Construction Methods and Sum of c - K - g-Frames in Hilbert Spaces

E. Alizadeh*
Marand Branch, Islamic Azad University
M. Rahmani
Ilkhchi Branch, Islamic Azad University

Abstract

This paper was aimed at studying some novel methods of constructing new c - K - g-frames in a Hilbert space H. Some necessary and sufficient conditions were given for some bounded operators on H under which new $c-K-g$-frames were obtained from the existing ones. Also, the sum of $c-K$ - g-frames were discussed, some of their characterizations were identified, and some bounded operators offered to construct new $c-K-g$-frames from the old ones.

AMS Subject Classification: 42C15, 46C0
Keywords and Phrases: $c g$-frame, $c-K-g$-frame, Dual c - K - g-frame, sum of $c-K-g$-frames

1 Introduction

A frame for a Hilbert space H is a sequence of elements in H which provides a linear combination for each element in H, but the elements are not necessarily linear independent. Indeed, a frame can be thought of as a basis to which one has added more elements.

[^0]K-frames in Hilbert spaces were introduced by Gavruta to investigate atomic decomposition systems, stating some properties of them [5, 11, 12]. After that, K - g-frames have been introduced in [13] and some new results and characterizations of $K-g$-frames have been studied in [10, 14, 18]. Furthermore, the notion of continuous $K-g$-frames is presented in [3] and some properties of them have been studied in [4, 15].
Throughout this paper, (Ω, μ) is a measure space with positive measure μ, H, H_{1}, H_{2} and H_{ω} are separable Hilbert spaces and $B\left(H, H_{\omega}\right)$ is the set of all bounded linear operators from H into $H_{\omega}, \omega \in \Omega$. Also, $B(H)$ is the set of all bounded linear operators on H. We will use the symbols $R(U)$ and $N(U)$ for the range and null space of an operator $U \in B\left(H_{1}, H_{2}\right)$, respectively.

Definition 1.1. ([8]) The operator $U \in B(H)$ is called a bounded below operator if there exists a positive number α such that

$$
\alpha\|f\| \leq\|U(f)\|, \quad f \in H
$$

A bounded operator $U: H \longrightarrow H$ is called self-adjoint if $U=U^{*}$. For a self-adjoint operator U, the inner product $\langle U f, f\rangle$ is real for each $f \in H$ ([6]). Also, the partial order $U \leq V$ for the self-adjoint operators U and V is defined by

$$
U \leq V \Leftrightarrow\langle U f, f\rangle \leq\langle V f, f\rangle, \quad f \in H
$$

Lemma 1.2. ([6]) Let $U \in B\left(H_{1}, H_{2}\right)$. Then the following holds:

1. $R(U)$ is closed in H_{2} if and only if $R\left(U^{*}\right)$ is closed in H_{1}.
2. $\left(U^{*}\right)^{\dagger}=\left(U^{\dagger}\right)^{*}$.
3. The orthogonal projection of H_{2} onto $R(U)$ is given by $U U^{\dagger}$.
4. The orthogonal projection of H_{1} onto $R\left(U^{\dagger}\right)$ is given by $U^{\dagger} U$.
5. $N\left(U^{\dagger}\right)=R^{\perp}(U)$ and $R\left(U^{\dagger}\right)=N^{\perp}(U)$.
6. U is surjective if and only if there exists a constant $\delta>0$ such that $\left\|U^{*} f\right\| \geq \delta\|f\|, \quad \forall f \in H_{1}$.

Lemma 1.3. ([7]) Let $L_{1} \in B\left(H_{1}, H\right)$ and $L_{2} \in B\left(H_{2}, H\right)$. Then the following assertions are equivalent:
(i) $R\left(L_{1}\right) \subseteq R\left(L_{2}\right)$.
(ii) $L_{1} L_{1}^{*} \leq \lambda L_{2} L_{2}^{*}$ for some $\lambda>0$.
(iii) There exists an operator $U \in B\left(H_{1}, H_{2}\right)$ such that $L_{1}=L_{2} U$.

Moreover, if (i), (ii) and (iii) are valid, then there exists a unique operator U such that

1. $\|U\|^{2}=\inf \left\{\mu: L_{1} L_{1}^{*} \leq \mu L_{2} L_{2}^{*}\right\}$,
2. $N\left(L_{1}\right)=N(U)$,
3. $R(U) \subseteq \overline{R\left(L_{2}\right)^{*}}$.

Definition 1.4. ([1]) Let $\varphi \in \Pi_{\omega \in \Omega} H_{\omega}$. We call that φ is strongly measurable if φ as a mapping of Ω to $\oplus_{\omega \in \Omega} H_{\omega}$ is measurable, where

$$
\Pi_{\omega \in \Omega} H_{\omega}=\left\{f: \Omega \longrightarrow \cup_{\omega \in \Omega} H_{\omega} ; f(\omega) \in H_{\omega}\right\} .
$$

Definition 1.5. Choose the set

$$
\begin{aligned}
\left(\oplus_{\omega \in \Omega} H_{\omega}, \mu\right)_{L^{2}}= & \left\{F \in \Pi_{\omega \in \Omega} H_{\omega} \mid F \text { is strongly measurable },\right. \\
& \left.\int_{\Omega}\|F(\omega)\|^{2} d \mu(\omega)<\infty\right\},
\end{aligned}
$$

with inner product given by

$$
\langle F, G\rangle=\int_{\Omega}\langle F(\omega), G(\omega)\rangle d \mu(\omega) .
$$

It can be proved that $\left(\oplus_{\omega \in \Omega} H_{\omega}, \mu\right)_{L^{2}}$ is a Hilbert space ([1]). We will show the norm of $F \in\left(\oplus_{\omega \in \Omega} H_{\omega}, \mu\right)_{L^{2}}$ by $\|F\|_{2}$.

Now, the definition of continuous g-frames is reviewed.
Definition 1.6. The family of operators $\Lambda=\left\{\Lambda_{\omega} \in B\left(H, H_{\omega}\right): \omega \in \Omega\right\}$ is called a continuous generalized frame, or simply a $c g$-frame, for H with respect to $\left\{H_{\omega}\right\}_{\omega \in \Omega}$ if:
(i) for each $f \in H,\left\{\Lambda_{\omega} f\right\}_{\omega \in \Omega}$ is strongly measurable,
(ii) there are two positive constants A and B such that

$$
\begin{equation*}
A\|f\|^{2} \leq \int_{\Omega}\left\|\Lambda_{\omega} f\right\|^{2} d \mu(\omega) \leq B\|f\|^{2}, \quad f \in H \tag{1}
\end{equation*}
$$

A and B are called the lower and upper $c g$-frame bounds, respectively. If A, B can be chosen such that $A=B$, then $\Lambda=\left\{\Lambda_{\omega}\right\}_{\omega \in \Omega}$ is called a tight $c g$-frame and if $A=B=1$, it is called a Parseval $c g$-frame. A family $\Lambda=\left\{\Lambda_{\omega}\right\}_{\omega \in \Omega}$ is called $c g$-Bessel family if the second inequality in (1) holds.

