR(R/I,Hs
I (M)/N) ∈ S.
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The aim of the present paper is to generalize the concept of an I-cominimax
R-module, introduced in [4], to an arbitrary Serre subcategory S, to verify
situations in which the R-module HomR(R/I,Hi

I,J(M)) belongs to S. To
approach it, we use the methods of [3, 4]. Our paper consists of four sections
as follows.
In Section 2, by using the concept of (I, J)-relative Goldie dimension, we in-
troduce the (I, J)-minimax R-modules and we study some properties of them,
(see Proposition 2.7).
In Section 3, for an arbitrary Serre subcategory S, we define (S, I, J)-cominimax
R-modules. This concept of R-modules can be considered as a generalization
of I-cofinite R-modules [13], I-cominimax R-modules [4], and (I, J)-cofinite
R-modules [22]. Also, as a main result of our paper, we prove the following.
(See Theorem 3.13).

Theorem 1.3. Let a ∈ W̃ (I, J). Let t ∈ N0 be such that ExttR(R/a,M) ∈ S
and ExtjR(R/a,Hi

I,J(M)) ∈ S for all i < t and all j > 0. Then for any submod-
ule N of Ht

I,J(M) such that Ext1R(R/a, N) ∈ S, we have HomR(R/a,Ht
I,J(M)

/N) ∈ S.

One can see, by replacing various Serre classes with S and using Theorem 1.3,
the main results of [2, Theorem 1.2], [3, Theorem 2.2], [4, Theorem 4.2], [5,
Lemma 2.2], [6], [11, Corollary 2.7], [15], [16, Corollary 2.3], and [22, Theorems
2.3, 2.5] are obtained (see Theorem 3.13, Corollary 3.14).
At last, in Section 4, as an application of the results of the previous sections,
we give the following consequence about finiteness of associated primes of local
cohomology modules. (See Proposition 4.1, Corollary 4.2, Notations 2.6, and
3.3)

Proposition 1.4. Let t ∈ N0 be such that ExttR(R/I,M) ∈ SI,J and Hi
I,J(M) ∈

C(SI,J , I, J) for all i < t. Let N be a submodule of Ht
I,J(M) such that Ext1R(R/I,

N) belongs to SI,J . If Supp(Ht
I,J(M)/N) ⊆ V (I) then GdimHt

I,J(M)/N <∞
and so Ht

I,J(M)/N has finitely many associated primes; in particular, for N
= JHt

I,J(M).

2. Serre Classes and (I, J)-Minimax Modules

Recall that for an R-module H, the Goldie dimension of H is defined as the
cardinality of the set of indecomposable submodules of E(H), the injective hall
of H, which appear in a decomposition of E(H) in to direct sum of indecompos-
able submodules. Therefore, H is said to have finite Goldie dimension if H does
not contain an infinite direct sum of non-zero submodules, or equivalently E(H)
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decomposes as a finite direct sum of indecomposable (injective) submodules.
We shall use GdimH to denote the Goldie dimension of H. For a prime ideal
p, let µ0(p,H) denotes the 0-th Bass number of H with respect to the prime
ideal p. Also, an R-module M is said to minimax if there is a finite submod-
ule N of M such that the quotient module M/N is Artinian. It is known that
µ0(p,H) > 0 iff p ∈ Ass(H). It is clear by the definition of the Goldie dimension
that GdimH =

∑
p∈Ass(H) µ

0(p,H) =
∑

p∈Spec(R) µ
0(p,H). Also, the (I, J)-

relative Goldie dimension of H is defined as GdimI,JH: =
∑

p∈W (I,J) µ
0(p,H).

(See [18, Definition 3.1]). If J = 0, then GdimI,JH = GdimIH (see [10, Def-
inition 2.5]); moreover if I = 0, we obtain GdimI,JH = GdimH. It is known
that when R is a Noetherian ring, an R-module H is minimax if and only if
any homomorphic image of H has finite Goldie dimension (see [12, 23, 24]).
This motivates the definition of (I, J)-minimax modules.

Definition 2.1. An R-module M is said to be minimax with respect to (I, J) or
(I, J)-minimax if the (I, J)-relative Goldie dimension of any quotient module
of M is finite.

Remarks 2.2. By Definition 2.1, it is clear that

(i) GdimIM 6 GdimI,JM 6 Gdim M.

