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Abstract. This present work will focus on the spectral approach to a
class of third-kind Volterra integral equation using the Boubaker poly-
nomials as a basis function. In this approach, the operational matrix
of fractional integration and the operational matrix of multiplication
are utilized. The strategy that adopts here is expanding the unknown
function in terms of Boubaker polynomials with unknown coefficients.
Then, by using the given operational matrices, the problem under study
is reduced to a problem easier to solve. The error bound of the sug-
gested approximation is investigated. Some examples are implemented
to display the efficiency and applicability of the recommended scheme.
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1 Introduction

The integral equations are widely applied in various fields such as math-
ematics, physics, mechanics of structures and engineering. Many prob-
lems concerning the mechanics of structures can be formulated equiva-
lently as either a differential or integral equation. The integral equations
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are as important as differential equations. In mathematics, an integral
equation is an equation in which an unknown function appears under the
integral sign. Two of the most popular types of integral equations are
Fredholm integral equations and Volterra integral equations. The inte-
gral equation with constant integration limits is called Fredholm integral
equation, while if one limit of integration is a variable, it is a Volterra
integral equation. Applications of Fredholm’s integral equations arise in
boundary issues. Also, Volterra equations are applied in the dynamics
and rheology of constructions. The numerical solution and analysis of
these equations have been investigated by many authors. In this pa-
per, the following third-kind Volterra integral equation (VIEs) will be
considered

τµν(τ) = ρ(τ) +

∫ τ

0
(τ − s)−γκ(τ, s)ν(s)ds τ ∈ I = [0, T ], (1)

where γ ∈ [0, 1), µ > 0, ρ(τ) = τµρ1(τ) and κ are continuous on I and
D := {(τ, s) : τ ∈ I, 0 ≤ s ≤ τ}, respectively. κ for µ + γ ≥ 1 has the
form

κ(τ, s) = sµ+µ−1κ1(τ, s),

where κ1 ∈ C(D). So far, this class of equations has been considered
by many scientists. The first study of the mentioned equation was re-
ported by Evans in 1910 and 1911 [8]. The Existence, uniqueness, and
regularity of solutions to Eq. (1) were carried out by Seyed Allaei et
al. in [3]. They have obtained necessary conditions for converting Eq.
(1) into a cordial VIEs. This model studied in [19, 20]. The collocation
method has been investigated for the third-kind VIEs by Seyed Allaei
et al. in [2] and the multistep collocation method has been explained by
Shayanfard in 2019 [18]. In [13], the authors have introduced a numer-
ical technique based on hat functions to solve the third-kind of VIEs.
Recently, polynomials have received a great deal of attention in solving
integral equations because such problems can be converted into finding
the solution of a system of algebraic equations using these polynomials.
In this way, differential equations can be solved much more simply. In
the current research work, a numerical scheme based on Boubaker poly-
nomials is proposed for solving the third-kind of VIEs. We first expand
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the solution using the Boubaker polynomials with unknown coefficients.
In this process, the integral operator is approximated by the operational
matrix of fractional integral. The advantage of this scheme is that it is
transforming the given equations into a set of algebraic equations by us-
ing the mentioned matrix. The mentioned polynomials have been carried
out to various types of equations. The Boubaker polynomials were first
introduced by Boubaker [5] for solving a one-dimensional formulation of
the heat transfer equation. In [10], the authors reported temperature
3D profiling in cryogenic cylindrical devices. Love’s equation and Boltz-
mann diffusion equation were studied using the Boubaker polynomials
[6, 11]. The numerical study on optimal control problems using the
Boubaker polynomials was undertaken by Kafash et al. [9]. The men-
tioned problems of fractional order were reported by Rabiei [16]. The
application of these polynomials to solve the multi-order fractional dif-
ferential equations was discussed in [7]. It is also worth mentioning that
the integral equations (1) and fractional differential equations are very
similar. In (1), the integral operator alters to the Riemann-Liouville
operator of orde 1− γ, when κ(t, τ) = 1. This paper is arranged as fol-
lows: In Section 2, a brief discussion of definitions and relations of the
fractional calculus are presented. After that, some relevant properties of
the Boubaker polynomials and function approximation are given. Also,
The error bound of the suggested approximations is investigated. The
operational matrix of fractional integration and the operational matrix
of multiplication are provided in Section 3. The proposed approach is
described in Section 4. Section 6 is devoted to some examples to show
the validity of the sugested approach. Finally, the conclusion is given in
the last section.