Theorem 1.7. ([1]) Let $\Lambda=\left\{\Lambda_{\omega}\right\}_{\omega \in \Omega}$ be a cg-Bessel family for H with respect to $\left\{H_{\omega}\right\}_{\omega \in \Omega}$ with bound B. Then the mapping T_{Λ} of $\left(\oplus_{\omega \in \Omega}\right.$ $\left.H_{\omega}, \mu\right)_{L^{2}}$ to H weakly defined by

$$
\left\langle T_{\Lambda} F, g\right\rangle=\int_{\Omega}\left\langle\Lambda_{\omega}^{*} F(\omega), g\right\rangle d \mu(\omega), \quad F \in\left(\oplus_{\omega \in \Omega} H_{\omega}, \mu\right)_{L^{2}}, g \in H
$$

is linear and bounded with $\left\|T_{\Lambda}\right\| \leq \sqrt{B}$. Furthermore for each $g \in H$ and $\omega \in \Omega$,

$$
T_{\Lambda}^{*}(g)(\omega)=\Lambda_{\omega} g
$$

The operator T_{Λ} is called the synthesis operator of $\left\{\Lambda_{\omega}\right\}_{\omega \in \Omega}$ and its adjoint T_{Λ}^{*} is called the analysis operator of $\Lambda=\left\{\Lambda_{\omega}\right\}_{\omega \in \Omega}$.

The continuous $K-g$-frames have been introduced in [3] as following:
Definition 1.8. Let $K \in B(H)$. A family $\Lambda=\left\{\Lambda_{\omega} \in B\left(H, H_{\omega}\right): \omega \in\right.$ $\Omega\}$ is called a continuous K - g-frame, or $c-K$-g-frame, for H with respect to $\left\{H_{\omega}\right\}_{\omega \in \Omega}$ if:
(i) $\left\{\Lambda_{\omega} f\right\}_{\omega \in \Omega}$ is strongly measurable for each $f \in H$,
(ii) there exist constants $0<A \leq B<\infty$ such that

$$
\begin{equation*}
A\left\|K^{*} f\right\|^{2} \leq \int_{\Omega}\left\|\Lambda_{\omega} f\right\|^{2} d \mu(\omega) \leq B\|f\|^{2}, \quad f \in H \tag{2}
\end{equation*}
$$

The constants A, B are called lower and upper $c-K-g$-frame bounds, respectively. If $A=B$, then $\Lambda=\left\{\Lambda_{\omega}\right\}_{\omega \in \Omega}$ is called a tight c - K - g-frame and if $A=B=1$, it is called a Parseval $c-K-g$-frame. The family $\Lambda=\left\{\Lambda_{\omega}\right\}_{\omega \in \Omega}$ is called a c - g-Bessel family if the right hand inequality in (2) holds. In this case, B is called the Bessel constant.

Now, assume that $\Lambda=\left\{\Lambda_{\omega}\right\}_{\omega \in \Omega}$ is a c - $K-g$-frame for H with respect to $\left\{H_{\omega}\right\}_{\omega \in \Omega}$ with frame bounds A, B. The $c-K-g$-frame operator S_{Λ} : $H \longrightarrow H$ is weakly defined by

$$
\left\langle S_{\Lambda} f, g\right\rangle=\int_{\Omega}\left\langle f, \Lambda_{\omega}^{*} \Lambda_{\omega} g\right\rangle d \mu(\omega), \quad f, g \in H
$$

Therefore

$$
A K K^{*} \leq S_{\Lambda} \leq B I
$$

Lemma 1.9. ([3]) Let $\Lambda=\left\{\Lambda_{\omega}\right\}_{\omega \in \Omega}$ be a cg-Bessel family for H with respect to $\left\{H_{\omega}\right\}_{\omega \in \Omega}$. Then $\Lambda=\left\{\Lambda_{\omega}\right\}_{\omega \in \Omega}$ is a $c-K$ - g-frame for H with respect to $\left\{H_{\omega}\right\}_{\omega \in \Omega}$ if and only if there exists a constant $A>0$ such that $S_{\Lambda} \geq A K K^{*}$, where S_{Λ} is the frame operator of $\Lambda=\left\{\Lambda_{\omega}\right\}_{\omega \in \Omega}$.

Duals of c - $K-g$-frames have been indicated in [4] as following:
Definition 1.10. Let $\Lambda=\left\{\Lambda_{\omega}\right\}_{\omega \in \Omega}$ be a $c-K-g$-frame for H with respect to $\left\{H_{\omega}\right\}_{\omega \in \Omega}$. A $c g$-Bessel family $\Gamma=\left\{\Gamma_{\omega}\right\}_{\omega \in \Omega}$ for H is called a dual $c-K-g$-Bessel family of Λ if for each $f, h \in H$,

$$
\langle K f, h\rangle=\int_{\Omega}\left\langle\Lambda_{\omega}^{*} \Gamma_{\omega} f, h\right\rangle d \mu(\omega) .
$$

2 Constructing new c - $K-g$-frames

In this section, we construct new c - $K-g$-frames by using of linear bounded operators.

The following theorem, for a given c - $K-g$-frame $\Lambda=\left\{\Lambda_{\omega}\right\}_{\omega \in \Omega}$ of H, provides a new $c-K-g$-frame for H by applying a linear bounded operator.

Theorem 2.1. Let $K \in B(H), \Lambda=\left\{\Lambda_{\omega}\right\}_{\omega \in \Omega}$ is a $c-K$ - g-frame for H with respect to $\left\{H_{\omega}\right\}_{\omega \in \Omega}$, with bounds A and B and $U \in B(H)$ be a
closed range operator such that $U K=K U$. If $R\left(K^{*}\right) \cap N\left(U^{*}\right)=\{0\}$, Then $\left\{\Lambda_{\omega} U^{*}\right\}_{\omega \in \Omega}$ is a c-K-g-frame for H with respect to $\left\{H_{\omega}\right\}_{\omega \in \Omega}$ with the lower bound $A\left\|U^{\dagger}\right\|^{-2}$ and the upper bound $B\|U\|^{2}$.

Proof. It is easy to check that $\left\{\Lambda_{\omega} U^{*}\right\}_{\omega \in \Omega}$ is a $c g$-Bessel family with upper bound $B\|U\|^{2}$. Since $U K=K U$, we have $K^{*} U^{*}=U^{*} K^{*}$. U has closed range and $R\left(K^{*}\right) \cap N\left(U^{*}\right)=\{0\}$, by Lemma 1.2, for each $f \in H$, we have

$$
\begin{aligned}
\left\|K^{*} f\right\|^{2} & =\left\|U U^{\dagger} K^{*} f\right\|^{2}=\left\|\left(U^{\dagger}\right)^{*} U^{*} K^{*} f\right\|^{2}=\left\|\left(U^{\dagger}\right)^{*} K^{*} U^{*} f\right\|^{2} \\
& \leq\left\|U^{\dagger}\right\|^{2}\left\|K^{*} U^{*} f\right\|^{2} .
\end{aligned}
$$

Then for each $f \in H$, we have

$$
\int_{\Omega}\left\|\Lambda_{\omega} U^{*} f\right\|^{2} d \mu(\omega) \geq A\left\|K^{*} U^{*} f\right\|^{2} \geq A\left\|U^{\dagger}\right\|^{-2}\left\|K^{*} f\right\|^{2}
$$

