Journal of Mathematical Extension Vol. 17, No. 1, (2023) (3)1-17 URL: https://doi.org/10.30495/JME.2023.2199 ISSN: 1735-8299 Original Research Paper

Construction Methods and Sum of *c*-*K*-*g*-Frames in Hilbert Spaces

E. Alizadeh^{*}

Marand Branch, Islamic Azad University

M. Rahmani

Ilkhchi Branch, Islamic Azad University

Abstract. This paper was aimed at studying some novel methods of constructing new c-K-g-frames in a Hilbert space H. Some necessary and sufficient conditions were given for some bounded operators on H under which new c-K-g-frames were obtained from the existing ones. Also, the sum of c-K-g-frames were discussed, some of their characterizations were identified, and some bounded operators offered to construct new c-K-g-frames from the old ones.

AMS Subject Classification: 42C15, 46C0 **Keywords and Phrases:** *cg*-frame, *c-K-g*-frame, Dual *c-K-g*-frame, sum of *c-K-g*-frames

1 Introduction

A frame for a Hilbert space H is a sequence of elements in H which provides a linear combination for each element in H, but the elements are not necessarily linear independent. Indeed, a frame can be thought of as a basis to which one has added more elements.

Received: October 2021; Accepted: July 2022

^{*}Corresponding Author

K-frames in Hilbert spaces were introduced by Gavruta to investigate atomic decomposition systems, stating some properties of them [5, 11, 12]. After that, K-g-frames have been introduced in [13] and some new results and characterizations of K-g-frames have been studied in [10, 14, 18]. Furthermore, the notion of continuous K-g-frames is presented in [3] and some properties of them have been studied in [4, 15].

Throughout this paper, (Ω, μ) is a measure space with positive measure μ , H, H_1 , H_2 and H_{ω} are separable Hilbert spaces and $B(H, H_{\omega})$ is the set of all bounded linear operators from H into H_{ω} , $\omega \in \Omega$. Also, B(H) is the set of all bounded linear operators on H. We will use the symbols R(U) and N(U) for the range and null space of an operator $U \in B(H_1, H_2)$, respectively.

Definition 1.1. ([8]) The operator $U \in B(H)$ is called a bounded below operator if there exists a positive number α such that

$$\alpha \|f\| \le \|U(f)\|, \quad f \in H.$$

A bounded operator $U: H \longrightarrow H$ is called self-adjoint if $U = U^*$. For a self-adjoint operator U, the inner product $\langle Uf, f \rangle$ is real for each $f \in H$ ([6]). Also, the partial order $U \leq V$ for the self-adjoint operators U and V is defined by

$$U \le V \Leftrightarrow \langle Uf, f \rangle \le \langle Vf, f \rangle, \quad f \in H.$$

Lemma 1.2. ([6]) Let $U \in B(H_1, H_2)$. Then the following holds:

- 1. R(U) is closed in H_2 if and only if $R(U^*)$ is closed in H_1 .
- 2. $(U^*)^{\dagger} = (U^{\dagger})^*$.
- 3. The orthogonal projection of H_2 onto R(U) is given by UU^{\dagger} .
- 4. The orthogonal projection of H_1 onto $R(U^{\dagger})$ is given by $U^{\dagger}U$.
- 5. $N(U^{\dagger}) = R^{\perp}(U)$ and $R(U^{\dagger}) = N^{\perp}(U)$.
- 6. U is surjective if and only if there exists a constant $\delta > 0$ such that $||U^*f|| \ge \delta ||f||, \quad \forall f \in H_1.$

Lemma 1.3. ([7]) Let $L_1 \in B(H_1, H)$ and $L_2 \in B(H_2, H)$. Then the following assertions are equivalent:

- (i) $R(L_1) \subseteq R(L_2)$.
- (ii) $L_1L_1^* \leq \lambda L_2L_2^*$ for some $\lambda > 0$.
- (iii) There exists an operator $U \in B(H_1, H_2)$ such that $L_1 = L_2 U$.

Moreover, if (i), (ii) and (iii) are valid, then there exists a unique operator U such that

1. $||U||^2 = inf\{\mu : L_1L_1^* \le \mu L_2L_2^*\},$ 2. $N(L_1) = N(U),$ 3. $R(U) \subset \overline{R(L_2)^*}.$

Definition 1.4. ([1]) Let $\varphi \in \prod_{\omega \in \Omega} H_{\omega}$. We call that φ is strongly measurable if φ as a mapping of Ω to $\bigoplus_{\omega \in \Omega} H_{\omega}$ is measurable, where

$$\Pi_{\omega\in\Omega}H_{\omega} = \{f: \Omega \longrightarrow \bigcup_{\omega\in\Omega}H_{\omega} ; f(\omega) \in H_{\omega}\}.$$

Definition 1.5. Choose the set

$$\left(\bigoplus_{\omega \in \Omega} H_{\omega}, \mu \right)_{L^2} = \left\{ F \in \Pi_{\omega \in \Omega} H_{\omega} | F \text{ is strongly measurable}, \\ \int_{\Omega} \|F(\omega)\|^2 d\mu(\omega) < \infty \right\},$$

with inner product given by

$$\langle F, G \rangle = \int_{\Omega} \langle F(\omega), G(\omega) \rangle d\mu(\omega).$$

It can be proved that $\left(\bigoplus_{\omega \in \Omega} H_{\omega}, \mu \right)_{L^2}$ is a Hilbert space ([1]). We will show the norm of $F \in \left(\bigoplus_{\omega \in \Omega} H_{\omega}, \mu \right)_{L^2}$ by $\|F\|_2$.

Now, the definition of continuous g-frames is reviewed.

Definition 1.6. The family of operators $\Lambda = \{\Lambda_{\omega} \in B(H, H_{\omega}) : \omega \in \Omega\}$ is called a continuous generalized frame, or simply a *cg*-frame, for *H* with respect to $\{H_{\omega}\}_{\omega \in \Omega}$ if:

- (i) for each $f \in H$, $\{\Lambda_{\omega}f\}_{\omega \in \Omega}$ is strongly measurable,
- (ii) there are two positive constants A and B such that

$$A\|f\|^2 \le \int_{\Omega} \|\Lambda_{\omega}f\|^2 d\mu(\omega) \le B\|f\|^2, \quad f \in H.$$
(1)

A and B are called the lower and upper cg-frame bounds, respectively. If A, B can be chosen such that A = B, then $\Lambda = {\Lambda_{\omega}}_{\omega \in \Omega}$ is called a tight cg-frame and if A = B = 1, it is called a Parseval cg-frame. A family $\Lambda = {\Lambda_{\omega}}_{\omega \in \Omega}$ is called cg-Bessel family if the second inequality in (1) holds.

