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Abstract. We show how we can obtain the general solution of rank
one perturbed linear Diophantine systems (A + uv” )z = b using only
information from the application of the Hermite normal form algorithm
to the corresponding linear Diophantine system Az = b. The empirical
results show that use of the proposed algorithm may result in saving
considerable computing time.
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1. Introduction

Let A= (ay, - ,am)T, aj € Z" for j =1,...,m. Consider the follow-
ing system of linear Diophantine equations:

Ax=b, AeZzZ™" xe€Z", beZ™, m<n. (1)
T
7
ith row of the coefficient matrix A, and b; is the ith component of the

System (1) can be written as a; x = b;, for i = 1,...,m, where aiT is the
right hand side vector b. In the following, we assume that rank(A) = m.
The null space of A is denoted by N(A) and consists of all vectors
x € R"™ satisfying Az = 0. If we let N,(A) = N(A)N Z™, then it can be
shown that N,(A) is a free module over Z, with invariant basis number
property, meaning that N,(A) has a linearly independent generating set
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and all linearly independent generating sets of N,(A) have the same
cardinality, called the rank of N,(A). We say that an integer matrix N
generates N, (A), if the the columns of N generate N,(A). If the columns
of N are linearly independent, then N is called a basis for N,(A). A
vector x, € Z" satisfying aiTa:p =b;, 1 < i < m, is called a particular
solution of (1). Let v € Z™, N € Z™™  y € Z™ ny € Z. Note that if v
is a particular solution of (1) and N generates N,(A), then x = v+ Ny
is the general solution of (1). This means that z, is a particular solution
of (1) if and only if z, = v + Ny, for some y, € Z".

Solving linear Diophantine systems has many applications in mathe-
matics, engineering and computer science such as graph theory, integer
programming, design of integrated circuits for radio processing, market
split problem, etc. Some algorithms for solving linear Diophantine sys-
tems were discussed in Barnette and Pace [6], Blankinship [7, 8], Bradley
[9] and Frumkin [18]. The first polynomial time algorithm for computing
the Hermite normal form of an integer matrix was given by Kannan and
Bachem [22]. Chou and Collins [10] made use of Kannan and Bachem’s
ideas to present a polynomial time algorithm named LDSMKB for solv-
ing systems of linear Diophantine equations. They also developed an al-
gorithm based on Rosser’s idea [30], the so-called LDSSBR, and showed
numerically that the LDSSBR was more successful than the LDSMKB
in controlling the growth of intermediate results. Esmaeili et al. [15] pre-
sented a class of algorithms, the so-called EMAS algorithms, for solving
systems of linear Diophantine equations based on the ABS algorithms
2, 3]. In 2009, Khorramizadeh and Mahdavi-Amiri [26] proposed a class
of algorithms for solving linear Diophantine systems based on an exten-
sion of ABS algorithms. Later, Golpar-Raboky and Mahdavi-Amiri [19]
used these two classes to propose algorithms for solution of a quadratic
Diophantine equation. For a review and discussion of ABS algorithms
and their extension for linear Diophantine systems see, [5, 17, 33, 34].
After solving a linear Diophantine system Az = b, a natural mathemat-
ical question is whether we could use the information from the solution
of the original system to derive an expression for all solutions of the rank
one perturbed system. Moreover, changing the coefficient of one vari-
able or deleting a variable or a constraint corresponds to solving a rank
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one perturbed linear Diophantine system of the form (A + wv™)z = b,
which may relate to sensitivity analysis. in integer programming. Not
knowing how to use the information obtained after solving Az = b to ob-
tain the general solution of (A + uvT)x = b, we need to solve a different
linear Diophantine system from scratch which might be time consuming
and costly. Therefore, algorithms for obtaining the general solution of
(A + wv')x = b using information obtained after solving Azx = b are
worth studying and may result in saving considerable computing time.
In 2008, Amini and Mahdavi-Amiri [1] proposed an algorithm for solv-
ing rank one perturbed linear Diophantine systems using ABS methods.
Khorramizadeh and Mahdavi-Amiri [24] used the Rosser’s idea [30] and
extended integer ABS algorithms [25] to propose an algorithm for rank
one perturbed linear Diophantine systems and showed the algorithm to
be more efficient than that of Amini and Mahdavi-Amiri [1]. Algorithms
in [1] and [24] are respectively based on the integer ABS and Rosser’s
approach for solving linear Diophantine systems. However, several effi-
cient algorithms for solving linear Diophantine systems are based on the
Hermite normal form [21, 27, 28, 31]. Therefore, here we discuss an algo-
rithm for solving rank one perturbed linear Diophantine systems based
on the Hermite normal form algorithm for solving Diophantine systems.