These inequalities maybe strict (see [18, Definition 3.1]).

(ii) For a Noetherian ring R, an R-module M is minimax iff for any R-
submodule N of M , GdimM/N < ∞. Therefore, by (i), in the Noethe-
rian case, the class of I-minimax R-modules contains the class of (I, J)-
minimax R-modules and it contains the class of minimax R-modules.

Example and Remarks 2.3. It is easy to see that

(i) Every quotient of finite modules, Artinian modules, Matlis refelexive
modules and linearly compact modules have finite (I, J)-relative Goldie
dimension, and so all of them are (I, J)-minimax modules.

(ii) If I = 0, then W (I, J) = Spec(R) = V (I) and so an R-module M is
minimax iff it is (I, J)-minimax iff it is I-minimax.

(iii) If J = 0, thenW (I, J) = V (I), so that an R-moduleM is (I, J)-minimax
iff it is I-minimax.

(iv) let M be an I-torsion module. Then, by [10, Lemma 2.6] and [18, Lemma
3.3], M is minimax iff it is (I, J)-minimax iff it is I-minimax.

(v) If M is (I, J)-torsion module, then M is minimax iff it is (I, J)-minimax.
(By the definition and [18, Lemma 3.3]). Specially, when (0) ∈ W̃ (I, J).



ON THE LOCAL COHOMOLOGY MODULES ... 51

(vi) By [21, Corollary (1.8) (2)], the class of (I, J)-torsion is a Serre subcate-
gory of R-modules. Therefore, by part(v), in this category, the concept of
minimax modules coincides with the concept of (I, J)-minimax modules;
specially, for the (I, J)-torsion module of Hi

I,J(M) (i > 0).

(vii) If Min(M) ⊆ W (I, J) and GdimI,JM < ∞, then by [18, Lemma 3.3]
and definition, Gdim M <∞, and so |Ass(M)| <∞.

The following proposition shows that the class of (I, J)-minimax R-modules is
a Serre subcategory.

Proposition 2.4. Let 0 → M ′ → M → M ′′ → 0 be an exact sequence of
R-modules. Then M is (I, J)-minimax if and only if M′ and M′′ are both
(I, J)-minimax.

Proof. One can obtain the result, by replacing W (I, J) with V (I) and a mod-
ification of the proof of Proposition 2.3 of [4]. �

Remark 2.5. Recall that a class S of R-modules is a “Serre subcategory”
or “Serre class” of the category of R-modules, when it is closed under taking
submodules, quotients and extensions. For example, the following class of R-
modules are Serre subcategory.

(a) The class of Zero modules.

(b) The class of Noetherian modules.

(c) The class of Artinian modules.

(d) The class of R-modules with finite support.

(e) The class of all R-modules M with dimRM 6 n, where n is a non-
negative integer.

(f) The class of minimax modules and the class of I-cofinite minimax R-
modules. (see [17, Corollary 4.4]).

(g) The class of I-minimax R-modules. (see [4, Proposition 2.3]).

(h) The class of I-torsion R-modules and the class of (I, J)-torsion R-modules.
(see [21, Corollary 1.8]).

(i) The class of (I, J)-minimax R-modules. (Proposition 2.4).

Notations 2.6. In this paper, the following notations are used for the following
Serre subcategories:

“ S ” for an arbitrary Serre class of R-modules;
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“ S0 ” for the class of minimax R-modules;

“ SI ” for the class of I-minimax R-modules;

“ SI,J ” for the class of (I, J)-minimax R-modules.

Using the above notations and Remark 2.2, we have S0 ⊆ SI,J ⊆ SI .
Now, we exhibit some of the properties of SI,J .

Proposition 2.7. Let I,J ,I ′, J ′ be ideals of R and M be an R-module. Then

(i) SI,J = S√I,J = S√I,
√

J = SI,
√

J .

(ii) If In ⊆
√
J , for some n ∈ N (or equally, if R/J is an I-torsion R-

module), then S0 = SI,J .

(iii) If In ⊆
√
I ′, for some n ∈ N, then SI,J ⊆ SI′,J .

(iv) If Jn ⊆
√
J ′, for some n ∈ N, then SI,J ′ ⊆ SI,J .

