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1. Introduction

We consider a class of singularly perturbed two-point singular boundary
value problem of the form

εy′′(x) + a(x)y′(x) + b(x)y(x) = f(x), x ∈ [0, 1], (1)

subject to the boundary conditions:

y(0) = α, y(1) = β, α, β ∈ < (2)

where ε is a small positive parameter and a(x) > 0, b(x) and f(x) are
bounded continuous functions.
If a(x), b(x), f(x) ∈ C[0, 1], then the problem (1) with the boundary con-
ditions (2) posses unique solution y(x) ∈ C[0, 1]. In general, as ε tends
to zero, the solution y(x) may exhibit exponential boundary layers at
left-end of the interval [0, 1].
These problems arise frequently in many areas of science and engineering
such as heat transfer problem with large Peclet numbers, Navier-Stokes
flows with large Reynolds numbers, chemical reactor theory, aerody-
namics, reaction-diffusion process, quantum mechanics, optimal control
etc. Due to the variation in the width of the layer with respect to the
small perturbation parameter ε, several difficulties are experienced in
solving the singular perturbation problems using standard numerical
methods [28].
Several numerical methods have been developed for the numerical solu-
tion of singularly perturbed boundary value problems [6],[7], in partic-
ular to the problems having the boundary layers at one or both ends
of the interval. Boglaev [5], Schatz and Wahlbin [29] used the finite ele-
ment technique to solve such types of problems. Miller [20] gave sufficient
conditions for the first-order uniform convergence of three-point differ-
ence scheme. Cen et al. [6] presented hybrid finite difference scheme
with Shishkin mesh for solving a system of singularly perturbed ini-
tial value problems. While Stojanovic [30] gave an optimal difference
scheme by considering the quadratic interpolating splines instead of
piecewise constants on each subinterval [xi−1, xi] as an approximation
for the coefficient f(x). Surla and Jerkovic [31] considered the spline
collocation method for the solution of singularly perturbed boundary



A NEW ALGORITHM BASED ON THE HOMOTOPY ... 31

value problems. Rao and Kumar [23] gave an optimal B-spline collo-
cation method for solving singularly perturbed boundary value prob-
lems. Loghmani and Ahmadinia [8] develop a numerical technique for
singularly perturbed boundary value problems using B-spline functions
and least square method. Dua and Kong [7] used the new Liouville-Green
transform to solve a singularly perturbed second-order ordinary differen-
tial equation. Attili [3] used Pade approximation to obtain the solution
of singularly perturbed two point boundary value problems. Also, Surla
etal. [32] used tension spline to solve the singularly perturbed boundary
value problems.
The concept of replacing singularly perturbed two-point boundary value
problem by an initial value problem is presented by Reddy et al. [15],
[25], [26]. Reddy and Chakravarthy [27] have extended boundary value
technique to solve general singularly perturbed two-point boundary value
problems using trapezoidal formula integration in the forward direction
with left-layer boundary problems and in backward direction with right-
layer boundary problems, and both formulas for interior or two boundary
layers, where, their method is iterative on the deviating argument.
In this paper, we present a new algorithm based on HPM to find the
approximate solution of singularly perturbed two-point boundary value
problems with left-layer. The HPM was first proposed by He [9], [10],
[4], [16], for solving functional equations. The method is based on ho-
motopy in topology and provides an analytical approximate solution for
functional equations. In recent years, this method has been efficiently
employed to solve a wide range of linear and nonlinear problems in ap-
plied sciences [1].

The traditional perturbation techniques are based on the assumption
that a small parameter must exist, which is too over-strict to find wide
application, for most nonlinear equations have no small parameter at
all. Some new techniques have been proposed to eliminate the small pa-
rameter assumption[12], such as the homotopy analysis method (HAM)
proposed by Liao [17, 18].