1.1 Hermite Normal Form Algorithm

One efficient approach for solving linear Diophantine systems is to use
the Hermite normal form algorithm [8, 10, 14, 20]. An m x m integer
matrix H with full row rank is said to be in a Hermite normal form if
it is lower triangular nonsingular nonnegative integer matrix with every
diagonal element being the largest in its corresponding row [21]. Let A
be an m x n integer matrix and rank(A) = r. The goal of the Hermite
normal form algorithm is to find a unimodular matrix U such that the
integer matrix HNF(A)=AU has the Hermite normal form. An inte-
ger square matrix with a determinant of +1 or -1 is called unimodular.
Algorithms for computing the Hermite normal form are based on the ex-
tended greatest common divisor (GCD) algorithms, i.e., algorithms for
computing the GCD of two or more integers. An extended GCD algo-
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rithm is applied to an integer vector a = [aj, az ... ,ak]T and computes a
unimodular matrix [p, U] such that a®[p, U] = [4,0, ..., 0], where § is the
greatest common divisor of ai,as...,a;, a’p = 6 and U is a basis for

the null space of a. Now, assume that A has full row rank and we have a
GCD algorithm. Then, we can use the following procedure to compute
the Hermite normal form of an integer matrix A = (ay,az...,amn)’,
where a; is the ith row of A [15, 16, 25]

Algorrithm 1.2. Hermite normal form algorithm.
Step 1. Set i =1, U = I,,.

Step 2. Compute s; = Ula; (since A has full row rank, then s; # 0).
Use the extended GCD algorithm to compute p( and U® so that
STp, U] = [5,,0,...,0].

Step 3. Set U = UUW.

Step 4. If i = m then stop. Else set i =i+ 1 and go to Step 2.

Step 5. Let
ai pt)
alp® UM p2)
L= . :
a?np(l) a%;U(l)p(2) a%U(l) U(mfl)p(m)

Step 6. Fori=2...,m do
Forj=1...,1—1do

1L,

where L; denotes the jth column of L.

According to Algorithm 1, for different choices of the extended GCD
algorithm in Step 2, we obtain different algorithms for computing the
Hermite normal form. On the other hand, several algorithms have been
proposed for computing the greatest common divisor of two or more



SOLVING RANK ONE PERTURBED LINEAR ... 15

integers, such as extended Euclidean algorithm [13, 29], Rosser’s algo-
rithm [15, 30] and algorithms based on the LLL-reduction method [20].
In 2001, Esmaeili et al. [15] showed that the Hermite normal form of an
integer matrix can also be computed implicitly by using the class of ABS
methods specialized for solving linear Diophantine systems. Note that
we can easily diagonalize the nonzero part of the Hermite normal form
of an integer matrix by performing some elementary column operations
on its columns [32]. Moreover, the computations can be done so that the
diagonal elements of the resulting matrix, i.e., di,ds ..., d,,, are positive
an dilds . ..|dy,. The resulting matrix is called the Smith normal form
of the integer matrix.

Now, let C' be the submatrix of HNF(A) formed by the r nonzero
columns of HNF(A). Then, we have U = [Q,N], AQ = C, AN =0
and the columns of N form a basis for the null space of A. The linear
Diophantine system Az = b is equivalent to AU(U~!)x = b, and hence,
[C|0]z = b, where 2 = U~z is an integer vector if and only if z is an
integer vector. Therefore, we can use the Hermite normal form algo-
rithm to reduce an original linear Diophantine system (1) and compute
its general solution effectively.

