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Abstract. Some Grüss type inequalities in semi-inner product mod-
ules over C∗-algebras and H∗-algebras for n-tuples of vectors are estab-
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1. Introduction

For two Lebesgue integrable functions f, g : [a, b] → R, consider the Čebys̆ev
functional:

T (f, g) :=
1

b − a

∫ b

a

f(t)g(t)dt − 1
b − a

∫ b

a

f(t)dt
1

b − a

∫ b

a

g(t)dt.

In 1934, G. Grüss [5] showed that

|T (f, g)| � 1
4
(M − m)(N − n), (1)

provided m, M, n, N are real numbers with the property −∞ < m � f � M <
∞ and −∞ < n � g � N < ∞ a.e. on [a, b]. The constant 1

4 is best possible
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in the sense that it cannot be replaced by a smaller quantity and is achieved
for

f(x) = g(x) = sgn
(
x − a + b

2

)
.

The discrete version of (1) states that: If a � ai � A, b � bi � B, (i = 1, ..., n)
where a, A, b, B, ai, bi are real numbers, then∣∣∣∣∣ 1

n

n∑
i=1

aibi − 1
n

n∑
i=1

ai.
1
n

n∑
i=1

bi

∣∣∣∣∣ � 1
4
(A − a)(B − b), (2)

where the constant 1
4 is the best possible for an arbitrary n � 1. Some refine-

ments of the discrete version of Grüss inequality (2) are given in [7].
In the recent years, this inequality has been investigated, applied and gen-
eralized by many authors in different areas of mathematics, among others in
inner product spaces [2], in the approximation of integral transforms [8] and
the references therein, in semi-inner ∗-modules for positive linear functionals
and C∗-seminorms [3], for positive maps [11].
A good example of how Grüss type inequalities can cross mathematical cate-
gories is provided by the development of the Grüss type inequalities in inner
product modules over H∗-algebras and C∗-algebras [4, 6]. For an entire chap-
ter devoted to the history of this inequality see [9] where further references are
given.
We recall some of the most important Grüss type discrete inequalities for inner
product spaces that are available in [1].

Theorem 1.1. Let (H; 〈·, ·〉) be an inner product space over K; (K = C, R), xi,
yi ∈ H, pi � 0 (i = 1, ..., n) (n � 2) with

∑n
i=1 pi = 1. If x, X, y, Y ∈ H are

such that

Re 〈X − xi, xi − x〉 � 0 and Re 〈Y − yi, yi − y〉 � 0,

for all i ∈ {1, ..., n}, or, equivalently,∥∥∥∥xi − x + X

2

∥∥∥∥ � 1
2
‖X − x‖ and

∥∥∥∥yi − y + Y

2

∥∥∥∥ � 1
2
‖Y − y‖,

for all i ∈ {1, ..., n}, then the following inequality holds∣∣∣∣∣
n∑

i=1

pi〈xi, yi〉 −
〈

n∑
i=1

pixi,
n∑

i=1

piyi

〉∣∣∣∣∣ � 1
4
‖X − x‖‖Y − y‖.

The constant 1
4 is best possible in the sense that it cannot be replaced by a

smaller quantity.
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Theorem 1.2. Let (H; 〈·, ·〉) and K be as above and x = (x1, ..., xn) ∈ Hn,
α = (α1, ..., αn) ∈ K

n and p = (p1, ..., pn) a probability vector. If x, X ∈ H are
such that

Re 〈X − xi, xi − x〉 � 0 for all i ∈ {1, ..., n},
or, equivalently,∥∥∥∥xi − x + X

2

∥∥∥∥ � 1
2
‖X − x‖ for all i ∈ {1, ..., n},

holds, then the following inequality holds

∥∥∥∥∥
n∑

i=1

piαixi −
n∑

i=1

piαi

n∑
i=1

pixi

∥∥∥∥∥ � 1
2
‖X − x‖

n∑
i=1

pi

∣∣∣∣∣∣αi −
n∑

j=1

pjαj

∣∣∣∣∣∣
� 1

2
‖X − x‖

⎡
⎣ n∑

i=1

pi|αi|2 −
∣∣∣∣∣

n∑
i=1

piαi

∣∣∣∣∣
2
⎤
⎦

1
2

.

The constant 1
2 in the first and second inequalities is best possible.