2 Preliminaries

This section is devoted to some applicable definitions of the fractional
calculus [4, 15]. Then, the shifted Boubaker polynomials and function
approximation are presented [5, 6].

Definition 2.1. The fractional integral for a function ν(t) is given in
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Riemann-Liouville (RL) sense by

Iγ
τ ν(τ) =

1

Γ(γ)

∫ τ

0
(τ − s)γ−1ν(s)ds, γ > 0,

some properties of this operator are given as:

IµIγν(τ) = Iµ+γν(τ),

IµIγν(τ) = IγIµν(τ),

Iγτη =
Γ(η + 1)

Γ(γ + η + 1)
τγ+η.

Definition 2.2. For a function ν(τ), the Caputo definition of fractional
derivative is defined by

Dγ
τ ν(τ) =


1

Γ(n−γ)

∫ τ
0

ν(n)(s)
(τ−s)1+γ−nds, n− 1 < γ < n, n ∈ N,

dn

dτn
ν(τ), γ = n.

The relationship between these two operators ia as follow:

Iγ
τ Dα

τ ν(τ) = ν(τ)−
n−1∑
k=0

ν(k)(0+)
τk

k!
.

Definition 2.3. Boubaker polynomials is given by [5, 6, 7, 14, 17]:

Bi(τ) =

⌊ i
2⌋∑

p=0

(−1)p
[
(i− 4p)

(i− p)
Cp
i−p

]
τ i−2p, i ≥ 0, (2)

where

Cp
i−p =

(i− p)!

p!(i− 2p)!
.

The symbol ⌊.⌋ denotes the floor function.

The Boubaker polynomials can be determined with the following
recurrence relation:

B0(τ) = 1,
B1(τ) = τ,
Bm(τ) = τBm−1(τ)−Bm−2(τ), for m ≥ 2.
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Let ν(τ) ∈ L2[0, 1], then it can be approximated in terms of the Boubaker
polynomials as follows:

ν(τ) =

∞∑
j=0

νjBj(τ),

where νj can be obtained by

νj = Q−1

∫ 1

0
ν(τ)Bj(τ)dτ, j = 0, 1, . . . (3)

in which

Q =

∫ 1

0
Bi(τ)Bj(τ)dτ,

In particular applications, ν(t), we have

νn =
m∑
j=0

νjBj(τ) = V TΦ(τ),

with

Φ(t) = [B0(τ), B1(τ), . . . , Bm(τ)] ,

V T = [ν0, ν1, . . . , νm] ,

Lemma 2.4. Suppose ν ∈ Cm+1 and Sn = Span{B0(τ), B1(τ), . . . ,
Bm(τ)}. If νn = V TΦ(τ) be the best approximation ν out of Sn then

∥ ν(τ)− V TΦ(τ) ∥L2[0,1]≤
ε̂

(m+ 1)!
√
2m+ 3

,

where ε̂ = maxτ∈[0,1]

∣∣∣ν(n+1)(τ)
∣∣∣.

Proof: According to the Taylor expansion, we define

φ(τ) = ν(0) + τν ′(0) +
τ2

2!
ν ′′(0) + . . .+

τm

m!
ν(m)(0),

Also, we know

| ν(τ)− φ(τ)| ≤ ν(m+1)(ζ)
τm+1

(m+ 1)!
, ζ ∈ (0, 1), (4)
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Since V TΦ(τ) is the best approximation for ν(t), then using (4), we have

∥ ν − V TΦ(τ) ∥2L2[0,1] ≤ ∥ ν − φ(τ) ∥2L2[0,1]

=

∫ 1

0
| ν − φ(t) |2 dt

≤
∫ 1

0
[ν(m+1)(ζ)

τm+1

(m+ 1)!
]2dτ

≤ ε̂2

(m+ 1)!2

∫ 1

0
τ2m+2dτ

=
ε̂2

(m+ 1)!2(2m+ 3)
,

by taking the square roots we have the upper bound and this complete
proof.