This proves the theorem.
Corollary 2.2. Suppose that $K \in B(H)$ is with dense range, $U \in B(H)$ has closed range and $U K=K U$. If $\left\{\Lambda_{\omega} U\right\}_{\omega \in \Omega}$ and $\left\{\Lambda_{\omega} U^{*}\right\}_{\omega \in \Omega}$ are both c-K-g-frames for H with respect to $\left\{H_{\omega}\right\}_{\omega \in \Omega}$, then $\Lambda=\left\{\Lambda_{\omega}\right\}_{\omega \in \Omega}$ is a $c-K-g$-frame for H with respect to $\left\{H_{\omega}\right\}_{\omega \in \Omega}$.
Proof. Since $\overline{R(K)}=H$, so $N\left(K^{*}\right)^{\perp}=H$ and $N\left(K^{*}\right)=\{0\}$. For each $f \in H$, we have

$$
A\left\|K^{*} f\right\|^{2} \leq \int_{\Omega}\left\|\Lambda_{\omega} U^{*} f\right\|^{2} d \mu(\omega)
$$

so $N\left(U^{*}\right) \subseteq N\left(K^{*}\right)$, which implies

$$
H=N\left(K^{*}\right)^{\perp} \subseteq N\left(U^{*}\right)^{\perp}=R(U)
$$

So U is surjective. Also, For each $f \in H$, we have

$$
A\left\|K^{*} f\right\|^{2} \leq \int_{\Omega}\left\|\Lambda_{\omega} U f\right\|^{2} d \mu(\omega)
$$

so $N(U) \subseteq N\left(K^{*}\right)=\{0\}$. That is, U is one to one. Therefore U is invertible. Since $U K=K U, U^{-1} K=K U^{-1}, R\left(K^{*}\right) \cap N\left(\left(U^{-1}\right)^{*}\right)=\{0\}$,
and $\left\{\Lambda_{\omega}\right\}_{\omega \in \Omega}=\left\{\left(\Lambda_{\omega} U^{*}\right)\left(U^{-1}\right)^{*}\right\}_{\omega \in \Omega}$, so by Theorem 2.1, $\left\{\Lambda_{\omega}\right\}_{\omega \in \Omega}$ is a c - K - g-frame for H with respect to $\left\{H_{\omega}\right\}_{\omega \in \Omega}$.

For a given tight c - $K-g$-frame $\Lambda=\left\{\Lambda_{\omega}\right\}_{\omega \in \Omega}$ of H, we can obtain another c - $K-g$-frame for H. The following theorem presents us necessary and sufficient conditions on $\left\{\Lambda_{\omega} U^{*}\right\}_{\omega \in \Omega}$ to be a $c-K-g$-frame for H.

Theorem 2.3. Let $K, U \in B(H)$ and $\Lambda=\left\{\Lambda_{\omega}\right\}_{\omega \in \Omega}$ be a D-tight $c-K$ -g-frame for H with respect to $\left\{H_{\omega}\right\}_{\omega \in \Omega}$. If K^{*} is bounded below and $U K=K U$, then $\left\{\Lambda_{\omega} U^{*}\right\}_{\omega \in \Omega}$ is a c-K-g-frame for H with respect to $\left\{H_{\omega}\right\}_{\omega \in \Omega}$ if and only if U is surjective.

Proof. If U is surjective, then Theorem 2.1 implies the first part of proof. For the other implication, we prove that U is surjective. Assume that $\left\{\Lambda_{\omega} U^{*}\right\}_{\omega \in \Omega}$ is a c - K - g-frame for H with respect to $\left\{H_{\omega}\right\}_{\omega \in \Omega}$ with bounds A and B . Then, for all $f \in H$, we have:

$$
\begin{equation*}
A\left\|K^{*} f\right\|^{2} \leq \int_{\Omega}\left\|\Lambda_{\omega} U^{*} f\right\|^{2} d \mu(\omega) \leq B\|f\|^{2} \tag{3}
\end{equation*}
$$

Also for each $g \in H$, we have

$$
D\left\|K^{*} g\right\|^{2}=\int_{\Omega}\left\|\Lambda_{\omega} g\right\|^{2} d \mu(\omega) .
$$

By $U^{*} K^{*}=K^{*} U^{*}$, we obtain

$$
\begin{equation*}
D\left\|U^{*} K^{*} f\right\|^{2}=D\left\|K^{*} U^{*} f\right\|^{2}=\int_{\Omega}\left\|\Lambda_{\omega} U^{*} f\right\|^{2} d \mu(\omega), \quad f \in H . \tag{4}
\end{equation*}
$$

So by (3) and (4), we have

$$
\begin{equation*}
\left\|U^{*} K^{*} f\right\|^{2}=D^{-1} \int_{\Omega}\left\|\Lambda_{\omega} U^{*} f\right\|^{2} d \mu(\omega) \geq D^{-1} A\left\|K^{*} f\right\|^{2}, \quad f \in H \tag{5}
\end{equation*}
$$

Sine K^{*} is bounded below, so there exist $\alpha>0$ such that $\left\|K^{*} f\right\| \geq$ $\alpha\|f\|$, for each $f \in H$. Thus, from (2.3), we conclude that for each $f \in H$,

$$
\left\|U^{*} K^{*} f\right\| \geq \alpha\|f\| .
$$

Therefore $U^{*} K^{*}$ is bounded below, thus by Lemma 1.2, $K U$ is surjective and $K U=U K$ implies that U is surjective.

Suppose that operators $T, U \in B(H)$ and T^{*} preserves a c - $K-g$-frame for $R(T)$. In the following theorem, we state some conditions on K, U and T such that U^{*} can also preserve the same c - $K-g$-frame for $R(U)$.

Theorem 2.4. Let $\Lambda=\left\{\Lambda_{\omega}\right\}_{\omega \in \Omega}$ be a c-K-g-frame for H with respect to $\left\{H_{\omega}\right\}_{\omega \in \Omega}$. Suppose that $T, U \in B(H)$ are closed ranged, and $N(T)=$ $N(U)$ with $K U T^{\dagger}=U T^{\dagger} K$ and $R\left(K^{*}\right) \cap N\left(U^{*}\right)=\{0\}$. If $\left\{\Lambda_{\omega} T^{*}\right\}_{\omega \in \Omega}$ is a c-K-g-frame for $R(T)$ with respect to $\left\{H_{\omega}\right\}_{\omega \in \Omega}$, then $\left\{\Lambda_{\omega} U^{*}\right\}_{\omega \in \Omega}$ is a c-K-g-frame for $R(U)$ with respect to $\left\{H_{\omega}\right\}_{\omega \in \Omega}$.