Motivated by the above results we establish some new Grüss type inequalities
in semi-inner product modules over C∗-algebras and H∗-algebras for n-tuples
of vectors, which are generalizations of Theorem 1.1 and Theorem 1.2. We
also give some their applications for the approximation of the discrete Fourier
and Melin transforms. In order to do that we need the following preliminary
definitions and results.

2. Preliminaries

Hilbert C∗-modules are used as the framework for Kasparov’s bivariant K-
theory and form the technical underpinning for the C∗-algebraic approach to
quantum groups. Hilbert C∗-modules are very useful in the following research
areas: operator K-theory, index theory for operator-valued conditional expec-
tations, group representation theory, the theory of AW ∗-algebras, noncommu-
tative geometry, and others. Hilbert C∗-modules form a category in between
Banach spaces and Hilbert spaces and obey the same axioms as a Hilbert
space except that the inner product takes values in a general C∗-algebra rather
than in the complex number C. This simple generalization gives a lot of trou-
ble. Fundamental and familiar Hilbert space properties like Pythagoras’ equal-
ity, self-duality and decomposition into orthogonal complements must be given
up. Moreover, a bounded module map between Hilbert C∗-modules does not
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need to have an adjoint; not every adjointable operator needs to have a polar
decomposition. Hence to get its applications, we have to use it with great care.
A proper H∗-algebra is a complex Banach ∗-algebra (A, ‖.‖) where the un-
derlying Banach space is a Hilbert space with respect to the inner product
〈., .〉 satisfying the properties 〈ab, c〉 = 〈b, a∗c〉 = 〈a, cb∗〉 for all a, b, c ∈ A. A
C∗-algebra is a complex Banach ∗-algebra (A, ‖.‖) such that ‖a∗a‖ = ‖a‖2 for
every a ∈ A. If A is a proper H∗-algebra or a C∗-algebra and a ∈ A is such
that Aa = 0 or aA = 0 then a = 0. An element a in a proper H∗-algebra A is
called positive (a � 0) if 〈ax, x〉 � 0 for every x ∈ A. Every positive element
a in a proper H∗-algebra is self-adjoint (that is a∗ = a). An element a in a
C∗-algebra A is called positive (a � 0) if it is self-adjoint and has positive
spectrum. An element a∗a is positive for every a ∈ A, in both structures.
For a proper H∗-algebra A, the trace class associated with A is τ(A) = {ab :
a, b ∈ A}. It is a self-adjoint two-sided ideal of A which is dense in A. For
every positive a ∈ τ(A) there exists the square root of a, that is, a unique
positive a

1
2 ∈ A such that

(
a

1
2
)2 = a, the square root of a∗a is denoted by

|a|. There are a positive linear functional tr on τ(A) and a norm τ on τ(A),
related to the norm of A by the equality tr(a∗a) = τ(a∗a) = ‖a‖2 for every
a ∈ A. The trace-class is a Banach ∗-algebra with respect to the norm τ(.)
defined by τ(a) = tr(|a|). Let us mention that |tr(a)| � τ(a) and ‖a‖ � τ(a)
for every a ∈ τ(A).
Let A be a proper H∗-algebra or a C∗-algebra. A semi-inner product module
over A is a right module X over A together with a generalized semi-inner
product, that is, with a mapping 〈., .〉 on X × X, which is τ(A)-valued if A
is a proper H∗-algebra, or A-valued if A is a C∗-algebra, has the following
properties:

(i) 〈x, y + z〉 = 〈x, y〉 + 〈x, z〉 for all x, y, z ∈ X,

(ii) 〈x, ya〉 = 〈x, y〉 a for x, y ∈ X, a ∈ A,

(iii) 〈x, y〉∗ = 〈y, x〉 for all x, y ∈ X,

(iv) 〈x, x〉 � 0 for x ∈ X.

We will say that X is a semi-inner product H∗-module if A is a proper H∗-
algebra and that X is a semi-inner product C∗-module if A is a C∗-algebra.
The absolute value of x ∈ X is defined as the square root of 〈x, x〉, and it is
denoted by |x|.
If, in addition,

(v) 〈x, x〉 = 0 implies x = 0,

then 〈., .〉 is called a generalized inner product and X is called an inner product
module over A. We will say that X is a (semi-)inner product H∗-module if it
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is a (semi-)inner product module over a proper H∗-algebra, and that X is a
(semi-)inner product C∗-module if it is a (semi-)inner product module over a
C∗-algebra.
As we can see, an inner product module obeys the same axioms as an ordinary
inner product space, except that the inner product takes values in a more
general structure rather than in the field of complex numbers.
If A is a C∗-algebra and X is a semi-inner product A-module, then the following
Schwarz inequality holds:

‖〈x, y〉‖2 � ‖〈x, x〉‖‖〈y, y〉‖ (x, y ∈ X) (3)

(e.g. [13, Lemma 15.1.3]).
It follows from the Schwarz inequality (3) that ‖x‖ := ‖〈x, x〉‖ 1

2 (x ∈ X), is
a semi-norm on X.
If X is a semi-inner product H∗-module, then there are two forms of the
Schwarz inequality: for every x, y ∈ X

(tr〈x, y〉)2 � tr〈x, x〉tr〈y, y〉 (the weak Schwarz inequality), (4)

(τ〈x, y〉)2 � tr〈x, x〉tr〈y, y〉 (the strong Schwarz inequality). (5)

First Saworotnow in [12] proved the strong Schwarz inequality, but the direct
proof of that for a semi-inner product H∗-module can be found in [10].

Weak Schwarz inequality (4) implies that
∥∥|x|∥∥ =

(
tr〈x, x〉) 1

2 (x ∈ X), is a
semi-norm on X.
Now let A be a ∗-algebra, ϕ a positive linear functional on A, and let X
be a semi-inner A-module. We can define a sesquilinear form on X × X by
σ(x, y) = ϕ (〈x, y〉); the Schwarz inequality for σ implies that

|ϕ〈x, y〉|2 � ϕ〈x, x〉ϕ〈y, y〉.

In [3, Proposition 1, Remark 1] the authors present two other forms of the
Schwarz inequality in semi-inner A-module X, one for a positive linear func-
tional ϕ on A:

ϕ(〈x, y〉〈y, x〉) � ϕ〈x, x〉r〈y, y〉, (6)

where r is the spectral radius, and another one for a C∗-seminorm γ on A:

(γ〈x, y〉)2 � γ〈x, x〉γ〈y, y〉. (7)

Before stating the main results, let us fix the rest of our notation. We assume
that A is a C∗-algebra or a H∗-algebra, and assume unless stated otherwise,
throughout this paper p = (p1, ..., pn) ∈ R

n a probability vector i.e.
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pi � 0 (i = 1, ..., n) and
∑n

i=1 pi = 1. If X is a semi-inner product A-module
and x = (x1, ..., xn), y = (y1, ..., yn) ∈ Xn we put

Gp(x, y) =
n∑

i=1

pi〈xi, yi〉 −
〈

n∑
i=1

pixi,
n∑

i=1

piyi

〉
,

we use Gp(x) instead of Gp(x, x).

Lemma 2.1. Let X be a semi-inner product C∗-module or a semi-inner H∗-
module, a, b ∈ X, x = (x1, ..., xn), y = (y1, ..., yn) ∈ Xn, α = (α1, ..., αn) ∈ K

n;
(K = C, R) and p = (p1, ..., pn) ∈ R

n a probability vector, then

n∑
i=1

piαixi −
n∑

i=1

piαi

n∑
i=1

pixi =
n∑

i=1

pi

(
αi −

n∑
j=1

pjαj

)
(xi − a), (8)

and

Gp(x, y) =
n∑

i=1

pi 〈xi − a, yi − b〉 −
〈

n∑
i=1

pi(xi − a),
n∑

i=1

pi(yi − b)

〉
. (9)

In particular

Gp(x) =
n∑

i=1

pi |xi − a|2 −
∣∣∣∣∣

n∑
i=1

pixi − a

∣∣∣∣∣
2

�
n∑

i=1

pi |xi − a|2 . (10)

Proof. For every a ∈ X a simple calculation shows that

n∑
i=1

pi

(
αi −

n∑
j=1

pjαj

)
(xi − a) =

n∑
i=1

piαixi −
n∑

j=1

pjαj

n∑
i=1

pixi

− a
n∑

i=1

piαi + a
n∑

i=1

pi

n∑
j=1

pjαj

=
n∑

i=1

piαixi −
n∑

i=1

piαi

n∑
i=1

pixi.

For every a, b ∈ X, a simple calculation shows that
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n∑
i=1

pi 〈xi − a, yi − b〉 −
〈

n∑
i=1

pi(xi − a),
n∑

i=1

pi(yi − b)

〉

=
n∑

i=1

pi

(〈xi, yi〉 − 〈xi, b〉 − 〈a, yi〉 + 〈a, b〉)

−
〈

n∑
i=1

pixi − a,
n∑

i=1

piyi − b

〉

=
n∑

i=1

pi〈xi, yi〉 −
〈

n∑
i=1

pixi,
n∑

i=1

piyi

〉
= Gp(x, y).