Here, we propose an efficient algorithm for solving rank one perturbed
linear Diophantine systems, using information from the solution of the
original system by using the Hermite normal form algorithm. We also
present some numerical results to illustrate the efficiency of our proposed
algorithm.

In Section 2, we propose an efficient algorithm for rank one perturbed
linear Diophantine systems. Section 3 is devoted to empirical results.
Section 4 gives the concluding remarks.

2. Rank One Perturbed Systems
Consider the following rank one perturbed linear Diophantine system:
(A+wDz=b, v,zeZ", AcZ™" ubeZ™, m<n. (2)

Assuming that (1) has integer solutions and A has full row rank. In this
section, we show how we can make use of the information obtained after
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an application of Algorithm 1 for solving the linear Diophantine system
(1), to efficiently compute the general solution of the corresponding rank
one perturbed linear Diophantine system (2). It can be easily verified
that every integer solution of (2) is an integer solution of

Ar = b— ut, (3)
ol = t, (4)

for some t € Z. For 1 < k < m, let Ay = (a1,az...,a;), b¥ =
(bi,ba...,bp)T and v* = (uy,us...,ux)”. If we apply Algorithm 1
to Ag, then we obtain the unimodular matrix Uy = [Qk, Ng] so that
A%Qk = C} and AgNk = 0, where C}, is the nonzero part of the Her-
mite normal form of A;‘g. Using the unimodularity of Uy, the following
theorem can be easily verified.

Theorem 2.1. Fork=1,...,m and w € Z*, AZ&: = w has an integer
solution if and only if Cry = w has an integer solution.

Now, consider the module S§¥ = {(y,t) : Cry +u¥t = 0} N Z"*! and the
projection P : Z¥*1 — Z_ defined by P(y,t) = t. Then, the set of all
(y,t) satisfying Cry = b¥ — uFt is the translated module S{f = Sk 4+ bF.
Therefore, P(SF) is a translated module T* inside Z. If we assume
that Ciy = b* has an integer solution, then 0 belongs to T%, and so T*
must be the set of multiples of a particular positive integer ¢x. In the
following, we first determine g, for k = 1,...,m. Then, we characterize
the general solution of (3) and use (4) to characterize the general solution
of (2). Let cfj be the element in the ith row and jth column of Cy. Now,
if we let

Ui

Z]f = _(T)7 (5)
€11
wi + Sk ek ok

4 = (= Z;k‘l ), 2<i<k, (6)

i
then it is straightforward to prove the following theorem.
Theorem 2.2. Let t be integer and Cy = b* have an integer solution.

Then, for k =1,...,m, Cry = b¥ — u*t have an integer solution if and
only if 2Ft € Z, fori =1,...,k, where zF is defined by (5) and (6).
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Let g be the least positive integer satisfying qsz eZ fori=1,...,k.
Clearly, we have tzf € Z,fori=1,...,k, if and only if gx|t. Therefore,
the following corollary immediately follows from Theorem 2.2.

Corollary 2.3. Let t be integer and Cyy = b* have an integer solution.
Then, for k =1,...,m, Cry = b* — uFt has an integer solution if and
only if qx|t.

Corollary 2.3 asserts that 7% = {t'q : ' € Z}. From Theorem 2.1 and
Corollary 2.3, we have the following result.

Theorem 2.4. Let t be integer and A;‘gy = bF have an integer solution.
Then, for k =1,...,m, Agac = b* — vt has an integer solution if and
only if t € T*.

Now, if we let zp + Npy, with y € Z(=k) be the general solution of
Al = vF —ubt, 2% = (21..., )7 and gF = Q2*, then for t € T*,
the general solution of Agaz = b — Wbt is zp, + gt + Ny, y € 2000,
Specifically, for k = m and t € T),, the general solution of (2) is z,, +
g™t + Ny, y € Z("=™)_ Note that ¢™ can be computed, using only the
information obtained after an application of the Algorithm 1 to solve
Ax = b. In the following, for notational simplicity, we let ¢ = ¢,
q = Qm, T =T, and N = Np,.