Proof. We only need to show that $\left\{\Lambda_{\omega} U^{*}\right\}_{\omega \in \Omega}$ has the lower frame condition. We define

$$
L: R(T) \longrightarrow R(U)
$$

by $L f=U T^{\dagger} f, \quad f \in R(T)$. By the assumptions, $K L=L K$. Since $N(T)=N(U)$, we have $R\left(T^{\dagger}\right)=R\left(U^{\dagger}\right)$. Hence by Lemma (1.2), $N(L)=N\left(U T^{\dagger}\right)=N\left(T T^{\dagger}\right)=(R(T))^{\perp}$, which implies

$$
N(L)=N\left(U T^{\dagger}\right) \cap R(T)=(R(T))^{\perp} \cap R(T)=\{0\} .
$$

So, L is invertible on $R(T)$. By Lemma 1.2, $T^{\dagger} T=P_{R\left(T^{\dagger}\right)}=P_{R\left(U^{\dagger}\right)}=$ $U^{\dagger} U$. Therefore

$$
\begin{equation*}
L T=U T^{\dagger} T=U U^{\dagger} U=U \tag{6}
\end{equation*}
$$

Now, let C, D be the frame bounds of $\left\{\Lambda_{\omega} T^{*}\right\}_{\omega \in \Omega}$, then for each $f \in$ $R(U)$, from (6), we have

$$
\begin{aligned}
\int_{\Omega}\left\|\Lambda_{\omega} U^{*} f\right\|^{2} d \mu(\omega) & =\int_{\Omega}\left\|\Lambda_{\omega} T^{*} L^{*} f\right\|^{2} d \mu(\omega) \geq C\left\|K^{*} L^{*} f\right\|^{2} \\
& =C\left\|L^{*} K^{*} f\right\|^{2} \geq C\left\|L^{-1}\right\|^{-2}\left\|K^{*} f\right\|^{2}
\end{aligned}
$$

Furthermore for each $f \in R(U)$,
$\int_{\Omega}\left\|\Lambda_{\omega} U^{*} f\right\|^{2} d \mu(\omega)=\int_{\Omega}\left\|\Lambda_{\omega} T^{*} L^{*} f\right\|^{2} d \mu(\omega) \leq B\left\|L^{*} f\right\|^{2}=B\|L\|^{2}\|f\|^{2}$.
So $\left\{\Lambda_{\omega} U^{*}\right\}_{\omega \in \Omega}$ is a $c-K-g$-frame for $R(U)$.

Theorem 2.5. Let $K \in B(H)$ and $\Lambda=\left\{\Lambda_{\omega}\right\}_{\omega \in \Omega}$ be a c-g-Bessel family for H with respect to $\left\{H_{\omega}\right\}_{\omega \in \Omega}$. Suppose that T_{Λ} is the synthesis operator of Λ. Then, the following conditions are equivalent:
(i) $R(K)=R\left(T_{\Lambda}\right)$.
(ii) There exist two constants $C, D>0$, such that for each $f \in H$,

$$
\begin{equation*}
C\left\|K^{*} f\right\|^{2} \leq \int_{\Omega}\left\|\Lambda_{\omega} f\right\|^{2} d \mu(\omega) \leq D\left\|K^{*} f\right\|^{2} \tag{7}
\end{equation*}
$$

(iii) $\Lambda=\left\{\Lambda_{\omega}\right\}_{\omega \in \Omega}$ is a c-K-g-frame for H with respect to $\left\{H_{\omega}\right\}_{\omega \in \Omega}$ and there exists a c-g-Bessel family $\left\{\Gamma_{\omega}\right\}_{\omega \in \Omega}$ for H with respect to $\left\{H_{\omega}\right\}_{\omega \in \Omega}$ such that $\Lambda_{\omega}=\Gamma_{\omega} K^{*}$ for each $\omega \in \Omega$.

Proof. $(i) \Rightarrow$ (ii) By Lemma 1.3, there exist $C, D>0$, such that $C K K^{*} \leq T_{\Lambda} T_{\Lambda}^{*} \leq D K K^{*}$. Thus, for each $f \in H$,

$$
C\left\|K^{*} f\right\|^{2} \leq\left\|T_{\Lambda}^{*} f\right\|^{2}=\int_{\Omega}\left\|\Lambda_{\omega} f\right\|^{2} d \mu(\omega) \leq D\left\|K^{*} f\right\|^{2}
$$

$(i i) \Rightarrow$ (iii) It suffices to show the second part of the result. The righthand inequity in (7) is equivalent to $T_{\Lambda} T_{\Lambda}^{*} \leq D K K^{*}$. By Lemma 1.3, there exists an operator $Q \in B\left(\left(\oplus_{\omega \in \Omega} H_{\omega}, \mu\right)_{L^{2}}, H\right)$ such that $T_{\Lambda}=K Q$ and $T_{\Lambda}^{*}=Q^{*} K^{*}$. We define for each $g \in H$ and for almost all $\omega \in \Omega$,

$$
\Gamma_{\omega} g=\left(Q^{*} g\right)(\omega) .
$$

Therefore we have

$$
\left\{\Lambda_{\omega}(g)\right\}_{\omega \in \Omega}=\left\{\left(Q^{*}\left(K^{*} g\right)(\omega)\right\}_{\omega \in \Omega}=\left\{\Gamma_{\omega}\left(K^{*} g\right)\right\}_{\omega \in \Omega},\right.
$$

which implies that $\Lambda_{\omega}=\Gamma_{\omega} K^{*}$ for almost all $\omega \in \Omega$. So for each $g \in H$,

$$
\int_{\Omega}\left\|\Gamma_{\omega} g\right\|^{2} d \mu(\omega)=\int_{\Omega}\left\|\left(Q^{*} g\right)(\omega)\right\|^{2} d \mu(\omega)=\left\|\left(Q^{*} g\right)\right\|_{2}^{2} \leq\|Q\|_{2}^{2}\|g\|^{2}
$$

Hence, $\left\{\Gamma_{\omega}\right\}_{\omega \in \Omega}$ is a $c-g$-Bessel family for H.
(iii) $\Rightarrow(i)$ For each $f \in H$, we have

$$
C_{\Lambda}\left\|K^{*} f\right\|^{2} \leq \int_{\Omega}\left\|\Lambda_{\omega} f\right\|^{2} d \mu\left(\omega=\int_{\Omega}\left\|\Gamma_{\omega} K^{*} f\right\|^{2} d \mu(\omega) \leq D_{\Gamma}\left\|K^{*} f\right\|^{2}\right.
$$

Thus, $C_{\Lambda} K K^{*} \leq T_{\Lambda} T_{\Lambda}^{*} \leq D_{\Gamma} K K^{*}$, by Lemma (1.3), $R(K)=R\left(T_{\Lambda}\right)$.
The following theorem is applied to construct c - $K-g$-frames by given some linear bounded operators and some $c-K-g$-frames.

Theorem 2.6. Suppose that $K_{1}, K_{2} \in B(H)$ and $\Lambda=\left\{\Lambda_{\omega}\right\}_{\omega \in \Omega}$ is a c - $K_{1}-g$-frame for H with respect to $\left\{H_{\omega}\right\}_{\omega \in \Omega}$.
(i) If $\Lambda=\left\{\Lambda_{\omega}\right\}_{\omega \in \Omega}$ is also a c- K_{2}-g-frame for H with respect to $\left\{H_{\omega}\right\}_{\omega \in \Omega}$, then it is a $c-\left(K_{1}+K_{2}\right)$-g-frame for H with respect to $\left\{H_{\omega}\right\}_{\omega \in \Omega}$.
(ii) If, in addition, $\Lambda=\left\{\Lambda_{\omega}\right\}_{\omega \in \Omega}$ is A-tight c - $K_{1}-g$-frame, then it is a c - $K_{2}-g$-frame for H with respect to $\left\{H_{\omega}\right\}_{\omega \in \Omega}$ if and only if $R\left(K_{2}\right) \subseteq R\left(K_{1}\right)$.