In particular for a = b, xi = yi we have

Gp(x) =
n∑

i=1

pi 〈xi − a, xi − a〉 −
〈

n∑
i=1

pi(xi − a),
n∑

i=1

pi(xi − a)

〉

=
n∑

i=1

pi |xi − a|2 −
∣∣∣∣∣

n∑
i=1

pi(xi − a)

∣∣∣∣∣
2

�
n∑

i=1

pi |xi − a|2 . �

3. Grüss Type Inequalities in Semi-Inner Prod-
uct C∗-Modules

In the following theorem we give a generalization of Theorem 1.1 for semi-inner
product C∗-modules.

Theorem 3.1. Let X be a semi-inner product C∗-module, a, b ∈ X and p =
(p1, ..., pn) ∈ R

n a probability vector. If x = (x1, ..., xn), y = (y1, ..., yn) ∈ Xn,
then the following inequality holds

∥∥∥∥∥
n∑

i=1

pi 〈xi, yi〉 −
〈

n∑
i=1

pixi,
n∑

i=1

piyi

〉∥∥∥∥∥
2

�

∥∥∥∥∥∥
n∑

i=1

pi |xi − a|2 −
∣∣∣∣∣

n∑
i=1

pixi − a

∣∣∣∣∣
2
∥∥∥∥∥∥

∥∥∥∥∥∥
n∑

i=1

pi |yi − b|2 −
∣∣∣∣∣

n∑
i=1

piyi − b

∣∣∣∣∣
2
∥∥∥∥∥∥
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�
(

n∑
i=1

pi ‖xi − a‖2

)(
n∑

i=1

pi ‖yi − b‖2

)
(11)

Proof. A simple calculation shows that

n∑
i=1

pi〈xi, yi〉 −
〈

n∑
i=1

pixi,

n∑
i=1

piyi

〉
=

1
2

n∑
i,j=1

pipj 〈xi − xj , yi − yj〉 ,

therefore

Gp(x) =
1
2

n∑
i,j=1

pipj 〈xi − xj , xi − xj〉 � 0.

It is easy to show that Gp(·, ·) is an A-value semi-inner product on Xn, so
Schwarz inequality holds i.e.,

‖Gp(x, y)‖2 � ‖Gp(x)‖‖Gp(y)‖.

From inequality (10) we get

‖Gp(x)‖ =

∥∥∥∥∥∥
n∑

i=1

pi |xi − a|2 −
∣∣∣∣∣

n∑
i=1

pixi − a

∣∣∣∣∣
2
∥∥∥∥∥∥ �

n∑
i=1

pi ‖xi − a‖2
.

Similarly

‖Gp(y)‖ =

∥∥∥∥∥∥
n∑

i=1

pi |yi − b|2 −
∣∣∣∣∣

n∑
i=1

piyi − b

∣∣∣∣∣
2
∥∥∥∥∥∥ �

n∑
i=1

pi ‖yi − b‖2
.

Therefore we obtain the inequality (11). �

Corollary 3.2. Let X be a semi-inner product C∗-module, a, b ∈ X and p =
(p1, ..., pn) ∈ R

n a probability vector. If x = (x1, ..., xn), y = (y1, ..., yn) ∈ Xn,
r � 0, s � 0 are such that

‖xi − a‖ � r, ‖yi − b‖ � s, for all i ∈ {1, ..., n}, (12)

then the following inequality holds∥∥∥∥∥
n∑

i=1

pi 〈xi, yi〉 −
〈

n∑
i=1

pixi,
n∑

i=1

piyi

〉∥∥∥∥∥ � rs. (13)
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The constant 1 coefficient of rs in the inequality (13) is best possible in the
sense that it cannot be replaced by a smaller quantity.

Proof. From inequalities (11) and (12) we obtain (13). To prove the sharp-
ness of the constant 1 in the inequality in (13), let us assume that, under the
assumptions of the theorem, the inequalities hold with a constant c > 0, i.e.,

‖Gp(x, y)‖ � crs. (14)

Assume that n = 2, p1 = p2 = 1
2 and e is an element of X such that ‖〈e, e〉‖ = 1.