Theorem 1.7. ([1]) Let $\Lambda = {\Lambda_{\omega}}_{\omega \in \Omega}$ be a cg-Bessel family for H with respect to ${H_{\omega}}_{\omega \in \Omega}$ with bound B. Then the mapping T_{Λ} of $\left(\bigoplus_{\omega \in \Omega} H_{\omega}, \mu \right)_{L^2}$ to H weakly defined by

$$\langle T_{\Lambda}F,g\rangle = \int_{\Omega} \langle \Lambda_{\omega}^*F(\omega),g\rangle d\mu(\omega), \quad F \in \left(\bigoplus_{\omega\in\Omega} H_{\omega},\mu\right)_{L^2}, \ g \in H,$$

is linear and bounded with $||T_{\Lambda}|| \leq \sqrt{B}$. Furthermore for each $g \in H$ and $\omega \in \Omega$,

$$T^*_{\Lambda}(g)(\omega) = \Lambda_{\omega}g.$$

The operator T_{Λ} is called the synthesis operator of $\{\Lambda_{\omega}\}_{\omega\in\Omega}$ and its adjoint T^*_{Λ} is called the analysis operator of $\Lambda = \{\Lambda_{\omega}\}_{\omega\in\Omega}$.

The continuous K-g-frames have been introduced in [3] as following:

Definition 1.8. Let $K \in B(H)$. A family $\Lambda = \{\Lambda_{\omega} \in B(H, H_{\omega}) : \omega \in \Omega\}$ is called a continuous *K*-*g*-frame, or *c*-*K*-g-frame, for *H* with respect to $\{H_{\omega}\}_{\omega\in\Omega}$ if:

- (i) $\{\Lambda_{\omega}f\}_{\omega\in\Omega}$ is strongly measurable for each $f\in H$,
- (ii) there exist constants $0 < A \leq B < \infty$ such that

$$A\|K^*f\|^2 \le \int_{\Omega} \|\Lambda_{\omega}f\|^2 \, d\mu(\omega) \le B\|f\|^2, \quad f \in H.$$
 (2)

The constants A, B are called lower and upper c-K-g-frame bounds, respectively. If A = B, then $\Lambda = \{\Lambda_{\omega}\}_{\omega \in \Omega}$ is called a tight c-K-g-frame and if A = B = 1, it is called a Parseval c-K-g-frame. The family $\Lambda = \{\Lambda_{\omega}\}_{\omega \in \Omega}$ is called a c-g-Bessel family if the right hand inequality in (2) holds. In this case, B is called the Bessel constant.

Now, assume that $\Lambda = {\Lambda_{\omega}}_{\omega \in \Omega}$ is a *c*-*K*-*g*-frame for *H* with respect to ${H_{\omega}}_{\omega \in \Omega}$ with frame bounds *A*, *B*. The *c*-*K*-*g*-frame operator $S_{\Lambda} : H \longrightarrow H$ is weakly defined by

$$\langle S_{\Lambda}f,g\rangle = \int_{\Omega} \langle f,\Lambda_{\omega}^*\Lambda_{\omega}g\rangle \,d\mu(\omega), \quad f,g\in H.$$

Therefore

$$AKK^* \leq S_\Lambda \leq BI.$$

Lemma 1.9. ([3]) Let $\Lambda = {\Lambda_{\omega}}_{\omega \in \Omega}$ be a cg-Bessel family for H with respect to ${H_{\omega}}_{\omega \in \Omega}$. Then $\Lambda = {\Lambda_{\omega}}_{\omega \in \Omega}$ is a c-K-g-frame for H with respect to ${H_{\omega}}_{\omega \in \Omega}$ if and only if there exists a constant A > 0 such that $S_{\Lambda} \ge AKK^*$, where S_{Λ} is the frame operator of $\Lambda = {\Lambda_{\omega}}_{\omega \in \Omega}$.

Duals of c-K-g-frames have been indicated in [4] as following:

Definition 1.10. Let $\Lambda = {\Lambda_{\omega}}_{\omega \in \Omega}$ be a *c*-*K*-*g*-frame for *H* with respect to ${H_{\omega}}_{\omega \in \Omega}$. A *cg*-Bessel family $\Gamma = {\Gamma_{\omega}}_{\omega \in \Omega}$ for *H* is called a dual *c*-*K*-*g*-Bessel family of Λ if for each $f, h \in H$,

$$\langle Kf,h\rangle = \int_{\Omega} \langle \Lambda^*_{\omega} \Gamma_{\omega} f,h\rangle \, d\mu(\omega).$$

2 Constructing new *c*-*K*-*g*-frames

In this section, we construct new *c*-*K*-*g*-frames by using of linear bounded operators.

The following theorem, for a given c-K-g-frame $\Lambda = {\Lambda_{\omega}}_{\omega \in \Omega}$ of H, provides a new c-K-g-frame for H by applying a linear bounded operator.

Theorem 2.1. Let $K \in B(H)$, $\Lambda = {\Lambda_{\omega}}_{\omega \in \Omega}$ is a c-K-g-frame for Hwith respect to ${H_{\omega}}_{\omega \in \Omega}$, with bounds A and B and $U \in B(H)$ be a closed range operator such that UK = KU. If $R(K^*) \cap N(U^*) = \{0\}$, Then $\{\Lambda_{\omega}U^*\}_{\omega\in\Omega}$ is a c-K-g-frame for H with respect to $\{H_{\omega}\}_{\omega\in\Omega}$ with the lower bound $A||U^{\dagger}||^{-2}$ and the upper bound $B||U||^2$.