In [13], a comparison of HPM and HAM was made, such that the HPM
was revealed more powerful than the HAM. Furthermore, the HPM was
further developed by applying the modern perturbation methods. The
HAM, different from the perturbation methods, can be categorized into
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a generalized Taylor expansion method. He in [13] explained that the
HPM is different from the HAM and the difference between them is
clear just as the Taylor series method is different from the perturbation
methods. He mentioned that it is clear HAM is a generalized Taylor
series method, searching for an infinite series solution, in order to enlarge
the convergence region but HPM is clearly a new perturbation method,
searching an asymptotic solution with few terms and no convergence
theory is needed. But, Liao proved that the HPM is a special case of the
HAM by special choice of the free parameters in this method.
This paper is organized as follows: In Section 2, we remind the classical
homotopy perturbation method. In Section 3, we present a new algo-
rithm to solve the above singularly perturbed boundary value problem
based on the HPM and applying the Laplace transformation. The con-
vergence and error bound of the proposed method are proved in Section
4. Finally, in Section 5, the method is applied to solve two sample exam-
ples to show the efficiency and importance of the method. Conclusion
remarks are mentioned in Section 6.

2. Homotopy Perturbation Method

To illustrate the basic ideas of HPM, we consider the following equation:

A(y)− f(x) = 0, x ∈ Ω, (3)

with boundary condition(s):

B

(
y,
∂y

∂n

)
= 0, x ∈ Γ, (4)

where A is a general differential operator, B a boundary operator, f(x)
a known analytical function and Γ is the boundary of the domain Ω.
The operator A can be generally decomposed into two parts L and N ,
where L is linear, while N is nonlinear. Therefore, Equation (3) can be
written as follows:

L(y) +N(y)− f(x) = 0. (5)
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We construct a homotopy of (3), u(x, p) : Ω×[0, 1] −→ <, which satisfies

H(y, p) = (1− p)[L(y)− L(y0)] + p[A(y)− f(x)] = 0, x ∈ Ω, (6)

which is equivalent to

H(y, p) = L(y)− L(y0) + pL(y0) + p[N(y)− f(x)] = 0, (7)

where p ∈ [0, 1] is an embedding parameter and y0 is an initial approxi-
mation which satisfies the boundary condition(s) (4). It follows from (7)
that

H(y, 0) = L(y)− L(y0) = 0 and H(y, 1) = A(y)− f(x) = 0. (8)

Thus, the changing process of p from 0 to 1 is just that of y(x, p) from
y0(x) to y(x). In topology, this is called deformation and L(y) − L(y0)
and A(y)−f(x) are called homotopic. Here the embedding parameter is
introduced much more naturally, unaffected by artificial factors; further
it can be considered as a small parameter for 0 6 p 6 1. So it is very
natural to assume that the solution of (6) can be expressed as

y(x, p) = u0(x) + pu1(x) + p2u2(x) + · · · . (9)

By substituting (9) into (7) and rearranging the resultant in terms of
ascending powers of p, an infinite number of differential equations, is
achieved. This set of almost simple differential equations with proper
initial conditions is then solved. Finally an approximate solution of (3)
is written as:

y ≈
m∑

i=0

ui = u0 + u1 + · · ·+ um. (10)

The convergence of series (9) as p→ 1 has been considered by He in [9]
and [14].

3. Main Idea

In this section, we shall introduce a reliable new algorithm to solve
singularly perturbed boundary value problem (1) by using HPM and
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Laplace transformations. The HPM will be applied in a straightforward
manner, but with a new choice for the differential operator L = εy′′+a?y′

where a? = a(0).
Now, we construct a homotopy which satisfies in (7) and

N (y) = (a(x)− a?) y′ + b(x)y. (11)

Suppose the solution of (1) has the form,

y(x) = u0(x) + pu1(x) + p2u2(x) + · · · . (12)

Substituting (12) into (7) and collecting terms with the same powers of
p, following sets of linear differential equations can be obtained:

p0 : εu′′0 + a?u′0 − L(y0) = 0, u0(0) = α, u′0(0) = A, (13)
p1 : εu′′1 + a?u′1 + L(y0) +N(u0)− f(x) = 0, u1(0) = u′1(0) = 0, (14)
pi : εu′′i + a?u′i +N(ui−1) = 0, ui(0) = u′i(0) = 0, i = 2, 3, · · · . (15)

The initial approximation y0(x) can be freely chosen. Here we set
y0(x) = α+Ax, from (13), we have

u0(x) = α+Ax, (16)

where A is an unknown real number.
Solving linear equations (14) and (15), by using Laplace transformations,
we obtain the following results:

u1(x) =
∫ x

0
(A+N(u0)(t)− f(t))

(
e−

a?(x−t)
ε − 1

)
dt, (17)

ui(x) =
∫ x

0
N(ui−1)(t)

(
e−

a?(x−t)
ε − 1

)
dt, i = 2, 3, · · · . (18)

By using the relations (11) and (18) for i = 2, 3, · · ·
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ui(x) =
∫ x

0
(a(t)− a?)