Theorem 2.5. Suppose that the linear Diophantine system (Ad+uv?)z =
b has an integer solution. Then, the following linear Diophantine equa-
tion has an integer solution:

WIN, (vTg —1)q] [ ?; } =Tz (7)

Proof. Suppose that (A+uv” )z = b has an integer solution and T, € L"
satisfies (A + wvT)z, = b. Let t, = vTx,. Then, Az = b — ut, has an
integer solution. Since, by assumption, the linear Diophantine system
Az = b has an integer solution, then Ax = —ut, has an integer solution.
Therefore, by Theorem 2.2, we must have q | t,, i.e., t, = qt;,, for some
t, € Z. Since the general solution of Az = b — ut, is = + gqt;, + Ny,
y € 2", there exists y, € Z" " such that =, = x—i—gqt; + Ny,. Since
ty, = vTxp, we have

qt; =t,= vTa:p =vlz + ngqt; + UTNyp.
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From the last equality, it follows that the integer vector [yg , t;}T satisfies
(7). O

Now, if v/ N = 0, then (7) becomes (v'g—1)qt = —vT 2. If (vTg—1) =0
and v"z # 0, then (7) has no integer solution, and hence, by Theorem
2.5, we conclude that (2) has no integer solution. If (vT'g — 1) = 0 and
vTx = 0, then (7) holds for every value of y and ¢. In this case, the
general solution of (2) is:

t
x—I—[qg,N]{y}, teZ, yezm ™

If (vTg—1) # 0 and (vI'g — 1)g fvTz, then (7) has no integer solution,
and by Theorem 2.5, (2) has no integer solution. If (vTp — 1) # 0 and
(vTg — 1)g|v"z, then the general solution of (2) is:

’UT.I‘

(vTg —1)q

Now, consider the case v N # 0. In this case, we have the following
theorem to characterize the general solution of (2).

x+( Jg+ Ny, yez" ™

Theorem 2.6. Let rank(A) = m and N be an integer basis for the
integer null space of A. If vI' N # 0, then rank(A + uvT) = m.

Proof. To prove the theorem, it is sufficient to prove that the rows of
(A + uvT) are linearly independent. First, note that since al N = 0,
for 1 < i < m, and vI N # 0, then a; + usv # 0, for 1 < i < m, and
thus the rows of (A + uv”) are nonzero vectors. Now, suppose that d;,
1 <4 < m, not all being zero, be so that )", d;(a; + u;v) = 0. Then,
we can write

m m m
Z di(ai + uiv) =0= Zdiai + (Z diui)v =0.

i=1

i=1 i=1

Since v N # 0, v can not be written as a linear combination of the a;,
1 <i < m. Therefore, we have Y ;" | dju; = 0. So, we have Y ;" dja; =
0. Since rank(A) = m, a;, 1 < i < m, are linearly independent. So, from
Z?;l d;a; = 0, we conclude that d; = 0, 1 < ¢ < m. Therefore, a; + u;v,
1 < ¢ < m, are linearly independent and the proof is complete. [
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The following theorem characterizes the general solution of (2), when
vT N # 0 and (7) has an integer solution. Note that if (7) has no integer
solution, then (2) has no integer solution, by Theorem 2.5.

Theorem 2.7. Suppose that rank(A) = m, v N # 0. The linear Dio-
phantine equation (7) has an integer solution and its general solution,
obtained by an application of the Algorithm 1.2, is:

Yl _ | Y Uy 3:/:
R
where v, € Z"™ v, € Z,U, € Z(n—m)x(n—m)’Ut e le(n—m),@‘ c
Zn=m=1 1 ¢ Z. Then, the general solution of (A + ww')z = b is

f—i—ﬁ& y € Z" ™, where N = NU,+ qgUy, T = p+ Nvy + qgvy. More-
over, N is a basis for N,(A +uvT).