We put

x1 = a + re, y1 = b + se,

x2 = a − re, y2 = b − se,

then, obviously,

‖xi − a‖ � r, ‖yi − b‖ � s, (i = 1, 2),

which shows that the condition (12) holds. If we replace n, p1, p2, x1, x2, y1, y2

in (14), we obtain
‖Gp(x, y)‖ = rs � crs,

from where we deduce that c � 1, which proves the sharpness of the constant
1. �
The following Remark 3.3 (ii) is a generalization of Theorem 1.2 for semi-inner
product C∗-modules.

Remark 3.3.

(i) Let A be a C∗-algebra, and p = (p1, ..., pn) ∈ R
n a probability vector. If

a, b, ai, bi, (i = 1, 2, ..., n) ∈ A, r � 0, s � 0 are such that

‖ai − a‖ � r, ‖bi − b‖ � s, for all i ∈ {1, ..., n},

it is known that A is a Hilbert C∗-module over itself with the inner prod-
uct defined by 〈a, b〉 := a∗b. In this case (13) implies that∥∥∥∥∥

n∑
i=1

pia
∗
i bi −

n∑
i=1

pia
∗
i .

n∑
i=1

pibi

∥∥∥∥∥ � rs.

Since
‖a∗

i − a∗‖ � r, for all i ∈ {1, ..., n},
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we deduce ∥∥∥∥∥
n∑

i=1

piaibi −
n∑

i=1

piai.
n∑

i=1

pibi

∥∥∥∥∥ � rs.

(ii) Let X be a semi-inner product C∗-module, a ∈ X, α = (α1, ..., αn) ∈ K
n

and p = (p1, ..., pn) ∈ R
n a probability vector. If x = (x1, ..., xn) ∈

Xn, r � 0 are such that

‖xi − a‖ � r, for all i ∈ {1, ..., n},

holds, from equality (8) we obtain∥∥∥∥∥
n∑

i=1

piαixi −
n∑

i=1

piαi

n∑
i=1

pixi

∥∥∥∥∥ � r
n∑

i=1

pi

∣∣∣∣∣αi −
n∑

i=1

pjαj

∣∣∣∣∣ (15)

� r

⎡
⎣ n∑

i=1

pi|αi|2 −
∣∣∣∣∣

n∑
i=1

piαi

∣∣∣∣∣
2
⎤
⎦

1
2

.

The constant 1 in the first and second inequalities in (15) is best possible.

4. Applications

In this section we give applications of Corollary 3.2 for the approximation of
some discrete transforms such as the discrete Fourier and the Melin trans-
forms. Let X be a semi-inner product C∗-module on C∗-algebra A and x =
(x1, ..., xn), y = (y1, ..., yn) ∈ Xn. For a given ω ∈ R, define the discrete Fourier
transform

Fω(x)(m) =
n∑

k=1

exp(2ωimk) × xk, m = 1, ..., n. (16)

The element
∑n

k=1 exp(2ωimk) × 〈xk, yk〉 of A is called Fourier transform of
the vector (〈x1, y1〉, ..., 〈xk, yk〉) ∈ An and will be denoted by

Fω(x, y)(m) =
n∑

k=1

exp(2ωimk) × 〈xk, yk〉 m = 1, ..., n.

The following Theorems 4.1, 4.2 and 4.3 are generalizations of [1, Theorems
66, 67 and 68] for semi-inner product C∗-modules respectively.
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Theorem 4.1. Let X be a semi-inner product C∗-module, a, b ∈ X. If x =
(x1, ..., xn), y = (y1, ..., yn) ∈ Xn, r � 0, s � 0 are such that

‖xk − a‖ � r,
∥∥ exp(2ωimk)yk − b

∥∥ � s, for all k,m ∈ {1, ..., n},
then the following inequality holds∥∥∥∥∥Fω(x, y)(m) −

〈
1
n

n∑
k=1

xk,Fω(y)(m)

〉∥∥∥∥∥ � nrs,

for all m ∈ {1, ..., n}.
Proof. By Corollary 3.2 applied for pk = 1

n and for the vectors xk and
exp(2ωimk)yk(k = 1, ..., n), we get∥∥∥∥∥Fω(x, y)(m) −

〈
1
n

n∑
k=1

xk,Fω(y)(m)

〉∥∥∥∥∥
= n

∥∥∥∥∥
n∑

k=1

1
n

〈
xk, exp(2ωimk)yk

〉
−

〈
n∑

k=1

1
n

xk,
n∑

k=1

1
n

exp(2ωimk)yk

〉∥∥∥∥∥
� nrs. �

We can also consider the Mellin transform

M(x)(m) =
n∑

k=1

km−1xk, m = 1, ..., n. (17)

of the vector x = (x1, ..., xn) ∈ Xn.
The Mellin transform of the vector (〈x1, y1〉, ..., 〈xk, yk〉) ∈ An is defined by∑n

k=1 km−1〈xk, yk〉 and will be denoted by

M(x, y)(m) =
n∑

k=1

km−1〈xk, yk〉.