(v) If In ⊆
√
I ′, for some n ∈ N and M is (I ′, J)-torsion, then M ∈ SI,J

iff M ∈ S0 iff M ∈ SI′,J .

(vi) If Jn ⊆
√
J ′, for some n ∈ N and M is (I, J)-torsion, then M ∈ SI,J

iff M ∈ S0 iff M ∈ SI,J ′ .

Proof. All these statements follow easily from [21, Propositions 1.4, 1.6] and
Remark 2.3. As an illustration, we just prove statement (iii).
Let H ∈ SI,J . Since In ⊆

√
I ′, we have W (

√
I ′, J) ⊆ W (I, J), by [21, Propo-

sition 1.6]. Now, since H is (I, J)-minimax, the assertion follows from the
definition. �

Lemma 2.8.(i) If N ∈ S and M is a finite R-module, then for any submodule
H of ExtiR(M,N) and T of Tori

R(M,N), we have

ExtiR(M,N)/H ∈ S

and Tori
R(M,N)/T ∈ S, for all i > 0.

(ii) For all i > 0, we have ExtiR(R/I,M) ∈ SI,J iff ExtiR(R/I,M) ∈ S0 iff
ExtiR(R/I,M) ∈ SI .

Proof. (i) The result follows from [3, Lemma 2.1].
(ii) Since, for all i, ExtiR(R/I,M) and TorR

i (R/I,M) are (I, J)-torsion R-
modules, the assertion holds by Remark 2.3 (iv). �

The following proposition can be thought of as a generalization of Proposition
2.6 of [4], in case of J = 0 and S = SI
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Proposition 2.9. Let Min(M) ⊆ W (I, J). If M ∈ S, then Hi
I,J(M) ∈ S for

all i > 0.

Proof. By hypothesis and [21, Corollary 1.7], M is (I, J)-torsion R-module
and so H0

I,J(M) = ΓI,J(M) = M . Therefore, Hi
I,J(M) = 0 for all i > 1, by

[21, Corollary 1.13]. Thus the assertion holds. �

By applying the same method of the proof of [4, Theorem 2.7] and the properties
of Serre subcategory, for S = SI , we can obtain the following theorem, which
is a generalization of [4, Theorem 2.7]. Some applications of this result will
appear in Section 3.

Theorem 2.10. Let M be a finite R-module and N an arbitrary R-module.
Let t ∈ N0. Then the following conditions are equivalent:

(i) ExtiR(M,N) ∈ S for all i 6 t.

(ii) For any finite R-module H with Supp(H) ⊆ Supp(M), ExtiR(H,N) ∈ S
for all i 6 t.

Corollary 2.11. Let r ∈ N0. Then, for any R-module M , the following con-
ditions are equivalent:

(i) ExtiR(R/I,M) ∈ S for all i 6 r.

(ii) For any ideal a of R with a ⊇ I, ExtiR(R/a,M) ∈ S for all i 6 r.

(iii) For any finite R-module N with Supp(N) ⊆ V (I), ExtiR(N,M) ∈ S for
all i 6 r.

(iv) For any p ∈Min(I), ExtiR(R/p,M) ∈ S for all i 6 r.

Proof. Apply the same method of the proof of [4, Corollary 2.8]. �

3. (S, I, J)-Cominimax Modules and H i
I,J(M)

Recall that M is said to be (I, J)-cofinite if M has support in W (I, J) and
ExtiR(R/I,M) is a finite R-module for each i > 0 (see [22, Definition 2.1]). In
fact this definition is a generalization of I-cofinite modules, which is introduced
by Hartshorne in [14]. Considering an arbitrary Serre subcategory of R-modules
instead of finitely generated one, we can give a generalization of (I, J)-cofinite
modules as follows.

Definition 3.1. Let R be a Noetherian ring and I, J be two ideals of R.
For the Serre subcategory S of the category of R-modules, an R-module M
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is called an (S, I, J)-cominimax module precisely when Supp(M) ⊆ W (I, J)
and ExtiR(R/I,M) ∈ S for all i > 0.