3 The Operational Matrix

In this section, we will consider the procedure of obtaining the oper-
ational matrices of fractional integral and multiplication for Boubaker
polynomials [7, 16].

3.1 The operational matrix of fractional integration

The RL integral of Φ(t) can be approximated as

Iγ
τ Φ(τ) ≃ P γΦ(τ),

where P γ is an (m + 1) × (m + 1) matrix which is called the opera-
tional matrix of fractional integration. By utilizing the definition of the
Boubaker polynomials (2) for i ≥ 2 and by appling the RL integral, we
yield

Iγ
τ Bi(τ) =

⌊ i
2⌋∑

p=0

(−1)p
[
(i− 4p)

(i− p)
Cp
i−p

]
Iγ
τ τ

i−2p

=

⌊ i
2⌋∑

p=0

(−1)p
(i− p− 1)!(i− 4p)

p! Γ(i− 2p+ γ + 1)
τ i−2p+γ . (5)
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Now we approximate τ i−2p+γ in terms of the Boubaker polynomials as

τ i−2p+γ ≃
m∑
q=0

cp,qBq(τ), (6)

by substituting Eq. (6) in Eq. (5), we get

Iγ
τ Bi(τ) ≃

⌊ i
2⌋∑

p=0

(−1)p
(i− p− 1)!(i− 4p)

p! Γ(i− 2p+ γ + 1)

m∑
q=0

cp,qBq(τ)

=

m∑
q=0

⌊ i
2⌋∑

p=0

θi,q,p

Bq(τ), (7)

where θi,q,p is

θi,q,p = (−1)p
(i− p− 1)!(i− 4p)

p! Γ(i− 2p+ γ + 1)
cp,q,

and rewrite Eq. (7) for i = 2, · · · ,m

Iγ
t Bi(t) ≃

⌊
i
2⌋∑

p=0

θi,0,p,

⌊ i
2⌋∑

p=0

θi,1,p, · · · ,
⌊ i

2⌋∑
p=0

θi,m,p

Φ(τ), (8)

for i = 0, 1

Iγ
τ Bi(τ) =

1

Γ(γ + i+ 1)
τγ+i, i = 0, 1,

according Eq. (3), we can express tγ+i in terms of Boubaker polynomials
as

τγ+i ≃
m∑
q=0

Vi,qBq(τ), (9)
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A combination of Eqs. (8) and (9) leads

P γ =



V0,0

Γ(γ+1)
V0,1

Γ(γ+1) . . .
V0,m

Γ(γ+1)
V1,0

Γ(γ+2)
V1,1

Γ(γ+2) . . . Vmm
Γ(γ+m)∑1

p=0 θ2,0,p
∑1

p=0 φ2,1,p · · ·
∑1

p=0 θ2,m,p

...
...

. . .
...∑⌊m

2 ⌋
p=0 θm,0,p

∑⌊m
2 ⌋

p=0 θm,1,p · · ·
∑⌊m

2 ⌋
p=0 θm,m,p


.

where P γ is the operational matrix of fractional integration for Boubaker
polynomials.

3.2 The operational matrix of multiplication

Suppose V is an arbitrary vector, then we have the following form as:

V TΦ(τ)ϕ(τ)T ≃ Φ(τ)T Ṽ , (10)

where V̂ is the operational matrix of multiplication for the Boubaker
polynomials. Now, we approximate νTΦ(x)ϕ(t)T in terms of the
Boubaker polynomials

V TΦ(τ)ϕ(τ)T = [ν0(τ), . . . , νm(τ)],

in which

νi(τ) ≃
m∑
j=0

ν̃i,jBj(τ) = Ṽi
T
Φ(τ), (11)

where
Ṽi = [ν̃i,0, ν̃i,1, . . . , ν̃i,m]T .