Proof. (i) Since $\Lambda=\left\{\Lambda_{\omega}\right\}_{\omega \in \Omega}$ is a c - $K_{1}-g$-frame and also c - K_{2} - g-frame for H with respect to $\left\{H_{\omega}\right\}_{\omega \in \Omega}$, so for each $f \in H$, we have

$$
\begin{equation*}
A_{1}\left\|K_{1}^{*} f\right\|^{2} \leq \int_{\Omega}\left\|\Lambda_{\omega} f\right\|^{2} d \mu(\omega) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{2}\left\|K_{2}^{*} f\right\|^{2} \leq \int_{\Omega}\left\|\Lambda_{\omega} f\right\|^{2} d \mu(\omega) \tag{9}
\end{equation*}
$$

By (8) and (9), we have

$$
\begin{equation*}
\left(\frac{A_{1}}{2}\left\|K_{1}^{*} f\right\|^{2}+\frac{A_{1}}{2}\left\|K_{2}^{*} f\right\|^{2}\right) \leq \int_{\Omega}\left\|\Lambda_{\omega} f\right\|^{2} d \mu(\omega) \tag{10}
\end{equation*}
$$

Now, by taking $\lambda=\min \left\{\frac{A_{1}}{2}, \frac{A_{2}}{2}\right\}$ in (10), we obtain

$$
\lambda\left\|\left(K_{1}+K_{2}\right)^{*} f\right\|^{2} \leq\left(A_{1}\left\|K_{1}^{*} f\right\|^{2}+A_{2}\left\|K_{2}^{*} f\right\|^{2}\right) \leq 2 \int_{\Omega}\left\|\Lambda_{\omega} f\right\|^{2} d \mu(\omega)
$$

that is $\Lambda=\left\{\Lambda_{\omega}\right\}_{\omega \in \Omega}$ is a c - $\left(K_{1}+K_{2}\right)$ - g-frame for H with respect to $\left\{H_{\omega}\right\}_{\omega \in \Omega}$. (ii) By the assumptions, $\Lambda=\left\{\Lambda_{\omega}\right\}_{\omega \in \Omega}$ is A-tight c - $K_{1}-g$ frame and $c-K_{2}$ - g-frame, there exists a $D>0$, such that for each $f \in H$, we have

$$
A\left\|K_{1}^{*} f\right\|^{2}=\int_{\Omega}\left\|\Lambda_{\omega} f\right\|^{2} d \mu(\omega) \geq D\left\|K_{2}^{*} f\right\|^{2}
$$

Hence, $K_{2} K_{2}^{*} \leq \frac{A}{D} K_{1} K_{1}^{*}$ and by Lemma 1.3, $R\left(K_{2}\right) \subseteq R\left(K_{1}\right)$.
For the opposite implication, by Lemma 1.3, there exists $\gamma>0$, such that $K_{2} K_{2}^{*} \leq \gamma K_{1} K_{1}^{*}$. Hence for each $f \in H$, we have

$$
\left\|K_{2}^{*} f\right\|^{2} \leq \gamma\left\|K_{1}^{*} f\right\|^{2}=\frac{\gamma}{A} \int_{\Omega}\left\|\Lambda_{\omega} f\right\|^{2} d \mu(\omega)
$$

therefore

$$
\frac{A}{\gamma}\left\|K_{2}^{*} f\right\|^{2} \leq \int_{\Omega}\left\|\Lambda_{\omega} f\right\|^{2} d \mu(\omega)=A\left\|K_{1}^{*} f\right\|^{2} \leq A\|K\|^{2}\|f\|^{2} .
$$

So $\Lambda=\left\{\Lambda_{\omega}\right\}_{\omega \in \Omega}$ is a c - K_{2} - g-frame for H with respect to $\left\{H_{\omega}\right\}_{\omega \in \Omega}$.

3 Sum of $c-K-g$-frames

In this section, we suppose that Λ and Γ are arbitrary $c-K-g$-frames and we study the sum of these frames.

Theorem 3.1. Suppose that $K_{1}, K_{2} \in B(H)$ are closed range operators, $\Lambda=\left\{\Lambda_{\omega}\right\}_{\omega \in \Omega}$ and $\Gamma=\left\{\Gamma_{\omega}\right\}_{\omega \in \Omega}$ are c-K $K_{1-g-f r a m e ~ a n d ~ c-g-B e s s e l ~ f a m i l y ~}$ for H with respect to $\left\{H_{\omega}\right\}_{\omega \in \Omega}$, respectively.
(i) If $K_{1} \geq 0$ and $\Gamma=\left\{\Gamma_{\omega}\right\}_{\omega \in \Omega}$ is a c-K $K_{1}-g$-dual for $\Lambda=\left\{\Lambda_{\omega}\right\}_{\omega \in \Omega}$, then the family $\left\{\Lambda_{\omega}+\Gamma_{\omega}\right\}_{\omega \in \Omega}$ is a c-K$K_{1}-g$-frame for H with respect to $\left\{H_{\omega}\right\}_{\omega \in \Omega}$.
(ii) If $\Gamma=\left\{\Gamma_{\omega}\right\}_{\omega \in \Omega}$ is c-K $K_{2}-g$-frame for H with respect to $\left\{H_{\omega}\right\}_{\omega \in \Omega}$ and $T_{\Lambda} T_{\Gamma}^{*}=0$, then $\left\{\Lambda_{\omega}+\Gamma_{\omega}\right\}_{\omega \in \Omega}$ is a c - $\left(K_{1}+K_{2}\right)$-g-frame for H with respect to $\left\{H_{\omega}\right\}_{\omega \in \Omega}$.

Proof. (i) Since $\Gamma=\left\{\Gamma_{\omega}\right\}_{\omega \in \Omega}$ is a $c-K_{1}-g$-dual of $\left\{\Lambda_{\omega}\right\}_{\omega \in \Omega}$, for each $f \in H$, we have

$$
\begin{aligned}
\left\langle K_{1}^{*} f, h\right\rangle & =\left\langle f, K_{1} h\right\rangle=\overline{\left\langle K_{1} h, f\right\rangle}=\overline{\int_{\Omega}\left\langle\Lambda_{\omega}^{*} \Gamma_{\omega} h, f\right\rangle d \mu(\omega)} \\
& =\int_{\Omega}\left\langle\Gamma_{\omega}^{*} \Lambda_{\omega} f, h\right\rangle d \mu(\omega) .
\end{aligned}
$$