(
e−

a?(x−t)
ε − 1

)
u′i−1(t)dt

+
∫ x

0
b(t)

(
e−

a?(x−t)
ε − 1

)
ui−1(t)dt. (19)

Integration by parts gives

ui(x) = (a(t)− a?)
(
e−

a?(x−t)
ε − 1

)
ui−1(t)|x0

+
a?

ε

∫ x

0
(a(t)− a?)e−

a?(x−t)
ε ui−1(t)dt

−
∫ x

0
a′(t)

(
e−

a?(x−t)
ε − 1

)
ui−1(t)dt

+
∫ x

0
b(t)

(
e−

a?(x−t)
ε − 1

)
ui−1(t)dt. (20)

Since

(a(t)− a?)
(
e−

a?(x−t)
ε − 1

)
ui−1(t)|x0 = 0,

then, for i = 2, 3, · · ·

ui(x) =
a?

ε

∫ x

0
(a(t)− a?)e−

a?(x−t)
ε ui−1(t)dt

+
∫ x

0

(
b(t)− a′(t)

)(
e−

a?(x−t)
ε − 1

)
ui−1(t)dt. (21)

We can approximate the solution y(x) by the finit series:

φn(x) =
n−1∑
i=0

ui(x). (22)

In most cases, 15 or 20 terms of the series give a satisfactory approxi-
mation of the solution. Consider the components ui(x), i > 0 are deter-
mined, the solution in a series form is constructed using (22), where the
constant A = y′(0) is as yet undetermined. We should choose A, such
that φn satisfies the boundary conditions. So, to determine the unknown
constant A, we impose the boundary condition at x = 1 on φn. This will
lead to linear algebraic equation for each approximant φn, which we
solve by means of computational Maple Package.
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4. Convergence of the Method

In this section, the convergence conditions of the proposed method for
the differential equation (1) is analyzed. For any function ui, we define
the following norm

‖ui‖ = max
06x61

|ui(x)|.

Theorem 4.1. Let max06x61 |a(x)−a?| = M1, max06x61 |b(x)−a′(x)| =
M2 and M? = max {M1,M2}, for all x ∈ [0, 1] and i = 3, 4, · · ·
(a) if M1 = 0 and M2 6 1 then ‖ui‖ 6 λε‖ui−1‖ where 0 < λε < 1 for
any 0 < ε < a?.
(b) if M1 6= 0 and M? 6 1

2 then ‖ui‖ 6 λ?
ε‖ui−1‖ where 0 < λ?

ε < 1 for
any 0 < ε < a?.

Proof. For i = 3, 4, · · · , from (21), the following inequalitis holds

|ui(x)| 6
∣∣∣a?

ε

∫ x

0
(a(t)− a?)e−

a?(x−t)
ε ui−1(t)dt

∣∣∣
+

∣∣∣ ∫ x

0

(
b(t)− a′(t)

)(
e−

a?(x−t)
ε − 1

)
ui−1(t)dt

∣∣∣
6

a?

ε

∫ x

0
|(a(t)− a?)| |ui−1(t)| e−

a?(x−t)
ε dt

+
∫ x

0

∣∣(b(t)− a′(t))∣∣ |ui−1(t)|
(

1− e−
a?(x−t)

ε

)
dt

6
a?

ε
M1‖ui−1‖

∫ x

0
e−

a?(x−t)
ε dt

+ M2‖ui−1‖
∫ x

0

(
1− e−

a?(x−t)
ε

)
dt

= ‖ui−1‖
{
M1

(
1− e−

a?x
ε

)
+
M2

a?

(
εe−

a?x
ε + a?x− ε

)}
6 ‖ui−1‖

{
M1

(
1− e−

a?