Proof. It is easy to check that $\{\Lambda_{\omega}U^*\}_{\omega\in\Omega}$ is a *cg*-Bessel family with upper bound $B||U||^2$. Since UK = KU, we have $K^*U^* = U^*K^*$. U has closed range and $R(K^*) \cap N(U^*) = \{0\}$, by Lemma 1.2, for each $f \in H$, we have

$$\begin{split} \|K^*f\|^2 &= \|UU^{\dagger}K^*f\|^2 = \|(U^{\dagger})^*U^*K^*f\|^2 = \|(U^{\dagger})^*K^*U^*f\|^2 \\ &\leq \|U^{\dagger}\|^2\|K^*U^*f\|^2. \end{split}$$

Then for each $f \in H$, we have

$$\int_{\Omega} \|\Lambda_{\omega} U^* f\|^2 d\,\mu(\omega) \ge A \|K^* U^* f\|^2 \ge A \|U^{\dagger}\|^{-2} \|K^* f\|^2.$$

This proves the theorem. \Box

Corollary 2.2. Suppose that $K \in B(H)$ is with dense range, $U \in B(H)$ has closed range and UK = KU. If $\{\Lambda_{\omega}U\}_{\omega\in\Omega}$ and $\{\Lambda_{\omega}U^*\}_{\omega\in\Omega}$ are both c-K-g-frames for H with respect to $\{H_{\omega}\}_{\omega\in\Omega}$, then $\Lambda = \{\Lambda_{\omega}\}_{\omega\in\Omega}$ is a c-K-g-frame for H with respect to $\{H_{\omega}\}_{\omega\in\Omega}$.

Proof. Since $\overline{R(K)} = H$, so $N(K^*)^{\perp} = H$ and $N(K^*) = \{0\}$. For each $f \in H$, we have

$$A\|K^*f\|^2 \le \int_{\Omega} \|\Lambda_{\omega} U^*f\|^2 d\,\mu(\omega),$$

so $N(U^*) \subseteq N(K^*)$, which implies

$$H = N(K^*)^{\perp} \subseteq N(U^*)^{\perp} = R(U).$$

So U is surjective. Also, For each $f \in H$, we have

$$A \|K^* f\|^2 \le \int_{\Omega} \|\Lambda_{\omega} U f\|^2 d\,\mu(\omega),$$

so $N(U) \subseteq N(K^*) = \{0\}$. That is, U is one to one. Therefore U is invertible. Since $UK = KU, U^{-1}K = KU^{-1}, R(K^*) \cap N((U^{-1})^*) = \{0\}$,

and $\{\Lambda_{\omega}\}_{\omega\in\Omega} = \{(\Lambda_{\omega}U^*)(U^{-1})^*\}_{\omega\in\Omega}$, so by Theorem 2.1, $\{\Lambda_{\omega}\}_{\omega\in\Omega}$ is a *c-K-g*-frame for *H* with respect to $\{H_{\omega}\}_{\omega\in\Omega}$. \Box

For a given tight c-K-g-frame $\Lambda = {\Lambda_{\omega}}_{\omega \in \Omega}$ of H, we can obtain another c-K-g-frame for H. The following theorem presents us necessary and sufficient conditions on ${\Lambda_{\omega}U^*}_{\omega \in \Omega}$ to be a c-K-g-frame for H.

Theorem 2.3. Let $K, U \in B(H)$ and $\Lambda = {\Lambda_{\omega}}_{\omega \in \Omega}$ be a D-tight c-Kg-frame for H with respect to ${H_{\omega}}_{\omega \in \Omega}$. If K^* is bounded below and UK = KU, then ${\Lambda_{\omega}U^*}_{\omega \in \Omega}$ is a c-K-g-frame for H with respect to ${H_{\omega}}_{\omega \in \Omega}$ if and only if U is surjective.

Proof. If U is surjective, then Theorem 2.1 implies the first part of proof. For the other implication, we prove that U is surjective. Assume that $\{\Lambda_{\omega}U^*\}_{\omega\in\Omega}$ is a c-K-g-frame for H with respect to $\{H_{\omega}\}_{\omega\in\Omega}$ with bounds A and B. Then, for all $f \in H$, we have:

$$A\|K^*f\|^2 \le \int_{\Omega} \|\Lambda_{\omega} U^*f\|^2 d\,\mu(\omega) \le B\|f\|^2.$$
(3)

Also for each $g \in H$, we have

$$D\|K^*g\|^2 = \int_{\Omega} \|\Lambda_{\omega}g\|^2 d\,\mu(\omega).$$

By $U^*K^* = K^*U^*$, we obtain

$$D\|U^*K^*f\|^2 = D\|K^*U^*f\|^2 = \int_{\Omega} \|\Lambda_{\omega}U^*f\|^2 d\,\mu(\omega), \quad f \in H.$$
(4)

So by (3) and (4), we have

$$\|U^*K^*f\|^2 = D^{-1} \int_{\Omega} \|\Lambda_{\omega}U^*f\|^2 d\,\mu(\omega) \ge D^{-1}A\|K^*f\|^2, \quad f \in H.$$
 (5)

Sine K^* is bounded below, so there exist $\alpha > 0$ such that $||K^*f|| \ge \alpha ||f||$, for each $f \in H$. Thus, from (2.3), we conclude that for each $f \in H$,

$$\|U^*K^*f\| \ge \alpha \|f\|.$$

Therefore U^*K^* is bounded below, thus by Lemma 1.2, KU is surjective and KU = UK implies that U is surjective. \Box

Suppose that operators $T, U \in B(H)$ and T^* preserves a *c*-*K*-*g*-frame for R(T). In the following theorem, we state some conditions on K, U and T such that U^* can also preserve the same *c*-*K*-*g*-frame for R(U).

Theorem 2.4. Let $\Lambda = {\Lambda_{\omega}}_{\omega \in \Omega}$ be a c-K-g-frame for H with respect to ${H_{\omega}}_{\omega \in \Omega}$. Suppose that $T, U \in B(H)$ are closed ranged, and N(T) =N(U) with $KUT^{\dagger} = UT^{\dagger}K$ and $R(K^*) \cap N(U^*) = {0}$. If ${\Lambda_{\omega}T^*}_{\omega \in \Omega}$ is a c-K-g-frame for R(T) with respect to ${H_{\omega}}_{\omega \in \Omega}$, then ${\Lambda_{\omega}U^*}_{\omega \in \Omega}$ is a c-K-g-frame for R(U) with respect to ${H_{\omega}}_{\omega \in \Omega}$.