Proof. It suffices to show that x, is a particular solution of (2) if and
only if 7, = T + Ny, for some y € Z" ™. Let x, be so that (A +
uvT)z, = b. In the proof of Theorem 2.5, we showed that in this case
there exist some y, € Z"™™ and t;, € Z so that x;, = p+gqt), + Ny, and
[yl )" satisfies (7). So, by definition of general solution, there exist
yp € 2" ™1 and tAp € Z so that

[yp]:[vy]+[ y}[gp].
t;) (7 I/t tp
Therefore, we can write

Tp = p+[9Q>N]{ZZ/p]
p

)

)

= p+ Nuy + qgve + (NUy + qgUy) [

]

~
bS]

where 7 = [’y\g ,fp]T € Z" ™. Conversely, suppose that z, = T + Ny, for
some gy € Z" ™. We have

AZ = A(p + Nvy + qgui) = Ap + quiAg = b — quu.
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On the other hand, we have

W' N, (vTg —1)q] [ Zy } = —vTp =01z = qu.
t

This shows that (A + uv?)T = b. Similarly, it can be easily verified that

(A + uwT)N = 0. Thus, we have

(A+w)z, = (A+w’)(@ + Ny) =b.

It remains to show that N is a basis for N,(A + uv?). From the above
argument, it follows that the columns of N generate N,(A + uv?). Be-
cause, if 2’ € Z" satisfies (A + uv’)2’ = 0, then since T + 2’ is a par-
ticular solution of (2), there exists 7 € Z"~™ so that T + 2’ = T + N7,
and hence / = Ny. On the other hand, by Theorem 2.7, we have
rank(A +uvT) = m. Therefore, every basis for N,(A +uv?) has n —m
linearly independent vectors. So, it suffices to show that the columns
of N are linearly independent. Indeed, since A(qg) = —qu # 0, then
columns of the integer matrix [N, gg| are linearly independent. Clearly,
the columns of [UyT ,UT] are also linearly independent. Therefore, the
columns of the integer product matrix N = [NU, + qgU,] are linearly
independent. This completes the proof. [

Remark 2.8. To control the growth of intermediate results, we can re-
duce the size of the integer vector qg by using short columns of the null
space basis, N. Let n; be the jth column of N. Then, the following
procedure can be used to reduce the size of the integer vector w, by using
the columns of N:

Fori=1ton—m dow=w— L(anJ)/(nfnj)Jnj

So, we can write the following algorithm for solving (2), using integer
matrices N, @ and C and the integer vector x, which are obtained by
an application of the Algorithm 1 to (1).

Algorithm 2.9. Rank One Perturbed Solver Based on Hermite Normal
Form.
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Step 1. (Compute z) Set z3 = —u1/c11;
For i=2tomdo
begin
sum=0;
For j=1toi—1
sum = sum + ¢;;2;;
zi = —(u; + sum)/ci;
end;
Set z = (21, - ,2zm)" and g = Qz.

Step 2. Find the smallest positive integer ¢ such that qg € Z™ and set
w = qg.

Step 3. (Reduce the size of w)
Fori=1ton—mdow=w— [(win;)/(nIn;)|n;.

Step 4. If v N = 0 then

(a) If vTw — ¢ = 0 and vT'z # 0 then stop: {(A +uv?)z = b has
no integer solution}.

(b) If vIw — ¢ = 0 and vz = 0 then set # = x, N = [w, N] and
go to step 6.

(c) If (vTw—gq) # 0 and (vT'w—q) folpthen stop {(A+uvT)z =b
has no integer solution}.

(d) If (vTw —q) # 0 and (vT'w — ¢)[vTz then set

’UTﬂf —

(vTw —q

and go to step 6.
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Step 5. Solve the following single linear Diophantine equation, by using
Algorithm 2.1:

N0l Y ] =T ®)
If (8) has no integer solution then stop {the Diophantine system
(A+uvT)z = b has no integer solution} else let the general integer
solution of (8) be

Y| _| Yy Uy y
HEEN
where v, e anmj,ut e Z7 Uy c anmxn7m7Ut e lenfmj/y\ c
Zn—m=1 ¥ e 7. Set T+ Ny, where

N:NUy—FwUt, T =x + Nvy + wuy.