Remark 3.2. By applying various Serre classes of R-modules in 3.1, we may
obtain different concepts. But in view of [21, Proposition 1.7], the class of
(S, I, J)-cominimax R-modules is contained in the class of (I, J)-torsion R-
modules. Moreover, for every R-module M and all i > 0, ExtiR(R/I,M) is I-
torsion, so by Lemma 2.8 (ii), we have ExtiR(R/I,M) ∈ SI,J iff ExtiR(R/I,M)
∈ S0. In other words, the class of (S0, I, J)-cominimax R-modules and the class
of (SI,J , I, J)-cominimax R-modules are the same. Also, since Supp(M) ⊆
V (I) implies that Supp(M) ⊆W (I, J), hence the class of (SI,J , I, J)-cominimax
R-modules contains the class of (SI , I, J)-cominimax R-modules.

Notation 3.3. For a Serre class S of R-modules and two ideals I, J of R, we
use C(S, I, J) to denote the class of all (S, I, J)-cominimax R-modules.

Example and Remark 3.4. (i) Let N ∈ S be such that Supp(N) ⊆W (I, J).
Then it follows from Lemma 2.8 (i) that N ∈ C(S, I, J).
(ii) Let N be a pure submodule of R-module M . By using the following exact
sequence 0 → ExtiR(R/I,N) → ExtiR(R/I,M) → ExtiR(R/I,M/N) → 0,
for all i > 0, [19, Theorem 3.65], M ∈ C(S, I, J) iff N,M/N ∈ C(S, I, J); in
particular, when S = SI,J .

Proposition 3.5. Let 0 → M ′ → M → M ′′ → 0 be an exact sequence of
R-modules such that two of the modules belong to C(S, I, J). Then the third
one belongs to C(S, I, J).

Proof. The assertion follows from the induced long exact sequence

· · · → ExtiR(R/I,M)→ ExtiR(R/I,M ′′)→ Exti+1
R (R/I,M ′)→ . . .

and Lemma 2.8 (i). �

An immediate consequence of Proposition 3.5 and Lemma 2.8 is as follows.

Proposition 3.6. Let I, J, I ′, J ′ are ideals of R. Then

(i) M ∈ C(S, I, J) iff M ∈ C(S,
√
I, J) iff M ∈ C(S, I,

√
J) iff M ∈

C(S,
√
I,
√
J).

(ii) If M is I-cominimax, then M ∈ C(SI,J , I, J).

(iii) If Min(M) ⊆ W (I ′, J) , ExtiR(R/I,M) ∈ SI,J , and In ⊆
√
I ′ for some

n ∈ N and all i > 0, then M ∈ C(SI,J , I, J) and M ∈ C(SI′,J , I
′, J). In

particular, if M ∈ C(SI,J , I, J), then we have M ∈ C(SI′,J , I
′, J).
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(iv) If Min(M) ⊆ W (I, J) and Jn ⊆
√
J ′ for some n ∈ N, then M ∈

C(SI,J , I, J) iff M ∈ C(SI,J ′ , I, J
′).

Proof. (i) Since V (I) = V (
√
I), the assertions follow from [21, Proposition

1.6], Corollary 2.11, and Definition 3.1.
(ii) By assumption and Lemma 2.8 (ii), Supp(M) ⊆ V (I) ⊆ W (I, J) and

ExtiR(R/I,M) ∈ SI,J for all i > 0.
(iii), (iv) Apply [21, Propositions 1.6, 1.7], Corollary 2.11, and Proposition

2.7 (iii),(iv). �

The following Remark plays an important role in the proof of our main theorems
in this section.

Remark 3.7. In view of proof [21, Theorem 3.2], Γa(M) ⊆ ΓI,J(M), for
any a ∈ W̃ (I, J). Thus ΓI,J(M) = 0 implies that Γa(M) = 0, for all a ∈
W̃ (I, J). Now, let M̄ = M/ΓI,J(M) and E = ER(M̄) be the injective hull of
R-module M̄ . Put L = E/M̄ . Since ΓI,J(M̄) = 0, then ΓI,J(E) = 0 and also
for any a ∈ W̃ (I, J), we have Γa(M̄) = 0 = Γa(E). In particular, the R-module
HomR(R/a, E) is zero. Now, from the exact sequence 0→ M̄ → E → L→ 0,
and applying HomR(R/a,−) and ΓI,J(−), we have the following isomorphisms

ExtiR(R/a, L) ∼= Exti+1
R (R/a, M̄) and Hi

I,J(L) ∼= Hi+1
I,J (M),

for any a ∈ W̃ (I, J) and all i > 0. In particular, ExtiR(R/I, L) ∼= Exti+1
R (R/I, M̄).