Proof. We only need to show that $\{\Lambda_{\omega}U^*\}_{\omega\in\Omega}$ has the lower frame condition. We define

$$L: R(T) \longrightarrow R(U),$$

by $Lf = UT^{\dagger}f$, $f \in R(T)$. By the assumptions, KL = LK. Since N(T) = N(U), we have $R(T^{\dagger}) = R(U^{\dagger})$. Hence by Lemma (1.2), $N(L) = N(UT^{\dagger}) = N(TT^{\dagger}) = (R(T))^{\perp}$, which implies

$$N(L) = N(UT^{\dagger}) \cap R(T) = (R(T))^{\perp} \cap R(T) = \{0\}.$$

So, L is invertible on R(T). By Lemma 1.2, $T^{\dagger}T = P_{R(T^{\dagger})} = P_{R(U^{\dagger})} = U^{\dagger}U$. Therefore

$$LT = UT^{\dagger}T = UU^{\dagger}U = U \tag{6}$$

Now, let C, D be the frame bounds of $\{\Lambda_{\omega}T^*\}_{\omega\in\Omega}$, then for each $f \in R(U)$, from (6), we have

$$\int_{\Omega} \|\Lambda_{\omega} U^* f\|^2 d\mu(\omega) = \int_{\Omega} \|\Lambda_{\omega} T^* L^* f\|^2 d\mu(\omega) \ge C \|K^* L^* f\|^2$$
$$= C \|L^* K^* f\|^2 \ge C \|L^{-1}\|^{-2} \|K^* f\|^2.$$

Furthermore for each $f \in R(U)$,

$$\int_{\Omega} \|\Lambda_{\omega} U^* f\|^2 d\,\mu(\omega) = \int_{\Omega} \|\Lambda_{\omega} T^* L^* f\|^2 d\,\mu(\omega) \le B \|L^* f\|^2 = B \|L\|^2 \|f\|^2.$$

So $\{\Lambda_{\omega} U^*\}_{\omega \in \Omega}$ is a *c*-*K*-*g*-frame for $R(U)$. \Box

Theorem 2.5. Let $K \in B(H)$ and $\Lambda = {\Lambda_{\omega}}_{\omega \in \Omega}$ be a c-g-Bessel family for H with respect to ${H_{\omega}}_{\omega \in \Omega}$. Suppose that T_{Λ} is the synthesis operator of Λ . Then, the following conditions are equivalent:

- (i) $R(K) = R(T_{\Lambda}).$
- (ii) There exist two constants C, D > 0, such that for each $f \in H$,

$$C \|K^*f\|^2 \le \int_{\Omega} \|\Lambda_{\omega}f\|^2 d\,\mu(\omega) \le D \|K^*f\|^2.$$
(7)

(iii) $\Lambda = {\Lambda_{\omega}}_{\omega \in \Omega}$ is a c-K-g-frame for H with respect to ${H_{\omega}}_{\omega \in \Omega}$ and there exists a c-g-Bessel family ${\Gamma_{\omega}}_{\omega \in \Omega}$ for H with respect to ${H_{\omega}}_{\omega \in \Omega}$ such that $\Lambda_{\omega} = \Gamma_{\omega} K^*$ for each $\omega \in \Omega$.

Proof. (i) \Rightarrow (ii) By Lemma 1.3, there exist C, D > 0, such that $CKK^* \leq T_{\Lambda}T^*_{\Lambda} \leq DKK^*$. Thus, for each $f \in H$,

$$C \|K^* f\|^2 \le \|T^*_{\Lambda} f\|^2 = \int_{\Omega} \|\Lambda_{\omega} f\|^2 d\,\mu(\omega) \le D \|K^* f\|^2$$

 $(ii) \Rightarrow (iii)$ It suffices to show the second part of the result. The righthand inequity in (7) is equivalent to $T_{\Lambda}T_{\Lambda}^* \leq DKK^*$. By Lemma 1.3, there exists an operator $Q \in B((\bigoplus_{\omega \in \Omega} H_{\omega}, \mu)_{L^2}, H)$ such that $T_{\Lambda} = KQ$ and $T_{\Lambda}^* = Q^*K^*$. We define for each $g \in H$ and for almost all $\omega \in \Omega$,

$$\Gamma_{\omega}g = (Q^*g)(\omega).$$

Therefore we have

$$\{\Lambda_{\omega}(g)\}_{\omega\in\Omega} = \{(Q^*(K^*g)(\omega)\}_{\omega\in\Omega} = \{\Gamma_{\omega}(K^*g)\}_{\omega\in\Omega},\$$

which implies that $\Lambda_{\omega} = \Gamma_{\omega} K^*$ for almost all $\omega \in \Omega$. So for each $g \in H$,

$$\int_{\Omega} \|\Gamma_{\omega}g\|^2 d\,\mu(\omega) = \int_{\Omega} \|(Q^*g)(\omega)\|^2 d\,\mu(\omega) = \|(Q^*g)\|_2^2 \le \|Q\|_2^2 \|g\|^2.$$

Hence, $\{\Gamma_{\omega}\}_{\omega\in\Omega}$ is a *c*-*g*-Bessel family for *H*.

 $(iii) \Rightarrow (i)$ For each $f \in H$, we have

$$C_{\Lambda} \|K^*f\|^2 \le \int_{\Omega} \|\Lambda_{\omega}f\|^2 d\,\mu(\omega) = \int_{\Omega} \|\Gamma_{\omega}K^*f\|^2 d\,\mu(\omega) \le D_{\Gamma} \|K^*f\|^2.$$

Thus, $C_{\Lambda}KK^* \leq T_{\Lambda}T_{\Lambda}^* \leq D_{\Gamma}KK^*$, by Lemma (1.3), $R(K) = R(T_{\Lambda})$.

The following theorem is applied to construct c-K-g-frames by given some linear bounded operators and some c-K-g-frames.

Theorem 2.6. Suppose that $K_1, K_2 \in B(H)$ and $\Lambda = {\Lambda_{\omega}}_{\omega \in \Omega}$ is a c- K_1 -g-frame for H with respect to ${H_{\omega}}_{\omega \in \Omega}$.