Step 6. Stop { T is a particular solution and N is a basis for the null
space of (A +uvT)}.

3. Numerical Results

Here, we investigate the practical efficiency of the proposed algorithm
for solving rank one perturbed linear Diophantine systems, based on the
Hermite normal form algorithm.

We applied Algorithm 2. to some randomly generated consistent linear
Diophantine systems. To generate consistent random systems, we used
the approach proposed by Chou and Collins [10]. We let the bit length
of the coefficients of the generated systems to be 40. Then, given the
number of variables and the number of constraints, we generated sample
linear Diophantine systems until a consistent one was found and applied
the algorithms to the generated system.

After generating A, b, v and v, we first solved the linear Diophantine
system Ax = b, by using the Hermite normal form algorithm proposed by
Havas et al. [20] for solving linear diophantine systems. Then, we used
the obtained information to solve the corresponding linear Diophantine
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system (A—i—uvT)x = b. To compare our proposed algorithm with the one
proposed in [24], we also solved Ax = b by using the Rosser’s approach
and used the resulting information to compute the general solution of
(A +wvT)z = b. To show the efficiency of the proposed algorithm, we
also solved (A 4 uv?)xz = b from scratch by using the the Algorithm 1
and compared the results in tables 1-4.

In these tables, B1, B2 and Time denote the bit length of the abso-
lute value of the maximum of the components of the particular solution,
the bit length of the absolute value of the maximum of the components
of the basis and the computing time of the algorithm (in seconds), re-
spectively. Moreover, the data below the column, named LLL-based are
related to the Algorithm 2 here, the data below the column, named From
scratch are related to the algorithm solving the system (A + uv®)z = b
from scratch by using the the Algorithm 1 and the data below the col-
umn, named Rosser—based are related to the algorithm based on Rosser’s
approach.

The results in these tables show that making use of our proposed al-
gorithm results in saving computing time, significantly. For example,
when n = 70 and m = 69, by solving (A + uv’)z = b from scratch, we
obtained the general solution of the system in 993.453 seconds, while
the same particular solution and basis was obtained by our proposed
algorithm in 0.859 seconds. When n —m = 1, for our generated random
systems, the particular solution and the basis obtained by using the pro-
posed algorithm were very close to the ones obtained by solving the rank
one perturbed system from scratch. When n —m > 1, by solving the
rank one perturbed system from scratch, we always obtained particular
solutions and bases, with slightly smaller B; and By. But, the needed
computing time for solving from scratch was considerably larger than
the one for the proposed algorithm. This shows that the need comput-
ing cost for our proposed algorithm is significantly smaller than that of
solving the problem from scratch. In tables 14, we have also compared
our proposed algorithm with the Rosser—based algorithm, proposed in
[24]. The numerical results in these tables show that although when
n —m = 1, the performance of two algorithms was almost the same,
but when n —m > 1, our proposed algorithm was significantly more
efficient than the Rosser—based algorithm. Moreover, in Table 1, when
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n —m = 1, for both algorithms the values corresponding to B1 and B2
and the computing times were very close. When n —m > 1, the values
corresponding to Bl and B2 of our proposed algorithm were significantly
smaller than those of the Rosser—based algorithm.

To compare the computing cost of our proposed algorithm with that of
the Rosser—based algorithm, it is sufficient to compare the Rosser—based
algorithm with the LLL-based algorithm for solving linear Diophan-
tine systems. In [23], we presented a comparison of these algorithms
and conclude that in the sense of controlling the growth of intermediate
results (B1 and B2) and the computing time for small problems, the
Rosser—based algorithm is more efficient, while for large problems, the
LLL-based algorithm is more efficient. However, for all test problems
the bit length of the maximum absolute value of the components of the
particular solution and basis, obtained by using the LLL-based algo-
rithm, is significantly less than that of the the Rosser—based algorithm;
See [23], for details.