Proposition 3.8. Let t ∈ N0 be such that Hi
I,J(M) ∈ C(S, I, J) for all i < t.

Then ExtiR(R/I,M) ∈ S for all i < t.

Proof. We use induction on t. When t = 0, there is nothing to prove. For
t = 1, sinceHomR(R/I,ΓI,J(M)) = HomR(R/I,M), and ΓI,J(M) is (S, I, J)-
cominimax, the result is true. Now, suppose that t > 2 and the case t − 1 is
settled. The exact sequence 0 → ΓI,J(M) → M → M̄ → 0 induced the long
exact sequence

· · · → ExtiR(R/I,ΓI,J(M))→ ExtiR(R/I,M)→ ExtiR(R/I, M̄)→ . . . .

Since ΓI,J(M) ∈ C(S, I, J), we have ExtiR(R/I,ΓI,J(M)) ∈ S for all i > 0.
Therefore, it is enough to show that ExtiR(R/I, M̄) ∈ S for all i < t. For
this purpose, let E = ER(M̄) and L = E/M̄ . Now, by Remark 3.8, for all
i > 0, we get the isomorphisms Hi

I,J(L) ∼= Hi+1
I,J (M) and ExtiR(R/I, L) ∼=

Exti+1
R (R/I, M̄). Now, by assumption, Hi+1

I,J (M) ∈ C(S, I, J) for all i < t− 1,
and so Hi

I,J(L) ∈ C(S, I, J) for all i < t−1. Thus, by the inductive hypothesis,
ExtiR(R/I, L) ∈ S and so Exti+1

R (R/I, M̄) ∈ S for all i < t− 1. �
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The next corollary generalizes Proposition 3.7 of [4].

Corollary 3.9. Let Hi
I,J(M) ∈ C(S, I, J) for all i > 0. Then ExtiR(R/I,M) ∈

S for all i >0; particularly, when S is the class of I-minimax modules or the
class of (I, J)-minimax modules.

The Proposition 3.8 of [4] can be obtained from the following theorem when
J = 0 and S = SI .

Theorem 3.10. Let ExtiR(R/I,M) ∈ S for all i > 0. Let t ∈ N0 be such that
Hi

I,J(M) ∈ C(S, I, J), for all i 6= t, then Ht
I,J(M) ∈ C(S, I, J).

Proof. We use induction on t. If t = 0, we must prove that ExtiR(R/I,ΓI,J

(M)) ∈ S for all i > 0. By the exact sequence

· · · → Exti−1
R (R/I, M̄)→ ExtiR(R/I,ΓI,J(M))→ ExtiR(R/I,M)→ . . .

and the hypothesis, it is enough to show that ExtiR(R/I, M̄) ∈ S for all i > 0.
Now, by Remark 3.7 and our assumption, we obtain Hi

I,J(L) ∈ C(S, I, J).
Therefore Corollary 3.9 implies that ExtiR(R/I, M̄) ∈ S for all i > 0 (note
that Ext0R(R/I, M̄) = 0). Now suppose, inductively, that t > 0 and the result
has been proved for t − 1. By Remark 3.7, it is easy to show that L satisfies
in our inductive hypothesis. Therefore, the assertion follows from Ht

I,J(M) ∼=
Ht−1

I,J (L). �

Corollary 3.11. Let M ∈ S and t ∈ N0 be such that Hi
I,J(M) is (S, I, J)-

cominimax for all i 6= t. Then Ht
I,J(M) is (S, I, J)-cominimax.

Proof. This is an immediate consequence of Lemma 2.8 (i) and Theorem
3.11. �

Corollary 3.12. Let I be a principal ideal and J be an arbitrary ideal of R.
Let M ∈ S. Then Hi

I,J(M) is (S, I, J)-cominimax for all i > 0.

Proof. For i = 0, since H0
I,J(M) is a submodule of M and M ∈ S, it turns out

that H0
I,J(M) is (S, I, J)-cominimax, by Remark 3.4 (i). Now, let I = aR. By

[21, Definition 2.2 and Theorem 2.4], we have Hi
I,J(M) ∼= Hi(C•I,J ⊗R M) = 0

for all i > 1. Therefore the result follows from Theorem 3.10. �

Now we are prepared to prove the main theorem of this section, which is a
generalization of one of the main results of [3, Theorem 2.2] and also [22,
Theorem 2.3].