Theorem 4.2. Let X be a semi-inner product C∗-module, a, b ∈ X. If x =
(x1, ..., xn), y = (y1, ..., yn) ∈ Xn, r � 0, s � 0 are such that

‖xk − a‖ � r,
∥∥km−1yk − b

∥∥ � s, for all k, m ∈ {1, ..., n},
then the inequality∥∥∥∥∥M(x, y)(m) −

〈
1
n

n∑
k=1

xk,M(y)(m)

〉∥∥∥∥∥ � nrs,
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holds for all m ∈ {1, ..., n}.
The proof of Theorem 4.2 follows by Corollary 3.2 applied for pk = 1

n and for
the vectors xk and km−1yk(k = 1, ..., n). We omit the details.
Another result which connects the Fourier transforms for different parameters
ω also holds.

Theorem 4.3. Let X be a semi-inner product C∗-module, a, b ∈ X. If x =
(x1, ..., xn), y = (y1, ..., yn) ∈ Xn, r � 0, s � 0 are such that for all k, m ∈
{1, ..., n}, ∥∥ exp(2ω1imk)xk − a

∥∥ � r,
∥∥ exp(2ω2imk)yk − b

∥∥ � s,

then for all m ∈ {1, ..., n}, the following inequality holds∥∥∥∥ 1
n
Fω2−ω1(x, y)(m) −

〈
1
n
Fω1(x)(m),

1
n
Fω2(y)(m)

〉∥∥∥∥ � rs.

The proof of Theorem 4.3 follows by Theorem 3.1 applied for pk = 1
n and

for the vectors exp(2ω1imk)xk and exp(2ω2imk)yk (k = 1, ..., n). We omit the
details.

Let X be a semi-inner product C∗-module, x = (x1, ..., xn), α = (α1, ..., αn) ∈
C

n and p = (p1, ..., pn) ∈ R
n a probability vector. If a ∈ X, r � 0, such that

‖xi − a‖ � r, for all i ∈ {1, ..., n},
holds, from equality (9) in Lemma 2.1 we get∥∥∥∥∥

n∑
i=1

piαixi −
n∑

i=1

piαi

n∑
i=1

pixi

∥∥∥∥∥ � r
n∑

i=1

pi

∣∣∣∣∣αi −
n∑

i=1

pjαj

∣∣∣∣∣ (18)

� r

⎡
⎣ n∑

i=1

pi|αi|2 −
∣∣∣∣∣

n∑
i=1

piαi

∣∣∣∣∣
2
⎤
⎦

1
2

.

The constant 1 coefficient of r in the first and second inequalities in (18) is best
possible.
The following approximation result for the Fourier transform (16) which is a
generalization of [2, Theorem 3] in semi-inner product C∗-modules holds.

Proposition 4.4. Let X be a semi-inner product C∗-module and a ∈ X. If
x = (x1, ..., xn) ∈ Xn, r � 0 are such that

‖xi − a‖ � r, for all i ∈ {1, ..., n},



SOME GRÜSS TYPE INEQUALITIES FOR ... 87

then for all m ∈ {1, ..., n} and ω ∈ R, ω �= l
mπ, l ∈ Z the following inequality

holds∥∥∥∥∥Fω(x)(m) − sin(ωmn)
sin(ωm)

exp[ω(n + 1)im] × 1
n

n∑
k=1

xk

∥∥∥∥∥
� r

[
n2 − sin2(ωmn)

sin2(ωm)

] 1
2

. (19)

Proof. From the inequality (18) we can state that,

∥∥∥∥∥ 1
n

n∑
i=1

αixi − 1
n

n∑
i=1

αi.
1
n

n∑
i=1

xi

∥∥∥∥∥ � r

⎡
⎣ 1

n

n∑
i=1

|αi|2 −
∣∣∣∣∣ 1
n

n∑
i=1

αi

∣∣∣∣∣
2
⎤
⎦

1
2

,

for all αi ∈ C, xi ∈ X (i = 1, ..., n). Consequently, we conclude that

∥∥∥∥∥
n∑

i=1

αixi −
n∑

i=1

αi.
1
n

n∑
i=1

xi

∥∥∥∥∥ � r

⎡
⎣n

n∑
i=1

|αi|2 −
∣∣∣∣∣

n∑
i=1

αi

∣∣∣∣∣
2
⎤
⎦

1
2

.