Table 1: n—m =1
LLL-based From scratch Rosser—based
n B; Bo Time Bi Bs Time B B Time
30 1222 | 1223 | 0.297 1222 | 1223 28.26 1223 | 1227 | 0.328
35 1431 | 1435 | 0.329 1431 | 1435 49.67 1431 | 1435 | 0.375
40 1639 | 1642 | 0.375 1640 | 1641 86.484 1641 | 1643 | 0.500
45 1847 | 1850 | 0.438 1847 | 1850 | 150.047 1847 | 1850 | 0.438
50 2056 | 2059 | 0.485 2053 | 2058 | 212.547 2053 | 2058 | 0.750
55 2264 | 2266 | 0.516 2270 | 2271 | 334.829 2268 | 2271 | 1.078
60 2474 | 2477 | 0.641 2474 | 2477 | 486.406 2474 | 2477 | 1.422
65 2688 | 2689 | 0.640 2688 | 2689 | 699.094 2688 | 2689 | 2.078
70 2901 | 2902 | 0.859 2898 | 2900 | 993.453 2902 | 2903 | 3.437

Table 2: n—m =25

LLL-based From scratch Rosser—based
n B Bo Time B1 Bo Time B; ‘ Bo Time
30 262 | 264 | 0.234 212 | 213 22.453 5361 5363 0.344
35 312 | 313 | 0.282 254 | 255 40.36 8404 8406 0.453
40 361 | 362 0.36 295 | 296 70.219 12969 12970 0.656
45 412 | 412 0.39 337 | 338 | 116.015 19494 19495 0.969
50 462 | 464 | 0.406 378 | 380 183.5 29875 29880 1.469
55 512 | 512 | 0.469 420 | 422 | 277.328 44146 44151 2.438
60 563 | 564 | 0.531 463 | 464 | 413.047 67454 67456 4.031
65 613 | 615 | 0.562 505 | 506 586.86 100385 | 100387 7.953
70 662 | 665 | 0.579 547 | 548 1647.3 148656 | 148656 | 16.235
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Table 3: n —m = 10

LLL-based From scratch Rosser—based
n B1 Bs Time B1 Bo Time B1 Bo Time
30 96 122 | 0.485 86b 87 19 3118 3121 0.359
35 118 | 142 | 0.469 106 | 107 36.453 5309 5311 0.484
40 142 | 165 | 0.578 127 | 129 59.828 8409 8410 0.719
45 164 | 185 | 0.609 148 | 149 | 102.141 13332 13335 1.110
50 188 | 206 | 0.688 169 | 170 | 165.406 20492 20495 1.781
55 212 | 227 | 0.781 190 | 190 | 256.562 31034 31036 3.109
60 234 | 248 | 0.828 211 | 212 | 365.907 47446 47450 5.718
65 258 | 269 | 0.937 232 | 233 1099.2 71956 71956 11.25
70 280 | 294 | 1.062 254 | 254 | 2326.84 108007 | 108012 | 22.922
Table 4: n —m = 20
LLL-based From scratch Rosser—based
n B1 Bo Time B, B Time B, B Time
30 25 61 1.047 23 23 25.906 807 809 0.265
35 35 70 1.235 33 34 50.14 1682 1683 0.407
40 46 81 1.438 43 44 89 2975 2978 0.609
45 57 92 1.704 54 55 152.048 4987 4989 0.891
50 69 103 | 1.688 64 65 125.25 8071 8078 1.359
55 79 113 | 1.813 75 75 400.532 12917 | 12918 2.375
60 90 123 | 2.063 85 86 598.907 20010 | 20010 3.734
65 101 | 134 | 2.500 95 96 868.343 30638 | 30641 6.438
70 112 | 144 | 2.406 106 | 106 608.5 46961 | 46964 | 11.563

4. Conclusion

We proposed an efficient algorithm for solving rank one perturbed linear
Diophantine systems, based on the Hermite normal form algorithm for
solving linear Diophantine systems. Then, by presenting some numerical
results, we examined the practical efficiency of the proposed algorithm.
The numerical results show that by using the proposed algorithm we
may reduce the the computing time significantly.
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