We denote by $S_{\Lambda+\Gamma}$, the c - g-frame operator of $\left\{\Lambda_{\omega}+\Gamma_{\omega}\right\}_{\omega \in \Omega}$. So for each $f, h \in H$,

$$
\begin{aligned}
\left\langle S_{\Lambda+\Gamma} f, h\right\rangle & =\int_{\Omega}\left\langle f,\left(\Lambda_{\omega}+\Gamma_{\omega}\right)^{*}\left(\Lambda_{\omega}+\Gamma_{\omega}\right) h\right\rangle d \mu(\omega) \\
& =\int_{\Omega}\left\langle\left(\Lambda_{\omega}+\Gamma_{\omega}\right)^{*}\left(\Lambda_{\omega}+\Gamma_{\omega}\right) f, h\right\rangle d \mu(\omega) \\
& =\int_{\Omega}\left\langle\Lambda_{\omega}^{*} \Lambda_{\omega} f, h\right\rangle d \mu(\omega)+\int_{\Omega}\left\langle\Gamma_{\omega}^{*} \Gamma_{\omega} f, h\right\rangle d \mu(\omega) \\
& +\int_{\Omega}\left\langle\Lambda_{\omega}^{*} \Gamma_{\omega} f, h\right\rangle d \mu(\omega)+\int_{\Omega}\left\langle\Gamma_{\omega}^{*} \Lambda_{\omega} f, h\right\rangle d \mu(\omega) \\
& =\left\langle S_{\Lambda} f, h\right\rangle+\left\langle S_{\Gamma} f, h\right\rangle+\left\langle K_{1} f, h\right\rangle+\left\langle K_{1}^{*} f, h\right\rangle,
\end{aligned}
$$

therefore

$$
\begin{aligned}
\left\langle S_{\Lambda+\Gamma} f, f\right\rangle & =\int_{\Omega}\left\|\left(\Lambda_{\omega}+\Gamma_{\omega}\right) f\right\|^{2} d \mu(\omega) \geq\left\langle S_{\Lambda} f, f\right\rangle \\
& =\int_{\Omega}\left\|\Lambda_{\omega} f\right\|^{2} d \mu(\omega) \geq C_{\Lambda}\left\|K_{1}^{*} f\right\|^{2}
\end{aligned}
$$

This shows that $\left\{\Lambda_{\omega}+\Gamma_{\omega}\right\}_{\omega \in \Omega}$ has the lower frame condition.
Now, we show $\left\{\Lambda_{\omega}+\Gamma_{\omega}\right\}_{\omega \in \Omega}$ is a c - g-Bessel family. For each $f \in H$, we have

$$
\begin{aligned}
\int_{\Omega}\left\|\left(\Lambda_{\omega}+\Gamma_{\omega}\right) f\right\|^{2} d \mu(\omega) & \leq 2 \int_{\Omega}\left\|\Lambda_{\omega} f\right\|^{2} d \mu(\omega)+2 \int_{\Omega}\left\|\Gamma_{\omega} f\right\|^{2} d \mu(\omega) \\
& \leq 2 B_{1}\|f\|^{2}+2 B_{2}\|f\|^{2}=2\left(B_{1}+B_{2}\right)\|f\|^{2}
\end{aligned}
$$

(ii) We only need to show that $\left\{\Lambda_{\omega}+\Gamma_{\omega}\right\}_{\omega \in \Omega}$ has the lower frame condition. Since $T_{\Lambda} T_{\Gamma}^{*}=0$, for each $f \in H$, we have $\int_{\Omega}\left\langle\Lambda_{\omega}^{*} \Gamma_{\omega} f, f\right\rangle d \mu(\omega)=0$ and

$$
\begin{aligned}
\int_{\Omega}\left\|\left(\Lambda_{\omega}+\Gamma_{\omega}\right) f\right\|^{2} d \mu(\omega) & =\int_{\Omega}\left\|\Lambda_{\omega} f\right\|^{2} d \mu(\omega)+\int_{\Omega}\left\|\Gamma_{\omega} f\right\|^{2} d \mu(\omega) \\
& \geq A_{1}\left\|K_{1}^{*} f\right\|^{2}+A_{2}\left\|K_{2}^{*} f\right\|^{2} \geq \lambda\left\|\left(K_{1}+K_{2}\right) f\right\|^{2}
\end{aligned}
$$

where $\lambda=\min \left\{A_{1}, A_{2}\right\}$. This is the desired conclusion.
The following theorem is the continuous version of Theorem 2.1 in [10].

Theorem 3.2. Suppose that $K_{1} \in B\left(H_{1}\right), K_{2} \in B\left(H_{2}\right)$ and $\Lambda=$ $\left\{\Lambda_{\omega}\right\}_{\omega \in \Omega}$ is a c - $K_{1}-g$-frame and $\Gamma=\left\{\Gamma_{\omega}\right\}_{\omega \in \Omega}$ is a c - g-Bessel family for H_{1}. Assume that $U_{1}, U_{2} \in B\left(H_{1}, H_{2}\right)$ and $U_{1} T_{\Lambda} T_{\Gamma}^{*} U_{2}^{*}+U_{2} T_{\Gamma} T_{\Lambda}^{*} U_{1}^{*}+$ $U_{2} S_{\Gamma} U_{2}^{*} \geq 0$. If U_{1} has closed range with $U_{1} K_{1}=K_{2} U_{1}$ and $R\left(K_{2}^{*}\right) \cap$ $N\left(U_{1}^{*}\right)=\{0\}$, then $\left\{\Lambda_{\omega} U_{1}^{*}+\Gamma_{\omega} U_{2}^{*}\right\}_{\omega \in \Omega}$ is a $c-K_{2}-g$-frame for H_{2} with respect to $\left\{H_{\omega}\right\}_{\omega \in \Omega}$.

Proof. Let $\Lambda=\left\{\Lambda_{\omega}\right\}_{\omega \in \Omega}, \Gamma=\left\{\Gamma_{\omega}\right\}_{\omega \in \Omega}$ be a c - $K_{1}-g$-frame and c - g Bessel family for H_{1} with bounds A_{1}, B_{1} and B_{2}, respectively. Similar analysis to the proof of Theorem 3.1, we show that $\left\{\Lambda_{\omega} U_{1}^{*}+\Gamma_{\omega} U_{2}^{*}\right\}_{\omega \in \Omega}$ is $c-g$-Bessel family for H_{2} with bound $2 B_{1}\left\|U_{1}\right\|^{2}+2 B_{2}\left\|U_{2}\right\|^{2}$. Now, for each $g \in H_{2}$, we have

$$
\begin{aligned}
\int_{\Omega}\left\|\left(\Lambda_{\omega} U_{1}^{*}+\Gamma_{\omega} U_{2}^{*}\right) g\right\|^{2} d \mu(\omega) & =\int_{\Omega}\left\|\Lambda_{\omega} U_{1}^{*} g\right\|^{2} d \mu(\omega)+\left\langle U_{2} T_{\Gamma} T_{\Lambda}^{*} U_{1}^{*} g, g\right\rangle \\
& +\left\langle U_{1} T_{\Lambda} T_{\Gamma}^{*} U_{2}^{*} g, g\right\rangle+\left\langle U_{2} T_{\Gamma} T_{\Gamma}^{*} U_{2}^{*} g, g\right\rangle \\
& =\int_{\Omega}\left\|\Lambda_{\omega} U_{1}^{*} g\right\|^{2} d \mu(\omega)+\left\langle\left(U_{1} T_{\Lambda} T_{\Gamma}^{*} U_{2}^{*}\right.\right. \\
& \left.\left.+U_{2} T_{\Gamma} T_{\Lambda}^{*} U_{1}^{*}+U_{2} S_{\Gamma} U_{2}^{*}\right) g, g\right\rangle
\end{aligned}
$$