- (i) If $\Lambda = {\{\Lambda_{\omega}\}}_{\omega \in \Omega}$ is also a c-K₂-g-frame for H with respect to ${\{H_{\omega}\}}_{\omega \in \Omega}$, then it is a c-(K₁ + K₂)-g-frame for H with respect to ${\{H_{\omega}\}}_{\omega \in \Omega}$.
- (ii) If, in addition, $\Lambda = \{\Lambda_{\omega}\}_{\omega \in \Omega}$ is A-tight c-K₁-g-frame, then it is a c-K₂-g-frame for H with respect to $\{H_{\omega}\}_{\omega \in \Omega}$ if and only if $R(K_2) \subseteq R(K_1)$.

Proof. (i) Since $\Lambda = {\Lambda_{\omega}}_{\omega \in \Omega}$ is a *c*-*K*₁-*g*-frame and also *c*-*K*₂-*g*-frame for *H* with respect to ${H_{\omega}}_{\omega \in \Omega}$, so for each $f \in H$, we have

$$A_1 \|K_1^* f\|^2 \le \int_{\Omega} \|\Lambda_{\omega} f\|^2 d\,\mu(\omega) \tag{8}$$

and

$$A_2 \|K_2^* f\|^2 \le \int_{\Omega} \|\Lambda_{\omega} f\|^2 d\,\mu(\omega) \tag{9}$$

By (8) and (9), we have

$$\left(\frac{A_1}{2} \|K_1^*f\|^2 + \frac{A_1}{2} \|K_2^*f\|^2\right) \le \int_{\Omega} \|\Lambda_{\omega}f\|^2 d\,\mu(\omega) \tag{10}$$

Now, by taking $\lambda = \min\{\frac{A_1}{2}, \frac{A_2}{2}\}$ in (10), we obtain

$$\lambda \| (K_1 + K_2)^* f \|^2 \le (A_1 \| K_1^* f \|^2 + A_2 \| K_2^* f \|^2) \le 2 \int_{\Omega} \| \Lambda_{\omega} f \|^2 d \, \mu(\omega),$$

that is $\Lambda = {\Lambda_{\omega}}_{\omega \in \Omega}$ is a $c \cdot (K_1 + K_2) \cdot g$ -frame for H with respect to ${H_{\omega}}_{\omega \in \Omega}$. (ii) By the assumptions, $\Lambda = {\Lambda_{\omega}}_{\omega \in \Omega}$ is A-tight $c \cdot K_1 \cdot g$ -frame and $c \cdot K_2 \cdot g$ -frame, there exists a D > 0, such that for each $f \in H$, we have

$$A\|K_1^*f\|^2 = \int_{\Omega} \|\Lambda_{\omega}f\|^2 d\,\mu(\omega) \ge D\|K_2^*f\|^2.$$

Hence, $K_2K_2^* \leq \frac{A}{D}K_1K_1^*$ and by Lemma 1.3, $R(K_2) \subseteq R(K_1)$. For the opposite implication, by Lemma 1.3, there exists $\gamma > 0$, such that $K_2K_2^* \leq \gamma K_1K_1^*$. Hence for each $f \in H$, we have

$$\|K_{2}^{*}f\|^{2} \leq \gamma \|K_{1}^{*}f\|^{2} = \frac{\gamma}{A} \int_{\Omega} \|\Lambda_{\omega}f\|^{2} d\mu(\omega),$$

therefore

$$\frac{A}{\gamma} \|K_2^* f\|^2 \le \int_{\Omega} \|\Lambda_{\omega} f\|^2 d\,\mu(\omega) = A \|K_1^* f\|^2 \le A \|K\|^2 \|f\|^2.$$

So $\Lambda = {\Lambda_{\omega}}_{\omega \in \Omega}$ is a *c*-*K*₂-*g*-frame for *H* with respect to ${H_{\omega}}_{\omega \in \Omega}$. \Box

3 Sum of *c*-*K*-*g*-frames

In this section, we suppose that Λ and Γ are arbitrary *c*-*K*-*g*-frames and we study the sum of these frames.

Theorem 3.1. Suppose that $K_1, K_2 \in B(H)$ are closed range operators, $\Lambda = \{\Lambda_{\omega}\}_{\omega \in \Omega}$ and $\Gamma = \{\Gamma_{\omega}\}_{\omega \in \Omega}$ are c-K₁-g-frame and c-g-Bessel family for H with respect to $\{H_{\omega}\}_{\omega \in \Omega}$, respectively.

- (i) If $K_1 \ge 0$ and $\Gamma = {\Gamma_{\omega}}_{\omega \in \Omega}$ is a c-K₁-g-dual for $\Lambda = {\Lambda_{\omega}}_{\omega \in \Omega}$, then the family ${\Lambda_{\omega} + \Gamma_{\omega}}_{\omega \in \Omega}$ is a c-K₁-g-frame for H with respect to ${H_{\omega}}_{\omega \in \Omega}$.
- (ii) If $\Gamma = {\Gamma_{\omega}}_{\omega \in \Omega}$ is c-K₂-g-frame for H with respect to ${H_{\omega}}_{\omega \in \Omega}$ and $T_{\Lambda}T_{\Gamma}^* = 0$, then ${\Lambda_{\omega} + \Gamma_{\omega}}_{\omega \in \Omega}$ is a c-(K₁ + K₂)-g-frame for H with respect to ${H_{\omega}}_{\omega \in \Omega}$.