ε

)
+M2

(
1 +

ε

a?
e−

a?

ε − ε

a?

)}
. (23)

(a) If M1 = 0 and M2 6 1 then from (23), |ui(x)| satisfy the following
bound

|ui(x)| 6 ‖ui−1‖
(
1 +

ε

a?
e−

a?

ε − ε

a?

)
.
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Set λε = 1 + ε
a? e

−a?

ε − ε
a? , since 0 < ε < a? then it is clear 0 < λε < 1.

This completes the proof of case (a).
(b) If M1 6= 0 then from (23), |ui(x)| satisfy the following bound

|ui(x)| 6 M?‖ui−1‖
{

2 +
( ε
a?
− 1
)
e−

a?

ε − ε

a?

}
.

Set λ?
ε = M?

{
2 +

(
ε

a? − 1
)
e−

a?

ε − ε
a?

}
, Since 0 < ε < a? and M? 6 1

2 ,

then it is clear 0 < λ?
ε < 1. This completes the proof of case (b). �

Theorem 4.2. The series solution (22) of problem (1) using the HPM
converges if one of the cases (a) or (b) in Theorem 4.1 is satisfied.

Proof. Denote as (C[0, 1], ‖.‖) the Banach space of all continuous func-
tions on [0, 1]. Define the sequence of partial sums {Sn}. We show that
{Sn}∞n=0 is a Cauchy sequence in the Banach space if the case (a) in
Theorem 4.1 is satisfied. For this purpose, we have

‖Sn+1 − Sn‖ = ‖un+1‖ 6 λε‖un‖ 6 λ2
ε‖un−1‖ 6 · · · 6 λn−1

ε ‖u2‖, n > 2. (24)

Therefore, for every n, j ∈ N,n > j > 2,

‖Sn − Sj‖ = ‖ (Sn − Sn−1) + (Sn−1 − Sn−2) + · · ·+ (Sj+1 − Sj) ‖
6 ‖ (Sn − Sn−1) ‖+ ‖ (Sn−1 − Sn−2) ‖+ · · ·+ ‖ (Sj+1 − Sj) ‖
6 λn−2

ε ‖u2‖+ λn−3
ε ‖u2‖+ · · ·+ λj−1

ε ‖u2‖

=
1− λn−j

ε

1− λε
λj−1

ε ‖u2‖. (25)

Since 0 < λε < 1, we have
(
1− λn−j

ε

)
< 1, then

‖Sn − Sj‖ 6
λj−1

ε

1− λε
‖u2‖. (26)

Since u1(x), (a(x)− a?) and (b(x)− a′(x)) are bounded for x ∈ [0, 1], then
‖u2‖ <∞, so, as j −→ ∞, then ‖Sn − Sj‖ −→ 0. We conclude that {Sn} is a
Cauchy sequence in C[0, 1], so the series converges and the proof is complete. �

Lemma 4.3. The maximum absolute truncation error of the series solution
(22) to problem (1) is estimated to be ‖y(x)−φj(x)‖ = ‖y(x)−

∑j−1
k=0 uk(x)‖ 6

λj−2
ε

1−λε
‖u2‖ for j > 2.
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Proof. From inequality (26) for j > 2 we have

‖Sn − φj‖ = ‖Sn − Sj−1‖ 6
λj−2

ε

1− λε
‖u2‖. (27)

As n −→∞ then Sn −→ y(x), so

‖y(x)− φj(x)‖ 6
λj−2

ε

1− λε
‖u2‖. (28)

This completes the proof. �

Remark 4.4. As ε → 0, λε and λ?
ε tend to one, then the rate of convergence

series (22) is decreased. This lemma will be illustrated obviously in the Example
(5.2) in the next section.

5. Numerical Examples

To demonstrate the applicability of the proposed method, two linear singular
perturbation problems with left-end boundary layer are solved. The following
examples have been chosen because they have been widely discussed in the
literature and the approximate solutions are available for comparison. The
proposed method in section 3. can be done by using the following algorithm:

Algorithm 1:
Step 1. Set u0(x) = α+Ax.
Step 2. calculate the u1(x), by applying the Eq. (17).
Step 3. for i from 2 to n do
calculate the ui(x), by applying the Eq. (21),
end do.
Step 4. Set φn(x) =

∑n−1
i=0 ui(x) as the approximate of the exact solution.