By the assumptions, for each $g \in H$ we obtain

$$
\begin{aligned}
\int_{\Omega}\left\|\left(\Lambda_{\omega} U_{1}^{*}+\Gamma_{\omega} U_{2}^{*}\right) g\right\|^{2} d \mu(\omega) & \geq \int_{\Omega}\left\|\Lambda_{\omega} U_{1}^{*} g\right\|^{2} d \mu(\omega) \geq A_{1}\left\|K_{1}^{*} U_{1}^{*} g\right\|^{2} \\
& =A_{1}\left\|U_{1}^{*} K_{2}^{*} g\right\|^{2} \geq A_{1}\left\|U_{1}^{\dagger}\right\|^{-2}\left\|K_{2}^{*} g\right\|^{2} .
\end{aligned}
$$

Therefore, for each $g \in H_{2}$, we have

$$
\begin{aligned}
A_{1}\left\|U_{1}^{\dagger}\right\|^{-2}\left\|K_{2}^{*} g\right\|^{2} & \leq \int_{\Omega}\left\|\left(\Lambda_{\omega} U_{1}^{*}+\Gamma_{\omega} U_{2}^{*}\right) g\right\|^{2} d \mu(\omega) \\
& \leq\left(2 B_{1}\left\|U_{1}\right\|^{2}+2 B_{2}\left\|U_{2}\right\|^{2}\right)\|g\|^{2} .
\end{aligned}
$$

Corollary 3.3. Suppose that $K_{1} \in B\left(H_{1}\right), K_{2} \in B\left(H_{2}\right)$ and $\Lambda=$ $\left\{\Lambda_{\omega}\right\}_{\omega \in \Omega}$ is a c - $K_{1}-g$-frame for H_{1} with respect to $\left\{H_{\omega}\right\}_{\omega \in \Omega}$. If $U \in$ $B\left(H_{1}, H_{2}\right)$ has closed range, $U K_{1}=K_{2} U$ and $R\left(K_{2}^{*}\right) \cap N\left(U^{*}\right)=\{0\}$, then $\left\{\Lambda_{\omega} U^{*}\right\}_{\omega \in \Omega}$ is a c-K-K-g-frame for H_{2} with respect to $\left\{H_{\omega}\right\}_{\omega \in \Omega}$.

Corollary 3.4. Let $K, U \in B(H)$. Suppose that $\Lambda=\left\{\Lambda_{\omega}\right\}_{\omega \in \Omega}$ is a $c-K$ - g-frame for H with respect to $\left\{H_{\omega}\right\}_{\omega \in \Omega}$. If U is positive operator such that, $U S_{\Lambda}=S_{\Lambda} U$, then $\left\{\Lambda_{\omega}+\Lambda_{\omega} U\right\}_{\omega \in \Omega}$ is a $c-K$ - g-frame for H with respect to $\left\{H_{\omega}\right\}_{\omega \in \Omega}$.
Proof. Since $T_{\Lambda} T_{\Lambda}^{*} U^{*}+U T_{\Lambda} T_{\Lambda}^{*}+U T_{\Lambda} T_{\Lambda}^{*} U^{*}=S_{\Lambda} U+U S_{\Lambda}+U S_{\Lambda} U^{*}$, by Theorem 3.2, we need only to show that $S_{\Lambda} U+U S_{\Lambda}+U S_{\Lambda} U^{*} \geq 0$. By Theorem 4.33 in [8], there exists a unique positive operator V such that $U=V^{2}$. In addition, since $U S_{\Lambda}=S_{\Lambda} U$, implies that $V S_{\Lambda}=S_{\Lambda} V$. For each $f \in H$, we have

$$
\begin{aligned}
\left\langle\left(S_{\Lambda} U+U S_{\Lambda}+U S_{\Lambda} U^{*}\right) f, f\right\rangle & =\left\langle S_{\Lambda} U f, f\right\rangle+\left\langle U S_{\Lambda} f, f\right\rangle+\left\langle U S_{\Lambda} U^{*} f, f\right\rangle \\
& =2\left\langle U S_{\Lambda} f, f\right\rangle+\left\langle U T_{\Lambda} T_{\Lambda}^{*} U^{*} f, f\right\rangle \\
& =2\left\langle V^{2} S_{\Lambda} f, f\right\rangle+\left\|T_{\Lambda}^{*} U^{*} f\right\|^{2} \\
& =2\left\langle V S_{\Lambda} V f, f\right\rangle+\left\|T_{\Lambda}^{*} U^{*} f\right\|^{2} \\
& =2\left\|T_{\Lambda}^{*} V f\right\|^{2}+\left\|T_{\Lambda}^{*} U^{*} f\right\|^{2} \geq 0 .
\end{aligned}
$$

Theorem 3.5. Let $K_{1} \in B\left(H_{1}\right)$ be closed range, $\Lambda=\left\{\Lambda_{\omega}\right\}_{\omega \in \Omega}$ and $\Gamma=$ $\left\{\Gamma_{\omega}\right\}_{\omega \in \Omega}$ be c - $K_{1}-g$-frames for H_{1} with respect to $\left\{H_{\omega}\right\}_{\omega \in \Omega}$. Suppose that $K_{2} \in B\left(H_{2}\right), U_{1}, U_{2} \in B\left(H_{1}, H_{2}\right)$ and $U_{1} T_{\Lambda} T_{\Gamma}^{*} U_{2}^{*}+U_{2} T_{\Gamma} T_{\Lambda}^{*} U_{1}^{*} \geq 0$. If one the following conditions holds, then for each $\alpha_{1}, \alpha_{2}>0,\left\{\alpha_{1} \Lambda_{\omega} U_{1}^{*}+\right.$ $\left.\alpha_{2} \Gamma_{\omega} U_{2}^{*}\right\}_{\omega \in \Omega}$ is a c - K_{2} - g-frame for H_{2} with respect to $\left\{H_{\omega}\right\}_{\omega \in \Omega}$.
(i) $P=\alpha_{1} U_{1}+\alpha_{2} U_{2}, R\left(P^{*}\right) \subseteq R\left(K_{1}\right), R\left(K_{2}\right) \subseteq R(P)$.
(ii) $Q=\alpha_{1} U_{1}-\alpha_{2} U_{2}, R\left(Q^{*}\right) \subseteq R\left(K_{1}\right), R\left(K_{2}\right) \subseteq R(Q)$.