Proof. (i) Since $\Gamma = {\Gamma_{\omega}}_{\omega \in \Omega}$ is a *c*-*K*₁-*g*-dual of ${\Lambda_{\omega}}_{\omega \in \Omega}$, for each $f \in H$, we have

$$\begin{split} \langle K_1^*f,h\rangle &= \langle f,K_1h\rangle = \overline{\langle K_1h,f\rangle} = \int_{\Omega} \left\langle \Lambda_{\omega}^*\Gamma_{\omega}h,f\right\rangle d\mu(\omega) \\ &= \int_{\Omega} \left\langle \Gamma_{\omega}^*\Lambda_{\omega}f,h\right\rangle d\mu(\omega). \end{split}$$

We denote by $S_{\Lambda+\Gamma}$, the *c-g*-frame operator of $\{\Lambda_{\omega} + \Gamma_{\omega}\}_{\omega\in\Omega}$. So for each $f, h \in H$,

$$\begin{split} \langle S_{\Lambda+\Gamma}f,h\rangle &= \int_{\Omega} \left\langle f, (\Lambda_{\omega}+\Gamma_{\omega})^*(\Lambda_{\omega}+\Gamma_{\omega})h \right\rangle d\mu(\omega) \\ &= \int_{\Omega} \left\langle (\Lambda_{\omega}+\Gamma_{\omega})^*(\Lambda_{\omega}+\Gamma_{\omega})f,h \right\rangle d\mu(\omega) \\ &= \int_{\Omega} \left\langle \Lambda_{\omega}^*\Lambda_{\omega}f,h \right\rangle d\mu(\omega) + \int_{\Omega} \left\langle \Gamma_{\omega}^*\Gamma_{\omega}f,h \right\rangle d\mu(\omega) \\ &+ \int_{\Omega} \left\langle \Lambda_{\omega}^*\Gamma_{\omega}f,h \right\rangle d\mu(\omega) + \int_{\Omega} \left\langle \Gamma_{\omega}^*\Lambda_{\omega}f,h \right\rangle d\mu(\omega) \\ &= \left\langle S_{\Lambda}f,h \right\rangle + \left\langle S_{\Gamma}f,h \right\rangle + \left\langle K_{1}f,h \right\rangle + \left\langle K_{1}^*f,h \right\rangle, \end{split}$$

therefore

$$\langle S_{\Lambda+\Gamma}f,f\rangle = \int_{\Omega} \|(\Lambda_{\omega}+\Gamma_{\omega})f\|^2 d\mu(\omega) \ge \langle S_{\Lambda}f,f\rangle$$

=
$$\int_{\Omega} \|\Lambda_{\omega}f\|^2 d\mu(\omega) \ge C_{\Lambda} \|K_1^*f\|^2.$$

This shows that $\{\Lambda_{\omega} + \Gamma_{\omega}\}_{\omega \in \Omega}$ has the lower frame condition. Now, we show $\{\Lambda_{\omega} + \Gamma_{\omega}\}_{\omega \in \Omega}$ is a *c-g*-Bessel family. For each $f \in H$, we have

$$\int_{\Omega} \|(\Lambda_{\omega} + \Gamma_{\omega})f\|^2 d\mu(\omega) \le 2 \int_{\Omega} \|\Lambda_{\omega}f\|^2 d\mu(\omega) + 2 \int_{\Omega} \|\Gamma_{\omega}f\|^2 d\mu(\omega) \\ \le 2B_1 \|f\|^2 + 2B_2 \|f\|^2 = 2(B_1 + B_2) \|f\|^2.$$

(ii) We only need to show that $\{\Lambda_{\omega} + \Gamma_{\omega}\}_{\omega \in \Omega}$ has the lower frame condition. Since $T_{\Lambda}T_{\Gamma}^* = 0$, for each $f \in H$, we have $\int_{\Omega} \langle \Lambda_{\omega}^* \Gamma_{\omega} f, f \rangle d\mu(\omega) = 0$ and

$$\int_{\Omega} \|(\Lambda_{\omega} + \Gamma_{\omega})f\|^2 d\mu(\omega) = \int_{\Omega} \|\Lambda_{\omega}f\|^2 d\mu(\omega) + \int_{\Omega} \|\Gamma_{\omega}f\|^2 d\mu(\omega)$$

$$\geq A_1 \|K_1^*f\|^2 + A_2 \|K_2^*f\|^2 \geq \lambda \|(K_1 + K_2)f\|^2,$$

where $\lambda = \min\{A_1, A_2\}$. This is the desired conclusion. \Box

The following theorem is the continuous version of Theorem 2.1 in [10].

Theorem 3.2. Suppose that $K_1 \in B(H_1)$, $K_2 \in B(H_2)$ and $\Lambda = {\Lambda_{\omega}}_{\omega \in \Omega}$ is a c- K_1 -g-frame and $\Gamma = {\Gamma_{\omega}}_{\omega \in \Omega}$ is a c-g-Bessel family for H_1 . Assume that $U_1, U_2 \in B(H_1, H_2)$ and $U_1 T_\Lambda T_{\Gamma}^* U_2^* + U_2 T_{\Gamma} T_\Lambda^* U_1^* + U_2 S_{\Gamma} U_2^* \geq 0$. If U_1 has closed range with $U_1 K_1 = K_2 U_1$ and $R(K_2^*) \cap N(U_1^*) = {0}$, then ${\Lambda_{\omega} U_1^* + \Gamma_{\omega} U_2^*}_{\omega \in \Omega}$ is a c- K_2 -g-frame for H_2 with respect to ${H_{\omega}}_{\omega \in \Omega}$.

Proof. Let $\Lambda = {\Lambda_{\omega}}_{\omega \in \Omega}$, $\Gamma = {\Gamma_{\omega}}_{\omega \in \Omega}$ be a c- K_1 -g-frame and c-g-Bessel family for H_1 with bounds A_1, B_1 and B_2 , respectively. Similar analysis to the proof of Theorem 3.1, we show that ${\Lambda_{\omega} U_1^* + \Gamma_{\omega} U_2^*}_{\omega \in \Omega}$ is c-g-Bessel family for H_2 with bound $2B_1 ||U_1||^2 + 2B_2 ||U_2||^2$. Now, for each $g \in H_2$, we have

$$\begin{split} \int_{\Omega} \|(\Lambda_{\omega}U_1^* + \Gamma_{\omega}U_2^*)g\|^2 \, d\mu(\omega) &= \int_{\Omega} \|\Lambda_{\omega}U_1^*g\|^2 \, d\mu(\omega) + \langle U_2T_{\Gamma}T_{\Lambda}^*U_1^*g, g \rangle \\ &+ \langle U_1T_{\Lambda}T_{\Gamma}^*U_2^*g, g \rangle + \langle U_2T_{\Gamma}T_{\Gamma}^*U_2^*g, g \rangle \\ &= \int_{\Omega} \|\Lambda_{\omega}U_1^*g\|^2 \, d\mu(\omega) + \langle (U_1T_{\Lambda}T_{\Gamma}^*U_2^* + U_2T_{\Gamma}T_{\Lambda}^*U_1^* + U_2S_{\Gamma}U_2^*)g, g \rangle \end{split}$$

