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Abstract. Recently, a new algebraic structure, namely grouplike, has
been introduced and studied by the first author. A grouplike is some-
thing between semigroup and group with so close relations to groups.
The grouplike axioms are generalizations of the four group axioms. In
this paper, we study regular and irregular grouplikes as a class of semi-
groups. The motivation of this study lies in some interesting properties
of regular proper grouplikes.
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1. Introduction

In the great range of special classes of semigroups, regular semigroups
take a central position from the point of view of richness of their struc-
tural “regularity”. The principal classes of regular semigroups are inverse
semigroups and completely regular semigroups with a great diversity of
their various generalizations (see [10]). These statements are corrobo-
rated amply by the semigroup literature and are reflected somewhat
by the books on semigroups (see [1,8]). Recently a class of semigroups
namely “Grouplikes” has been introduced and studied in [3]. A grou-
plike is something between semigroup and group and its axioms are
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generalization of the four group axioms. The first ideas of grouplikes
come from b-parts and b-addition of real numbers, introduced and stud-
ied in [4,6] and were generalized (for semigroups and groups) in [5]. Also,
“Homogroup” was introduced by G. Thierrin, that is a semigroup con-
taining an ideal subgroup (see [7,2]). We observe that every grouplike is
a homogroup with a unique central idempotent.

2. Grouplikes

Now, we consider an algebraic structure that is something between semi-
group and group (introduced and studied in [3]).

Definition 2.1. A semigroup Γ is called grouplike if it satisfies the
following axioms:
(1) There exists ε ∈ Γ such that

εx = ε2x = xε2 = xε : ∀x ∈ Γ,

(2) For every ε satisfying (1) and every x ∈ Γ, there exists y ∈ Γ such
that

xy = yx = ε2.

Every ε ∈ Γ satisfying the axioms (1) and (2) is called an identity-like.
If (Γ, ·) is a grouplike and it is not group, then we call it proper grou-
plike. If a semigroup satisfies the axiom (1), then we call it monoid-
like. Note that a semigroup S is monoidlike if and only if it contains
a central idempotent. It is interesting to know that every grouplike is a
semigroup containing the least ideal that is also a maximal subgroup but
the converse is not valid. Recall that for every semigroup (S, ·), Z(S)
and It(S) = E(S) are the center and the set of all idempotent elements
of S, respectively (it may be empty). Also, by Iz(S) we denote the set
of all identity-likes and put Zt(S) = Z(S) ∩ It(S). If S is a grouplike,
then Zt(S) is singleton.

The following lemma states an important basic property of grouplikes.

Lemma 2.2. ([3, Lemma 2.2]) Every grouplike contains a unique idem-
potent identity-like element.
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Definition 2.3. Let Γ be a grouplike and let e be its unique idempotent
identity-like. Then, we call e standard identity-like and use the notation
(Γ, ·, e). Γ is a standard grouplike if e is the only idempotent of Γ. Γ
is a zero grouplike if e is a zero of Γ. Every y that is corresponded to
x in axiom (2) is called inverse-like of x and is denoted by x′e or x′ (so
x′x = xx′ = e). By Inv(x) we mean the set of all inverse-likes of x (the
set of all x′).

Regarding to the conception inverse-like in the above definition, note
that every identity-like ε satisfies ε2 = e = e2, by Lemma 2.2. So y is an
inverse-like of x (for a given identity-like ε) if and only if xy = yx = e.
For every grouplike (Γ, ·, e), the subset eΓ is its unique ideal subgroup
(the same least ideal that is also a maximal subgroup).
There are some examples for finite and infinite grouplike (as one can see
in Example 2.4, [3]). Also, note that every group is standard group-like
and every monoid is monoidlike.
It is interesting to know that a grouplike also can be axiomatized by the
following conditions that is very similar to the four groups axioms:
(i) Closure,
(ii) Associativity,
(iii) There exists a unique element e ∈ Γ such that ex = xe , e2 = e,
for all x ∈ X.
(iv) For every x ∈ Γ, there exists y ∈ Γ such that xy = yx = e.

In [3], the following hypothesises for grouplikes are stated:

(H1) (The identity-like hypothesis) exy = xy, for every x, y ∈ Γ.

(H2) (The inverse-like hypothesis) Inv(e) = Iz(Γ).
Obviously, (H2) is equivalent to Inv(ε) ⊆ Iz(Γ) for some [every] ε ∈
Iz(Γ).
The following theorem shows the relation between (H1) and (H2).