Now, So by considering Vi = [ν0i , ν
1
i , . . . , ν

m
i ]T and

νki = ⟨νi(τ)Bk(τ)⟩ ,
by using (11), we yeild

νki =

〈
m∑
j=0

ν̃i,jBj(τ), Bk(τ)

〉
=

m∑
j=0

ν̃i,j ⟨Bj(τ), Bk(τ)⟩ ,

consequently, we have

Ṽi
T
= V T

i Q−1,

and therefore, the operational matrix of multiplication was obtained.
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4 Numerical Scheme Constructing the Method

This section is devoted to a numerical scheme based on Boubaker poly-
nomials to solve (1). To this end, we exapand the following functions in
terms of Boubaker polynomials to obtain numerical solution of Eq. (1)
as

τµ ≃ χTΦ(τ), (12)

ν(τ) ≃ V TΦ(τ), (13)

ρ(τ) ≃ ΛTΦ(τ), (14)

κ(τ, s) ≃ ΦT (τ)KΦ(s), (15)

where V = [ν0, ν1, . . . , νm] is an unknown vector to be determined. By
replacing Eq. (12)-(15) in Eq. (1), we yield

V TΦ(τ)ΦT (τ)χ ≃ ΛTΦ(τ) + ΦT (τ)K

∫ τ

0
(τ − s)−γΦ(s)ΦT (s)V ds. (16)

Using (5) and (10), Eq. (16) can be written as

V T χ̃Φ(τ) ≃ ΛT +ΦT (τ)KṼ

∫ τ

0
(τ − s)−γΦ(s)ds

= ΛT + Γ(1− γ)ΦT (τ)KṼ I1−γ
t Φ(τ)

= ΛT + Γ(1− γ)ΦT (τ)KṼ P 1−γΦ(τ).

Therefore, we get to the following system

V T χ̃− ΛT − Γ(1− γ)ΦT (t)KṼ P 1−γ = 0. (17)

Then, the system obtained from Eq. (17), can be solved significantly
simpler to evaluate the unknown vectors V . Consequently, we can de-
termine the approximate solution of ν(t) from Eqs. (13).

5 Numerical Examples

In this section, we have implemented the suggested approach in the
Section 4 for some examples.
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Example 5.1. The first example to be considered is a particular case
of the third-kind VIEs as the following form [2, 13]

τ
2
3 ν(t) = ρ(τ) +

∫ τ

0

√
3

3π
s

1
3 (τ − s)−

2
3 ν(s)ds τ ∈ I = [0, 1], (18)

where

ρ(τ) = τ
47
12

(
1−

Γ(13)Γ(
55
12)

π
√
3Γ(5512)

)
.

For this problem, there exist ν(τ) = τ
13
4 . Eq. (18) is a version

of an Abel-type nonlinear equation related to Ligthill’s model for the
temperature distribution on the surface of a projectile moving through a
laminar layer [1, 12]. We applied the suggested method for this example.
Table 1 demonstrates the absolute error of ν(τ) at different values of m.
The exact and numerical solutions of ν(t) for m = 4, 8 are compared in
Fie. 1. Fig. 2 demonstrates the absolute error of ν(τ) for m = 10.

Table 1: Absolute errors of ν(τ) at m = 4, 10 for Example 5.1.

τ m = 4 m = 10

0.1 7.22950× 10−5 7.39394× 10−6

0.2 1.79692× 10−4 1.60666× 10−5

0.3 5.56510× 10−4 2.35453× 10−5

0.4 2.25499× 10−4 1.99577× 10−5

0.5 2.89103× 10−4 1.06700× 10−5

0.6 7.89823× 10−5 3.51947× 10−5

0.7 3.19913× 10−4 2.73020× 10−5

0.8 5.80912× 10−4 9.26617× 10−6

0.9 9.83001× 10−5 3.54259× 10−5

1.0 2.04156× 10−2 3.14177× 10−6
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Figure 1: Comparison of the exact solution and numerical solutions
for Example 5.1
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Figure 2: Absolute error of ν(τ) at m = 10 for Example 5.1