By the assumptions, for each $g \in H$ we obtain

$$\int_{\Omega} \|(\Lambda_{\omega} U_1^* + \Gamma_{\omega} U_2^*)g\|^2 \, d\mu(\omega) \ge \int_{\Omega} \|\Lambda_{\omega} U_1^*g\|^2 \, d\mu(\omega) \ge A_1 \|K_1^* U_1^*g\|^2$$
$$= A_1 \|U_1^* K_2^*g\|^2 \ge A_1 \|U_1^{\dagger}\|^{-2} \|K_2^*g\|^2.$$

Therefore, for each $g \in H_2$, we have

$$A_1 \|U_1^{\dagger}\|^{-2} \|K_2^*g\|^2 \le \int_{\Omega} \|(\Lambda_{\omega}U_1^* + \Gamma_{\omega}U_2^*)g\|^2 d\mu(\omega)$$

$$\le (2B_1 \|U_1\|^2 + 2B_2 \|U_2\|^2) \|g\|^2.$$

_	
_	-

Corollary 3.3. Suppose that $K_1 \in B(H_1)$, $K_2 \in B(H_2)$ and $\Lambda = {\Lambda_{\omega}}_{\omega \in \Omega}$ is a c-K₁-g-frame for H_1 with respect to ${H_{\omega}}_{\omega \in \Omega}$. If $U \in B(H_1, H_2)$ has closed range, $UK_1 = K_2U$ and $R(K_2^*) \cap N(U^*) = {0}$, then ${\Lambda_{\omega}U^*}_{\omega \in \Omega}$ is a c-K₂-g-frame for H_2 with respect to ${H_{\omega}}_{\omega \in \Omega}$.

Corollary 3.4. Let $K, U \in B(H)$. Suppose that $\Lambda = \{\Lambda_{\omega}\}_{\omega \in \Omega}$ is a *c*-*K*-*g*-frame for *H* with respect to $\{H_{\omega}\}_{\omega \in \Omega}$. If *U* is positive operator such that , $US_{\Lambda} = S_{\Lambda}U$, then $\{\Lambda_{\omega} + \Lambda_{\omega}U\}_{\omega \in \Omega}$ is a *c*-*K*-*g*-frame for *H* with respect to $\{H_{\omega}\}_{\omega \in \Omega}$.

Proof. Since $T_{\Lambda}T_{\Lambda}^*U^* + UT_{\Lambda}T_{\Lambda}^* + UT_{\Lambda}T_{\Lambda}^*U^* = S_{\Lambda}U + US_{\Lambda} + US_{\Lambda}U^*$, by Theorem 3.2, we need only to show that $S_{\Lambda}U + US_{\Lambda} + US_{\Lambda}U^* \ge 0$. By Theorem 4.33 in [8], there exists a unique positive operator V such that $U = V^2$. In addition, since $US_{\Lambda} = S_{\Lambda}U$, implies that $VS_{\Lambda} = S_{\Lambda}V$. For each $f \in H$, we have

$$\begin{aligned} \langle (S_{\Lambda}U + US_{\Lambda} + US_{\Lambda}U^{*})f, f \rangle &= \langle S_{\Lambda}Uf, f \rangle + \langle US_{\Lambda}f, f \rangle + \langle US_{\Lambda}U^{*}f, f \rangle \\ &= 2\langle US_{\Lambda}f, f \rangle + \langle UT_{\Lambda}T_{\Lambda}^{*}U^{*}f, f \rangle \\ &= 2\langle V^{2}S_{\Lambda}f, f \rangle + \|T_{\Lambda}^{*}U^{*}f\|^{2} \\ &= 2\langle VS_{\Lambda}Vf, f \rangle + \|T_{\Lambda}^{*}U^{*}f\|^{2} \\ &= 2\|T_{\Lambda}^{*}Vf\|^{2} + \|T_{\Lambda}^{*}U^{*}f\|^{2} \ge 0. \end{aligned}$$

Theorem 3.5. Let $K_1 \in B(H_1)$ be closed range, $\Lambda = \{\Lambda_\omega\}_{\omega \in \Omega}$ and $\Gamma = \{\Gamma_\omega\}_{\omega \in \Omega}$ be c-K₁-g-frames for H_1 with respect to $\{H_\omega\}_{\omega \in \Omega}$. Suppose that $K_2 \in B(H_2)$, $U_1, U_2 \in B(H_1, H_2)$ and $U_1 T_\Lambda T_\Gamma^* U_2^* + U_2 T_\Gamma T_\Lambda^* U_1^* \ge 0$. If one the following conditions holds, then for each $\alpha_1, \alpha_2 > 0$, $\{\alpha_1 \Lambda_\omega U_1^* + \alpha_2 \Gamma_\omega U_2^*\}_{\omega \in \Omega}$ is a c-K₂-g-frame for H_2 with respect to $\{H_\omega\}_{\omega \in \Omega}$.

(*i*) $P = \alpha_1 U_1 + \alpha_2 U_2, \ R(P^*) \subseteq R(K_1), \ R(K_2) \subseteq R(P).$

(*ii*)
$$Q = \alpha_1 U_1 - \alpha_2 U_2, \ R(Q^*) \subseteq R(K_1), \ R(K_2) \subseteq R(Q).$$

Proof. Let A_1, B_1 and A_2, B_2 be frame bounds of Λ and Γ , respectively. Similar to proof of Theorem 3.2, $\alpha_1, \alpha_2 > 0$, $\{\alpha_1 \Lambda_\omega U_1^* + \alpha_2 \Gamma_\omega U_2^*\}_{\omega \in \Omega}$ is a *c-g*-Bessel family for H_2 with respect to $\{H_\omega\}_{\omega \in \Omega}$, with bound $2\alpha_1 B_1 ||U_1||^2 + 2\alpha_2 B_2 ||U_2||^2$ and for each $g \in H$, we have

$$\begin{split} \int_{\Omega} \|(\alpha_1 \Lambda_{\omega} U_1^* + \alpha_2 \Gamma_{\omega} U_2^*)g\|^2 \, d\mu(\omega) &= \alpha_1^2 \int_{\Omega} \|\Lambda_{\omega} U_1^*g\|^2 \, d\mu(\omega) \\ &+ 2\alpha_1 \alpha_2 \langle (U_2 T_\Gamma T_\Lambda^* U_1^* + U_1 T_\Lambda T_\Gamma^* U_2^*)g \\ ,g \rangle &+ \alpha_2^2 \int_{\Omega} \|\Gamma_{\omega} U_2^*g\|^2 \, d\mu(\omega) \\ &\geq \alpha_1^2 A_1 \|K_1^* U_1^*g\|^2 + \alpha_2^2 A_2 \|K_1^* U_2^*g\|^2 \end{split}$$