Theorem 2.4. ([3, Theorem 2.7]) In every grouplike the identity-like
hypothesis implies the inverse-like hypothesis.
But it is an unsolved problem that “Does (H2) imply (H1)?”
There is an important class of grouplikes which plays important roles
in the theory of grouplikes. For constructing them, note that we call G



4 M. H. HOOSHMAND AND S. RAHIMIAN

a class group if G is a group for which all its elements are nonempty
disjoint sets. Also, every function Ψ : ∪G → G is called a class function
if x ∈ Ψ(x), for every x ∈ ∪G. Because of our assumption for G,
always the surjective class function Ψ exists and it is unique. We use
the notation Ψ(x) = Ax, when A ∈ G and x ∈ A = Ψ(x). Now, if ϕ
is a choice function from G to ∪G (ϕ(A) ∈ A), then it is injective and
Ψ = ΨϕΨ or equivalently Ax = Aϕ(Ax), for every x ∈ ∪G.
Now, let E be the identity element of the class group (G, ◦) and define
the binary operation � = �ϕ in ∪G by

x �ϕ y = x � y := ϕ(Ψ(x) ◦Ψ(y)) = ϕ(Ax ◦Ay) : ∀x, y ∈ ∪G,

where Ψ is the unique class function and ϕ is an arbitrary choice func-
tion.

Definition 2.5. Let (G, ◦) be a class group with the identity element
E and ΨG : ∪G → G the unique class function and ϕ a given choice
function from G. We call the algebraic structure (G, �ϕ, ϕ(E)) ϕ-class
united grouplike. Also, we say a grouplike (Γ, ·) is class united if there
exists a class group (G, ◦) and a choice function ϕ such that ∪G = Γ and
�ϕ = ·.
The following fundamental theorem characterizes the class united grou-
plikes.

Theorem 2.6. ([3, Theorem 2.11])
(A) A grouplike is class united if and only if satisfies the hypothesis (H1).
(B) (General form of grouplikes satisfying the identity-like hypothesis) A
binary system (Γ, ·) is a grouplike with the identity-like hypothesis if and
only if there exists a class group G and a choice function ϕ : G → ∪G
such that Γ = ∪G and · = �ϕ.
Recall that an epigroup is a semigroup in which every element has a
power that belongs to a subgroup (see [9]). Every class united grouplike
is a unipotent epigroup.
In [3] a semigroup congruence is defined as follows. For every x, y ∈ Γ,
put x ∼e y if and only if ex = ey. Also, denote by Γe (or simply Γ )
the set of all equivalent classes that are gotten from ∼e. Then, ∼e is a
semigroup congruence and Γ = Γ� ∼e is a quotient semigroup that is
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isomorphic to the group eΓ.
Now, we prove a relation between the equivalent class of a

′
and Inv(a).

Proposition 2.7. In every grouplike Γ we have

eInv(a) ⊆ Inv(a) ⊆ Inv(ea) = ā′

for all a ∈ Γ and every its inverse-like a
′ ∈ Inv(a).

Proof. The identities a(ea
′
) = (ea

′
)a = e2 = e implies eInv(a) ⊆

Inv(a). Now, let b ∈ Inv(a), then ba = ab = e. Multiplying the
equality by a

′
we have be = ea′ and so b ∈ ā′ . Thus, Inv(a) ⊆ ā′ . Also,

if b ∈ ā′ , then eb = ea
′
and

a(ea
′
) = (ea

′
)a = e = a(eb) = (eb)a

So, (ea)b = b(ea) = e and so b ∈ Inv(ea). Conversely, if b ∈ Inv(ea)
then b(ea) = e, thus eb = ea

′
and so b ∈ ā′ . Therefore, ā′ = Inv(ea)

and the proof is complete. �

Note. Considering the above proposition, each of the conditions ex ∈
eInv(a), ex ∈ Inv(a) or ex ∈ Inv(ea) imply x ∈ Inv(ea). Because
each of them implies ex = ea

′
, for some inverse-like a

′
, and so x(ea) =

(ex)a = ea
′
a = e2 = e = (ea)x.

By the above proposition, we have Inv(a) ⊆ Inv(ea) but its converse is
not true.

Example 2.8. Consider Γ = {a, b, c} with the following multiplication
table

· a b c

a a a a
b a b b
c a a a

It is easy to see that (Γ, ·, a = e) is a grouplike, Reg(Γ) = {a, b} and
eΓ = {a}. Hence Reg(Γ) * eΓ. Also, we have Inv(ea) * Inv(a),
because Inv(eb) = Inv(a) = {a, b, c} but Inv(b) = {a}.
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3. Regular Grouplikes

Recall that an element a of a semigroup S is called regular [resp. com-
pletely regular] if a = axa [resp. a = axa and ax = xa], for some x ∈ S.
It is easy to check that if a is regular, then both ax and xa are idem-
potent elements of S so {ax, xa} ⊆ It(S). By Reg(S) [resp. Gr(S)],
we denote the set of all regular [resp. completely regular] elements of
S. A semigroup S is called regular [resp. completely regular] if every
its element is regular [resp. completely regular] (i.e. Reg(S) = S [resp.
Gr(S) = S]).
Since every grouplike is a semigroup, then we can discuss regular ele-
ments of an arbitrary grouplike and also regular grouplikes. We now
give an example of a regular grouplike.