Example 5.2. The another example to be considered is used in the
modelling of some heat conduction problems with mixed-type boundary
conditions [2, 13]

τν(τ) =
6

7
t3
√
τ +

∫ τ

0

1

2
ν(s)ds, τ ∈ I = [0, 1],

For this problem, there exist ν(τ) = τ
5
2 . We applied the suggested
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method for this example. Table 2 displays the absolute error of ν(τ) at
different values of m. The obtained numerical solutions are compared
with the exact solution for m = 4, 8 in Fie. 3. Fig. 4 demonstrates the
absolute error of ν(τ) for m = 12.

Table 2: Absolute errors of ν(τ) at m = 4, 8, 12 for Example 5.1.

τ m = 4 m = 8 m = 12

0.1 6.75453× 10−5 1.67833× 10−5 2.16633× 10−6

0.2 3.52039× 10−4 1.35238× 10−5 1.43583× 10−6

0.3 4.01156× 10−4 8.96428× 10−5 1.11726× 10−6

0.4 4.15311× 10−4 9.60197× 10−6 9.99087× 10−7

0.5 3.40305× 10−4 8.26090× 10−6 9.04193× 10−7

0.6 2.44923× 10−4 6.53335× 10−6 7.80942× 10−7

0.7 2.06809× 10−4 7.04011× 10−6 7.85543× 10−7

0.8 2.45683× 10−4 6.50333× 10−6 6.70279× 10−7

0.9 2.80168× 10−5 5.49367× 10−6 6.67733× 10−7

1.0 9.79413× 10−5 3.84593× 10−6 4.88508× 10−7
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Figure 3: Comparison of the exact solution and numerical solutions
for Example 5.2
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Figure 4: Absolute error of ν(τ) at m = 12 for Example 5.2

Example 5.3. As final example, we consider the following the third-
kind VIEs [13]

τ
3
2 ν(τ) = ρ(τ) +

∫ τ

0

√
2

2π
s(τ − s)−

1
2 ν(s)ds, τ ∈ [0, 1],

where

ρ(τ) = τ
33
10

(
1−

Γ(195 )√
2πΓ(4310)

)
.

where the exact solution is ν(τ) = τ
9
5 . So like the previous process,

we applied the suggested method for this example. Table 3 displays the
absolute error of ν(τ) at different values of m. In Fie. 5, the numerical
results at m = 4, 8 were compared with the exact solution for validating
the method.

6 Conclusion

In this paper, the spectral method was investigated for solving the third-
kind VIEs. The proposed technique was presented to find the numerical
solution of the mentioned equations based on the Boubaker polynomials.
First, the operational matrices of fractional integration and multiplica-
tion were achieved. Then, the unknown function in terms of Boubaker



14 H. TAJADODI

Table 3: Absolute errors of ν(τ) at m = 4, 10 for Example 5.3.

τ m = 4 m = 10

0.1 1.75262× 10−3 9.92046× 10−4

0.2 4.27859× 10−4 3.21049× 10−4

0.3 5.73541× 10−4 2.23037× 10−5

0.4 8.65173× 10−4 2.15771× 10−5

0.5 3.31430× 10−4 1.37100× 10−5

0.6 3.92188× 10−4 3.51305× 10−5

0.7 1.07391× 10−4 8.16281× 10−5

0.8 2.68400× 10−4 5.90158× 10−5

0.9 2.70037× 10−4 4.12784× 10−5

1.0 7.58123× 10−4 7.91058× 10−5
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Figure 5: Comparison of the exact solution and numerical solutions
for Example 5.3

polynomials was approximated. Finally, the mentioned problem has
been transformed to a problem easier by using the aforementioned ma-
trices. Some numerical examples were considered to show the accuracy
of the proposed method. Moreover, the numerical results were compared
with the exact solutions. It is apparent from the obtained solutions that
the numerical approximations are confirmed in excellent agreement with
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the exact solutions.
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