Without loss of generality, suppose that condition (ii) holds. Set

$$\lambda = \min\{A_1, A_2\},\$$

by the parallelogram law, for each $g \in H_2$, we have

$$\begin{split} \alpha_1^2 A_1 \|K_1^* U_1^* g\|^2 + \alpha_2^2 A_2 \|K_1^* U_2^* g\|^2 &\geq \lambda (\|\alpha_1 K_1^* U_1^* g\|^2 + \|\alpha_2 K_1^* U_2^* g\|^2) \\ &= \frac{\lambda}{2} \Big(\|K_1^* (\alpha_1 U_1 + \alpha_2 U_2)^* g\|^2 \\ &+ \|K_1^* (\alpha_1 U_1 - \alpha_2 U_2)^* g\|^2 \Big) \\ &\geq \frac{\lambda}{2} \|K_1^* Q^* g\|^2 \geq \frac{\lambda}{2} \|K_1^\dagger \|^{-2} \|Q^* g\|^2. \end{split}$$

Since $R(K_2) \subseteq R(Q)$, so by the Lemma 1.3, there exists $\alpha > 0$ such that $K_2K_2^* \leq \alpha QQ^*$. It follows that for each $g \in H_2$, $\alpha^{-1} ||K_2^*g||^2 \leq ||Q^*g||^2$. Therefore, for each $g \in H_2$, we have

$$\frac{\lambda}{2}\alpha^{-1} \|K_1^{\dagger}\|^{-2} \|K_2^*g\|^2 \leq \int_{\Omega} \|(\alpha_1 \Lambda_{\omega} U_1^* + \alpha_2 \Gamma_{\omega} U_2^*)g\|^2 d\mu(\omega)$$
$$\leq (2\alpha_1^2 B_1 \|U_1\|^2 + 2\alpha_2^2 B_2 \|U_2\|^2) \|g\|^2.$$

Acknowledgements

The authors thank the referees for valuable suggestions and comments which have led to a significant improvement of this paper.

References

- M. R. Abdollahpour and M. H. Faroughi, Continuous G-Frames in Hilbert Spaces, Southeast Asian Bull. Math., 32 (2008), 1-19.
- [2] S. T. Ali, J. P. Antoine and J. P. Gazeau, Continuous Frames in Hilbert Spaces, Annals of Phy., 222 (1993), 1-37.
- [3] E. Alizadeh, A. Rahimi, E. Osgooei and M. Rahmani, Continuous K-g-Frames in Hilbert Spaces, Bull. Iran. Math. Soc., 45 (4) (2019), 1091-1104.

- [4] E. Alizadeh, A. Rahimi, E. Osgooei and M. Rahmani, Some Properties of Continuous K-G-Frames in Hilbert Spaces, U. P. B. Sci. Bull, Series A., 81 (3) (2019), 43-52.
- [5] F. Arabyani Neyshaburi and A. A. Arefijamaal, Some Constructions of K-Frames and Their Duals, *Rocky Mountain J. Math.*, 47 (6) (2017), 1749-1764.
- [6] O. Christensen, An Introduction to Frames and Riesz Bases, Birkhäuser, Boston, (2016).
- [7] R. G. Douglas, On majorization, factorization and range inclusion of operators on Hilbert space, Pro. Amer. Math. Sc., 17 (2) (1966), 413-415.
- [8] R. G. Douglas, Banacch Algebra Techniques in Operator Theory, 2nd edn. Academic Press, new York (1998).
- [9] R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc., 72 (1952), 341-366.
- [10] D. Du and Y. C. Zhu, Constructions of K-g-Frames and Tight K-g-Frames in Hilbert Spaces, Bull. Malays. Math. Sci. Soc., 43 (2020), 4107-4122.
- [11] L. Gavruta, Frames for Operators, Appl. Comput. Harmon. Anal., 32 (2012), 139-144.
- [12] M. He, J. Leng, J. Yu, et al., On the Sum of K-Frames in Hilbert Spaces, Mediterr. J. Math., 17(46) (2020), 1-19.
- [13] D. Hua and Y. Hung, K-g-frames and stability of K-g-frames in Hilbert spaces, . Korean Math. Soc., 53 (6) (2016), 1331-1345.
- [14] Y. Huang and S. Shi, New Constructions of K-g-Frames, Results Math., 73(4) (2018), 1-13.
- [15] M. Rahmani and E. Alizadeh, Some Points on c-K-g-Frames and Their Duals, Iran J Sci Technol Trans Sci., 46(2) (2022), 525-534.

- [16] M. Rahmani, K-Frames from Finte Extensions, *Results Math.*, 77(3) (2022), 100-1-100-13.
- [17] W. Sun, G-Frames and G-Riesz bases, J. Math. Anal. Appl., 322(1) (2006), 437-452.
- [18] Z. Q. Xiang, Some new results on the construction and stability of K-g-frames in Hilbert Spaces, Int. J. Wavelets. Multiresolut. Inf. Process., 18(5) (2020), 2050034-1-2050034-19.
- [19] J. Z. Li and Y. C. Zhu, Exact G-Frames in Hilbert Spaces, J. Math. Anal. Appl., 374 (1) (2011), 201-209.

Esmaeil Alizadeh

Department of Mathematics Assistant Professor of Mathematics Marand Branch, Islamic Azad University, Marand, Iran E-mail:e_alizadeh@marandiau.ac.ir

Morteza Rahmani

Department of Mathematics Assistant Professor of Mathematics Young Researchers and Elite Club, Ilkhchi Branch, Islamic Azad University, Ilkhchi, Iran E-mail: morteza.rahmany@gmail.com