A simple calculation shows that (see the proof of Theorem 59 in [1]),

n∑
k=1

exp(2ωimk) =
sin(ωmn)
sin(ωm)

× exp[ω(n + 1)im].

Putting αk = exp(2ωimk), we get the desired result (19). �
The following approximation result for the Mellin transform (17) in semi-inner
product C∗-modules holds, (see [2, Theorem 4]).

Proposition 4.5. Let X be a semi-inner product C∗-module and a ∈ X. If
x = (x1, ..., xn) ∈ Xn, r � 0 are such that

‖xi − a‖ � r, for all i ∈ {1, ..., n},
then

∥∥∥M(x)(m) − Sm−1(n).
1
n

n∑
k=1

xk

∥∥∥
� r

[
nS2m−2(n) − S2

m−1(n)
] 1

2 , m ∈ {1, ..., n},
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where Sp(n), p ∈ R, n ∈ N is the p-powered sum of the first n natural numbers,
i.e.,

Sp(n) :=
n∑

k=1

kp.

Consider the following particular values of Mellin Transform

µ1(x) :=
n∑

k=1

kxk

and

µ2(x) :=
n∑

k=1

k2xk.

The following Corollary is a generalization of [2, Corollary 4], furthermore, the
quantities in the right hand sides of inequalities (5.5) and (5.6) in [2, Corollary
4] have been corrected by the following inequalities (20) and (21) respectively.

Corollary 4.6. Let X be a semi-inner product C∗-module, a ∈ X. If x =
(x1, ..., xn) ∈ Xn and r � 0 are such that

‖xi − a‖ � r, for all i ∈ {1, ..., n},
then ∥∥∥∥∥µ1(x) − n + 1

2
.

n∑
k=1

xk

∥∥∥∥∥ � rn

2

[
(n − 1)(n + 1)

3

] 1
2

, (20)

and

∥∥∥µ2(x)− (n + 1)(2n + 1)
6

.

n∑
k=1

xk

∥∥∥ � rn

6
√

5

√
(n − 1)(n + 1)(2n + 1)(8n + 11).

(21)

Other inequalities related to the Grüss type discrete inequalities for polynomials
with coefficients in a Hilbert space such as Theorem 61, Theorem 62, Corollary
52 in [1], have versions that are valid for polynomials with coefficients in a
semi-inner C∗-module. However, the details are omitted.

5. Grüss Type Inequalities in Semi-Inner Prod-
uct H∗-Modules

The following Theorem is a version of Corollary 3.2 for H∗-modules.
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Theorem 5.1. Let X be a semi-inner product H∗-module, a, b ∈ X and p =
(p1, ..., pn) ∈ R

n a probability vector. If x = (x1, ..., xn), y = (y1, ..., yn) ∈
Xn, r � 0 and s � 0 are such that∥∥|xi − a|∥∥ � r,

∥∥|yi − b|∥∥ � s, for all i ∈ {1, ..., n},
then the following inequality holds∣∣τ(Gp(x, y))

∣∣ � rs. (22)

The constant 1 coefficient of rs in the inequalities (22) is sharp.

Proof. By strong Schwarz inequality (5) we have

τ(Gp(x, y))2 � tr(Gp(x))tr(Gp(y)). (23)

From inequality (10) in Lemma 2.1 we obtain

tr(Gp(x)) �
n∑

i=1

pi

∥∥|xi − a|∥∥2 � r2, (24)

similarly

tr(Gp(y)) �
n∑

i=1

pi

∥∥|yi − b|∥∥2 � s2. (25)

Now (23), (24) and (25) imply (22).
The fact that the constant 1 is sharp may be proven in a similar manner to the
one embodied in the proof of Corollary 3.2. We omit the details. �
The following companion of the Grüss inequality for H∗-modules.