Theorem 3.13. Let a ∈ W̃ (I, J). Let t ∈ N0 be such that ExttR(R/a,M) ∈ S
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and ExtjR(R/a,Hi
I,J(M)) ∈ S for all i < t and all j > 0. Then for any submod-

ule N of Ht
I,J(M) such that Ext1R(R/a, N) ∈ S, we have HomR(R/a,Ht

I,J(M)
/N) ∈ S; in particular, for a = I.

Proof. Considering the following long exact sequence

· · · → HomR(R/a, Ht
I,J(M)) → HomR(R/a, Ht

I,J(M)/N) → Ext1R(R/a, N) → . . . ,

since Ext1R(R/a, N) ∈ S, it is enough to show that HomR(R/a,Ht
I,J(M)) ∈ S.

To do this, we use induction on t. When t = 0, since HomR(R/a,ΓI,J(M)) =
HomR(R/a,M) ∈ S, the result is obtained. Next, we assume that t > 0 and
that the claim is true for t− 1. Let M̄ = M/ΓI,J(M). Then, by the long exact
sequence

· · · → ExttR(R/a,M)→ ExttR(R/a, M̄)→ Extt+1
R (R/a,ΓI,J(M))→ . . . ,

and assumption, we conclude that ExtjR(R/a, M̄) ∈ S. Now, by using notation
of Remark 3.7, it is easy to see that L satisfies the inductive hypothesis. So that
we get HomR(R/a,Ht−1

I,J (L)) ∈ S and therefore, HomR(R/a,Ht
I,J(M)) ∈ S,

as required. �

The main results of [4, Theorem 4.2], [5, Theorem 2.2], [2, Theorem 2.1], [15],
[11, Corollary 2.7], and [16, Corollary 2.3] are all special cases of the next
corollary, by replacing various Serre classes with S and J = 0.

Corollary 3.14. Let t ∈ N0 be such that ExttR(R/I,M) ∈ S and Hi
I,J(M) ∈

C(S, I, J) for all i < t. Then for any submodule N of Ht
I,J(M) and any fi-

nite R-module M ′ with Supp(M ′) ⊆ V (I) and Ext1R(M ′, N) ∈ S, we have
HomR(M ′,Ht

I,J(M)/N) ∈ S.

Proof. Apply Theorem 3.13 and Corollary 2.11. �

Proposition 3.15. Let t ∈ N0 be such that Hi
I,J(M) ∈ C(S, I, J) for all i < t.

Then the following statements hold:

(i) If ExttR(R/I,M) ∈ S, then HomR(R/I,Ht
I,J(M)) ∈ S.

(ii) If Extt+1
R (R/I,M) ∈ S, then Ext1R(R/I,Ht

I,J(M)) ∈ S.

(iii) If ExtiR(R/I,M) ∈ S for all i > 0, then HomR(R/I,Ht+1
I,J (M)) ∈ S iff

Ext2R(R/I,Ht
I,J(M)) ∈ S.

Proof. (i) Apply Corollary 3.14 or Theorem 3.13.
(ii) We proceed by induction on t. If t = 0, then by the long exact sequence
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(∗) 0→ Ext1R(R/I,ΓI,J(M))→ Ext1R(R/I,M)→ Ext1R(R/I, M̄)

→ Ext2R(R/I,ΓI,J(M))→ Ext2R(R/I,M)→ Ext2R(R/I, M̄)

...

→ ExtiR(R/I,ΓI,J(M))→ ExtiR(R/I,M)→ ExtiR(R/I, M̄)

→ Exti+1
R (R/I,ΓI,J(M))→ · · ·

and Ext1R(R/I, M̄) ∈ S, the result follows. Suppose that t > 0 and the asser-
tion is true for t−1. Since ΓI,J(M) ∈ C(S, I, J), so ExtiR(R/I,ΓI,J(M)) ∈ S for
all i > 0, and so by (∗), Extt+1

R (R/I, M̄) ∈ S. Now, by the notations of Remark
3.7, it is easy to see that R-module L satisfies the inductive hypothesis and so
Ext1R(R/I,Ht−1