Step 5. Calculate A, by solving φn(1) = β.
The algorithm 1 is performed by Maple 13 with 500 digits precision.

Example 5.1. Consider the following (SPBVP) [2], [4], [8], [21]

εy′′(x) + y′(x)− y(x) = 0, x ∈ [0, 1] (29)

with boundary conditions y(0) = 1 and y(1) = 1. The exact solution is given
by

y(x) =
(eη2 − 1) eη1x + (1− eη1) eη2x

eη2 − eη1
(30)
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where η1 = −1+
√

1+4ε
2ε and η2 = −1−

√
1+4ε

2ε .

Solution: In order to solve the equation (29) using algorithm 1, we set

a? = 1, N(y) = −y, f(x) = 0, α = 1, β = 1.

In this example, M1 = 0 and M2 = 1 according to theorem 4.2, series obtained
by algorithm 1 is convergent to the exact solution (30) for each 0 < ε < 1. In
view of steps 1 and 2, we get

u0(x) = 1 +Ax,

u1(x) =
∫ x

0

(A− 1−At)
(
e−

(x−t)
ε − 1

)
dt = εe−

x
ε (1−A−Aε)

+ ε (A+Aε−Ax− 1) (31)

+ x

(
1 +

1
2
Ax−A

)
.

Other components are determined similarly. Further we compute y(x) for var-
ious value of ε.

For ε = 10−2, y (x) ≈ l1 = φ15(x) =
99
100
− 1

100
Ax

+x− 101
10000

e−100 xA+ · · · ,

For ε = 10−3, y (x) ≈ l2 = φ15(x) =
999
1000

− 1
1000

Ax

+x− 1001
1000000

e−1000 xA+ · · · , (32)

For ε = 10−4, y (x) ≈ l3 = φ15(x) =
9999
10000

− 1
10000

Ax

+x− 10001
100000000

e−10000 xA+ · · · .

To determine A, we impose the boundary condition at x = 1, we find

φ15(1) = 1, then

 A = −63.1040528 for ε = 10−2

A = −632.016473 for ε = 10−3

A = −6321.10189 for ε = 10−4
(33)
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Figure 1: Dash spaced: |l1−y|, Dash doted : |l2−y| and solid line : |l3−y| for Example 5.1.

-

The numerical results are given in Table 1 for  = 10−3 and  = 10−4 and
also it shows the numerical results in [8] obtained by using finite differences
method (FDM).The comparison between the results shows the efficiency and
accuracy of the proposed method. In Fig. 1, we plot the absolute error of the
approximate solutions l1, l2, l3 and y.

Table 1: Numerical results of Example 5.1.

Example 5.2. Consider the variable coefficient (SPBVP) [2], [8], [16]

y(x) +

1− x

2


y(x)− 1

2
y(x) = 0, x ∈ [0, 1] (34)

with boundary conditions y(0) = 0 and y(1) = 1. The exact solution is given
by

y(x) =
e

(x−1)(x−3)
4


erf


x−2
2
√



+ erf


1√




erf

1√



− erf


1
2
√


 . (35)

Example 5.1 Consider the following (SPBVP) [2], [4], [8], [21]

y(x) + y(x)− y(x) = 0, x ∈ [0, 1] (29)

with boundary conditions y(0) = 1 and y(1) = 1. The exact solution is given by

y(x) =
(eη2 − 1) eη1x + (1− eη1) eη2x

eη2 − eη1
(30)

where η1 = −1+
√
1+4

2 and η2 = −1−
√
1+4

2 .

Solution: In order to solve the equation (29) using algorithm 1, we set

a = 1, N(y) = −y, f(x) = 0, α = 1, β = 1.

In this example, M1 = 0 and M2 = 1 according to theorem 4.2, series obtained by algorithm 1 is
convergent to the exact solution (30) for each 0 <  < 1. In view of steps 1 and 2, we get

u0(x) = 1 +Ax,

u1(x) =
 x

0

(A− 1−At)

e−

(x−t)
 − 1


dt = e−

x
 (1−A−A) +  (A+A−Ax− 1) (31)

+ x


1 +

1
2
Ax−A


.