Example 3.1. The set Γ = {a, b, c} with the following binary operation
“ · ” is a regular (proper) grouplike

· a b c

a a a a
b a b c
c a b c

The following lemma states a basic property for regular elements of a
grouplike.

Lemma 3.2. In every grouplike Γ we have

eΓ ⊆ Gr(Γ) ⊆ Reg(Γ) 6= ∅ , Iz(Γ) ∩Reg(Γ) = Iz(Γ) ∩Gr(Γ) = {e}.

Proof. Let b = ea be an element of eΓ, then putting x = a
′
, we have

bxb = eaa
′
ea = eaa

′
a = e2a = ea = b.

So eΓ ⊆ Reg(Γ).
Also, obviously e ∈ Iz(Γ)∩Reg(Γ) and if ε ∈ Iz(Γ)∩Reg(Γ), then there
exists x ∈ Γ such that ε = εxε and so ε = ex . On the other hand, by
εε = ε(εxε), we have e = ex , hence ε = e. �
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Lemma 3.3. If a is a regular element of Γ, then there exists x ∈
Inv(ea) = ā′ such that ex ∈ eInv(a) ( ⊆ Inv(a)) and {ax, xa} ⊆ It(Γ)(
⊆ Inv(e)).

Proof. Since a ∈ Γ is regular, then there exists x ∈ Γ such that a =
axa, so a

′
a = a

′
axa and so e = exa = xae. Also, aa

′
= axaa

′
and

e = axe = eax . Therefore, xa ∈ Inv(e) and ax ∈ Inv(e) . On the other
hand, we have a

′
aa

′
= a

′
axaa

′
, so

ea
′
= exe = e2x = ex

hence ea
′

= ex, a
′ ∼e x and x ∈ ā′ . Finally, considering the above

identities we have

a(ex) = (ax)e = e = (ex)a.

Therefore, ex ∈ Inv(a) and the proof is complete. �

Corollary 3.4. If Γ is a regular grouplike, then for every a ∈ Γ there
exists x ∈ Inv(ea) = ā′ such that ex ∈ eInv(a) and {ax, xa} ⊆ Inv(e)∩
It(Γ).

Proof. This is clear from the Lemma 3.3. �

Theorem 3.5. A grouplike Γ is standard if and only if Reg(Γ) = eΓ.

Proof. If Γ is a standard grouplike, then e is the only idempotent in Γ.
Let a ∈ Γ be a regular element, so a = axa, for some x ∈ Γ, and ax is an
idempotent in Γ. Thus, ax = e and a = ea ∈ eΓ. Therefore, Reg(Γ) ⊆
eΓ and so Reg(Γ) = eΓ (by lemma 3.2). Conversly, if Reg(Γ) = eΓ then
we show that It(Γ) = e. If t2 = t, then t ∈ Reg(Γ) = eΓ and t = ey, for
some y ∈ Γ. Thus, t

′
(t2) = t

′
t and e = et = e2y = ey = t. Therefore, e

is the only idempotent of Γ and so Γ is standard grouplike. �

Corollary 3.6. If Γ is a grouplike satisfying (H1) or (H2), then

Gr(Γ) = Reg(Γ) = eΓ.

So, in every class united grouplike all elements of Γ \ eΓ are irregular.
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Proof. Since every grouplike with the hypothesis H1 or H2 is standard,
then we get the result from the above theorem. Also, we can conclude
it from Lemma 3.3. Because, if a = axa then

{ax, xa} ⊆ Inv(e) ∩ It(Γ) = Iz(Γ) ∩ It(Γ) = Zt(Γ) = {e},

thus ax = xa = e and a = ea ∈ eΓ. �

Corollary 3.7. For every grouplike Γ, the following statements are
equivalent:
(i) Γ is standard grouplike,
(ii) Reg(Γ) = eΓ,
(iii) Reg(Γ) ⊆ eΓ,
(iv) Gr(Γ) = eΓ,
(v) Gr(Γ) ⊆ eΓ,
(vi) Gr(Γ) = Reg(Γ) = eΓ.

Note that Reg(Γ) * eΓ, in general. Now, we close this paper with an
example of regular grouplike with a completely regular element and we
show that e is only element of Γ that satisfies in corollary 3.6 conditions.

Example 3.8. Let Γ = {a, e, η} be a grouplike and define a binary
operation “ · ” by the following multiplication table

· a e η

a a e η
e e e e
η a e a

It is easy to see that (Γ, ·, e) is a regular grouplike and only for e ∈
{a, e, η} we have ex = xe for every x ∈ {a, e, η} and therefore e is the
only completely regular element of regular grouplike Γ.
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