I,J (M)) ∈ S. Now, the result follows from Ht−1
I,J (L) ∼= Ht

I,J(M).
(iii) (⇒) We use induction on t. Let t = 0. Then considering the long exact

sequence (∗), it is enough to show that Ext1R(R/I, M̄) ∈ S. By Remark 3.7,
we have

Ext1R(R/I, M̄) ∼= HomR(R/I, L)
∼= HomR(R/I,ΓI,J(L))
∼= HomR(R/I,H1

I,J(M)),

as required. Suppose t > 0 and the assertion is true for t − 1. Since ΓI,J(M)
∈ C(S, I, J), we have ExtiR(R/I,ΓI,J(M)) ∈ S for all i > 0. Therefore the ex-
actness of sequence (∗) implies that ExtiR(R/I, M̄) ∈ S for all i > 0. Again by
using the notations of Remark 3.7, we get ExtiR(R/I, L) ∈ S, for all i > 0, and
also HomR(R/I,Ht

I,J(L)) ∼= HomR(R/I,Ht+1
I,J (M)) ∈ S. Now, by inductive

hypothesis, Ext2R(R/I,Ht−1
I,J (L)) ∈ S and hence Ext2R(R/I,Ht

I,J(M)) ∈ S, as
required.

(⇐) This part can be proved by the same method of (⇒), using induction
on t, the following exact sequence

Ext1R(R/I,M)→ Ext1R(R/I, M̄)→ Ext2R(R/I,ΓI,J(M)),

and Remark 3.7. �

4. Finiteness Properties of Associated Primes

In this short section, we obtain some results, as some applications of previous
sections, about associated prime ideals of local cohomology modules and also
finiteness properties of them.
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Proposition 4.1. Let t ∈ N0 be such that ExttR(R/I,M) ∈ SI,J and Hi
I,J(M) ∈

C(SI,J , I, J) for all i < t. Let N be a submodule of Ht
I,J(M) such that Ext1R(R/I,

N) ∈ SI,J . If Supp(Ht
I,J(M)/N) ⊆ V (I), then Gdim(Ht

I,J(M)/N) < ∞ and
so Ht

I,J(M)/N has finitely many associated primes.

Proof. By using Theorem 3.14, for the Serre class SI,J , we haveHomR(R/I,Ht
I,J

(M)/N) ∈ SI,J . Hence, by Lemma 2.8 (ii), HomR(R/I,Ht
I,J(M)/N) ∈ S0, as

required. �

Corollary 4.2. Let t ∈ N0 be such that ExttR(R/I,M) and Hi
I,J(M) are (I, J)-

minimax R-modules for all i < t. Let N be a submodule of Ht
I,J(M) such

that Supp(Ht
I,J(M)/N) ⊆ V (I) and Ext1R(R/I,N) is (I, J)-minimax. Then

Ht
I,J(M)/N has finite Goldie dimension and so Ass(Ht

I,J(M)/N) is a finite
set; in particular for N = JHt

I,J(M).

Proof. For the first part, apply Remark 3.4 and Proposition 4.1. Since by
[21, Corollary 1.9], Hi

I,J(M)/JHt
I,J(N) is I-torsion, the last part immediately

follows from the first. �

Corollary 4.3.(See [20, Theorem 4]) Let t ∈ N0 be such that ExttR(R/I,M) is
a finite R-module. If Hi

I(M) is I-cofinite for all i < t and Ht
I(M) is minimax.

Proof. In Proposition 3.15 (i), apply S as the class of finite R-modules, and
J = 0. Therefore, HomR(R/I,Ht

I(M)) is finite R-module. Now, use [17,
Proposition 4.1]. �

Corollary 4.4. Let the situation be as in Corollary 4.3. Then the following
statements hold:

(i) If Extt+1
R (R/I,M) is finite, then HomR(R/I,Ht+1

I (M)) and Ext1R(R/I,
Ht

I(M)) are finite and so Ass(Ht+1
I (M)) is a finite set.

(ii) If ExtiR(R/I,M) is finite for all i > 0, then Ext2R(R/I,Ht
I(M)) is finite.

Proof. (i) By Corollary 4.3, we conclude that Ht
I(M) is I-cofinite. So Hi

I(M)
is I-cofinite for all i < t+ 1. Now, using Proposition 3.15 (i),(ii).
(ii) The result follows from (i) and Proposition 3.15 (iii). �
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