Proof. Let A_{1}, B_{1} and A_{2}, B_{2} be frame bounds of Λ and Γ, respectively. Similar to proof of Theorem 3.2, $\alpha_{1}, \alpha_{2}>0,\left\{\alpha_{1} \Lambda_{\omega} U_{1}^{*}+\alpha_{2} \Gamma_{\omega} U_{2}^{*}\right\}_{\omega \in \Omega}$ is a c - g-Bessel family for H_{2} with respect to $\left\{H_{\omega}\right\}_{\omega \in \Omega}$, with bound $2 \alpha_{1} B_{1}\left\|U_{1}\right\|^{2}+2 \alpha_{2} B_{2}\left\|U_{2}\right\|^{2}$ and for each $g \in H$, we have

$$
\begin{aligned}
\int_{\Omega}\left\|\left(\alpha_{1} \Lambda_{\omega} U_{1}^{*}+\alpha_{2} \Gamma_{\omega} U_{2}^{*}\right) g\right\|^{2} d \mu(\omega) & =\alpha_{1}^{2} \int_{\Omega}\left\|\Lambda_{\omega} U_{1}^{*} g\right\|^{2} d \mu(\omega) \\
& +2 \alpha_{1} \alpha_{2}\left\langle\left(U_{2} T_{\Gamma} T_{\Lambda}^{*} U_{1}^{*}+U_{1} T_{\Lambda} T_{\Gamma}^{*} U_{2}^{*}\right) g\right. \\
& , g\rangle+\alpha_{2}^{2} \int_{\Omega}\left\|\Gamma_{\omega} U_{2}^{*} g\right\|^{2} d \mu(\omega) \\
& \geq \alpha_{1}^{2} A_{1}\left\|K_{1}^{*} U_{1}^{*} g\right\|^{2}+\alpha_{2}^{2} A_{2}\left\|K_{1}^{*} U_{2}^{*} g\right\|^{2} .
\end{aligned}
$$

Without loss of generality, suppose that condition (ii) holds. Set

$$
\lambda=\min \left\{A_{1}, A_{2}\right\},
$$

by the parallelogram law, for each $g \in H_{2}$, we have

$$
\begin{aligned}
\alpha_{1}^{2} A_{1}\left\|K_{1}^{*} U_{1}^{*} g\right\|^{2}+\alpha_{2}^{2} A_{2}\left\|K_{1}^{*} U_{2}^{*} g\right\|^{2} & \geq \lambda\left(\left\|\alpha_{1} K_{1}^{*} U_{1}^{*} g\right\|^{2}+\left\|\alpha_{2} K_{1}^{*} U_{2}^{*} g\right\|^{2}\right) \\
& =\frac{\lambda}{2}\left(\left\|K_{1}^{*}\left(\alpha_{1} U_{1}+\alpha_{2} U_{2}\right)^{*} g\right\|^{2}\right. \\
& \left.+\left\|K_{1}^{*}\left(\alpha_{1} U_{1}-\alpha_{2} U_{2}\right)^{*} g\right\|^{2}\right) \\
& \geq \frac{\lambda}{2}\left\|K_{1}^{*} Q^{*} g\right\|^{2} \geq \frac{\lambda}{2}\left\|K_{1}^{\dagger}\right\|^{-2}\left\|Q^{*} g\right\|^{2} .
\end{aligned}
$$

Since $R\left(K_{2}\right) \subseteq R(Q)$, so by the Lemma 1.3, there exists $\alpha>0$ such that $K_{2} K_{2}^{*} \leq \alpha Q Q^{*}$. It follows that for each $g \in H_{2}, \alpha^{-1}\left\|K_{2}^{*} g\right\|^{2} \leq\left\|Q^{*} g\right\|^{2}$. Therefore, for each $g \in H_{2}$, we have

$$
\begin{aligned}
\frac{\lambda}{2} \alpha^{-1}\left\|K_{1}^{\dagger}\right\|^{-2}\left\|K_{2}^{*} g\right\|^{2} & \leq \int_{\Omega}\left\|\left(\alpha_{1} \Lambda_{\omega} U_{1}^{*}+\alpha_{2} \Gamma_{\omega} U_{2}^{*}\right) g\right\|^{2} d \mu(\omega) \\
& \leq\left(2 \alpha_{1}^{2} B_{1}\left\|U_{1}\right\|^{2}+2 \alpha_{2}^{2} B_{2}\left\|U_{2}\right\|^{2}\right)\|g\|^{2}
\end{aligned}
$$

Acknowledgements

The authors thank the referees for valuable suggestions and comments which have led to a significant improvement of this paper.

References

[1] M. R. Abdollahpour and M. H. Faroughi, Continuous G-Frames in Hilbert Spaces, Southeast Asian Bull. Math., 32 (2008), 1-19.
[2] S. T. Ali, J. P. Antoine and J. P. Gazeau, Continuous Frames in Hilbert Spaces, Annals of Phy., 222 (1993), 1-37.
[3] E. Alizadeh, A. Rahimi, E. Osgooei and M. Rahmani, Continuous $K-g$-Frames in Hilbert Spaces, Bull. Iran. Math. Soc., 45 (4) (2019), 1091-1104.
[4] E. Alizadeh, A. Rahimi, E. Osgooei and M. Rahmani, Some Properties of Continuous K - G-Frames in Hilbert Spaces, U. P. B. Sci. Bull, Series A., 81 (3) (2019), 43-52.
[5] F. Arabyani Neyshaburi and A. A. Arefijamaal, Some Constructions of K-Frames and Their Duals, Rocky Mountain J. Math., 47 (6) (2017), 1749-1764.
[6] O. Christensen, An Introduction to Frames and Riesz Bases, Birkhäuser, Boston, (2016).
[7] R. G. Douglas, On majorization, factorization and range inclusion of operators on Hilbert space, Pro. Amer. Math. Sc., 17 (2) (1966), 413-415.
[8] R. G. Douglas, Banacch Algebra Techniques in Operator Theory, 2nd edn. Academic Press, new York (1998).
[9] R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc., 72 (1952), 341-366.
[10] D. Du and Y. C. Zhu, Constructions of $K-g$-Frames and Tight $K-g$ Frames in Hilbert Spaces, Bull. Malays. Math. Sci. Soc., 43 (2020), 4107-4122.
[11] L. Gavruta, Frames for Operators, Appl. Comput. Harmon. Anal., 32 (2012), 139-144.
[12] M. He, J. Leng, J. Yu, et al., On the Sum of K-Frames in Hilbert Spaces, Mediterr. J. Math., 17(46) (2020), 1-19.
[13] D. Hua and Y. Hung, $K-g$-frames and stability of $K-g$-frames in Hilbert spaces, . Korean Math. Soc., 53 (6) (2016), 1331-1345.
[14] Y. Huang and S. Shi, New Constructions of $K-g$-Frames, Results Math., 73(4) (2018), 1-13.
[15] M. Rahmani and E. Alizadeh, Some Points on c - $K-g$-Frames and Their Duals, Iran J Sci Technol Trans Sci., 46(2) (2022), 525-534.
[16] M. Rahmani, K-Frames from Finte Extensions, Results Math., 77(3) (2022), 100-1-100-13.
[17] W. Sun, G-Frames and G-Riesz bases, J. Math. Anal. Appl., 322(1) (2006), 437-452.
[18] Z. Q. Xiang, Some new results on the construction and stability of $K-g$-frames in Hilbert Spaces, Int. J. Wavelets. Multiresolut. Inf. Process., 18(5) (2020), 2050034-1-2050034-19.
[19] J. Z. Li and Y. C. Zhu, Exact G-Frames in Hilbert Spaces, J. Math. Anal. Appl., 374 (1) (2011), 201-209.

Esmaeil Alizadeh

Department of Mathematics
Assistant Professor of Mathematics
Marand Branch, Islamic Azad University,
Marand, Iran
E-mail:e_alizadeh@marandiau.ac.ir

Morteza Rahmani

Department of Mathematics
Assistant Professor of Mathematics
Young Researchers and Elite Club, Ilkhchi Branch, Islamic Azad University, Ilkhchi, Iran
E-mail: morteza.rahmany@gmail.com

[^0]: Received: October 2021; Accepted: July 2022

 * Corresponding Author