Other components are determined similarly. Further we compute y(x) for various value of .

For  = 10−2, y(x) ≈ l1 = φ15(x) =
99
100

− 1
100

Ax+ x− 101
10000

e−100 xA+ · · · ,

For  = 10−3, y(x) ≈ l2 = φ15(x) =
999
1000

− 1
1000

Ax+ x− 1001
1000000

e−1000 xA+ · · · , (32)

For  = 10−4, y(x) ≈ l3 = φ15(x) =
9999
10000

− 1
10000

Ax+ x− 10001
100000000

e−10000 xA+ · · · .

To determine A, we impose the boundary condition at x = 1, we find

φ15(1) = 1, then






A = −63.1040528 for  = 10−2

A = −632.016473 for  = 10−3

A = −6321.10189 for  = 10−4
(33)

The numerical results are given in Table 1 for  = 10−3 and  = 10−4 and also it shows the numerical
results in [8] obtained by using finite differences method (FDM).The comparison between the results
shows the efficiency and accuracy of the proposed method. In Fig. 1, we plot the absolute error of
the approximate solutions l1, l2, l3 and y.

|l2 − y| by absolute error of the FDM |l3 − y| by absolute error of the FDM
x proposed method in [8],  = 10−3, h = 10−2 proposed method in [8],  = 10−4, h = 10−2

0.1 1.57e-10 1.45e-3 1.92e-9 1.78e-3
0.2 1.74e-10 1.43e-3 2.12e-9 1.76e-3
0.4 2.12e-10 1.31e-3 2.59e-9 1.61e-3
0.6 2.59e-10 1.06e-3 3.12e-9 1.30e-3
0.8 3.03e-10 6.50e-4 3.70e-9 7.97e-4
0.9 2.72e-10 3.58e-4 3.31e-9 4.41e-4

Tabel 1. Numerical results of Example (5.1)

7
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Figure 1: Dash spaced: |l1−y|, Dash doted : |l2−y| and solid line : |l3−y| for Example 5.1.

-

The numerical results are given in Table 1 for  = 10−3 and  = 10−4 and
also it shows the numerical results in [8] obtained by using finite differences
method (FDM).The comparison between the results shows the efficiency and
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Solution: Algorithm 1 is used to solve this equation too. From (34), we set

a? = 1, N(y) = −1
2
xy′ − 1

2
y, f(x) = 0, α = 0, β = 1.

In this example, M? = 1
2 , and according to theorem 4.2, series obtained by

algorithm 1 is convergent to the exact solution (35) for every 0 < ε < 1. The
numerical results are given in table 2 for ε0 = 2−3, ε1 = 2−7 and ε2 = 2−10.

Table 2: Maximum norm of the errors for Example 5.2.
ε0 = 2−3 ε1 = 2−7 ε2 = 2−10

n ‖φn(x)− y(x)‖∞ ‖φn(x)− y(x)‖∞ ‖φn(x)− y(x)‖∞
10 1.0119171533131E-5 4.380242442735E-2 2.739613363280E-1
20 7.888343074869E-15 1.927221406334E-5 6.289384083300E-4
30 5.177465259961E-26 2.815776213199E-9 5.267458188788E-7
40 1.384504734416E-38 1.802919238601E-13 3.748724821379E-10

In addition, we have

λ?
ε0 = 0.9373532351,
λ?

ε1 = 0.9960937500, (36)
λ?

ε2 = 0.9995117190.

By comparison between the obtained results in (36), we conclude that the rate
of convergence of the proposed method, for ε0 is higher than ε1 and ε2.

6. Conclusions

In this paper, the singularly perturbed two-point boundary layer problems
have been considered by means of the homotopy perturbation technique and
Laplace transformation. The success of the method has later been tested by
applying it to two singularly perturbed cases taken from the literature. Under
some conditions, the convergence of the proposed method, guaranteed by a
mathematical proof of convergence. The presented approach has clearly shown
its advantage over the recently introduced conventional numerical methods for
the singularly perturbed boundary value problems.
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