Theorem 5.2. Let X be a semi-inner product H∗-module, a, b ∈ X and p =
(p1, ..., pn) ∈ R

n a probability vector. If x = (x1, ..., xn), y = (y1, ..., yn) ∈
Xn, r � 0, s � 0 are such that

∥∥|xi − a|∥∥ � r,
∥∥|yi − b|∥∥ � s for all i ∈ {1, ..., n},

then the following inequality holds

∣∣τ(Gp(x, y))
∣∣ � rs −

∥∥∥∥∥
∣∣∣ n∑

i=1

pi(xi − a)
∣∣∣
∥∥∥∥∥

∥∥∥∥∥
∣∣∣ n∑

i=1

pi(yi − b)
∣∣∣
∥∥∥∥∥ � rs. (26)

Proof. From equality (9) in Lemma 2.1 for y = x and b = a, we get

tr(Gp(x)) =
n∑

i=1

pi

∥∥|xi − a|∥∥2 −
∥∥∥∥∥
∣∣∣ n∑

i=1

pi(xi − a)
∣∣∣
∥∥∥∥∥

2

.
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Similarly for every b ∈ X by substitution x with y, and a with b, we have

tr(Gp(y)) =
n∑

i=1

pi

∥∥|yi − b|∥∥2 −
∥∥∥∥∥
∣∣∣ n∑

i=1

pi(yi − b)
∣∣∣
∥∥∥∥∥

2

. (27)

By strong Schwarz inequality (5) we have

∣∣τ(Gp(x, y))
∣∣ �

⎡
⎣ n∑

i=1

pi

∥∥|xi − a|∥∥2 −
∥∥∥∥∥
∣∣∣ n∑

i=1

pi(xi − a)
∣∣∣
∥∥∥∥∥

2
⎤
⎦

1
2

×
⎡
⎣ n∑

i=1

pi

∥∥|yi − b|∥∥2 −
∥∥∥∥∥
∣∣∣ n∑

i=1

pi(yi − b)
∣∣∣
∥∥∥∥∥

2
⎤
⎦

1
2

�

⎡
⎣r2 −

∥∥∥∥∥
∣∣∣ n∑

i=1

pi(xi − a)
∣∣∣
∥∥∥∥∥

2
⎤
⎦

1
2

⎡
⎣s2 −

∥∥∥∥∥
∣∣∣ n∑

i=1

pi(yi − b)
∣∣∣
∥∥∥∥∥

2
⎤
⎦

1
2

.

Now using the elementary inequality for real numbers

(m2 − n2)(p2 − q2) � (mp − nq)2,

on

m = r, n =

∥∥∥∥∥
∣∣∣ n∑

i=1

pi(xi − a)
∣∣∣
∥∥∥∥∥ ,

p = s, q =

∥∥∥∥∥
∣∣∣ n∑

i=1

pi(yi − b)
∣∣∣
∥∥∥∥∥ ,

we get the inequality (26). �

Corollary 5.3. Let X be a semi-inner product H∗-module, a ∈ X and p =
(p1, ..., pn) ∈ R

n a probability vector. If x = (x1, ..., xn), y = (y1, ..., yn) ∈
Xn and r � 0 are such that∥∥|xi − a|∥∥ � r for all i ∈ {1, ..., n}
then the following inequality holds

∣∣τ(Gp(x, y))
∣∣ � r

⎡
⎣ n∑

i=1

pi

∥∥|yi|
∥∥2 −

∥∥∥∥∥
∣∣∣ n∑

i=1

piyi

∣∣∣
∥∥∥∥∥

2
⎤
⎦

1
2

. (28)
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Proof. From the equality (5.) and the condition (5.3) we have

tr(Gp(x)) =
n∑

i=1

pi

∥∥|xi − a|∥∥2 −
∥∥∥∥∥
∣∣∣ n∑

i=1

pi(xi − a)
∣∣∣
∥∥∥∥∥

2

(29)

�
n∑

i=1

pir
2 −

∥∥∥∥∥
∣∣∣ n∑

i=1

pi(xi − a)
∣∣∣
∥∥∥∥∥

2

� r2.

Using the inequalities (23), (29) and the equality (27) we get

∣∣τ(Gp(x, y))
∣∣ � r

⎡
⎣ n∑

i=1

pi

∥∥|yi − b|∥∥2 −
∥∥∥∥∥
∣∣∣ n∑

i=1

pi(yi − b)
∣∣∣
∥∥∥∥∥

2
⎤
⎦

1
2

,

and for b = 0 we get the inequality (28). �
There exists a version of Remark 3.3 for semi-inner product H∗-modules and
there are applications from theorems and results in this section for the ap-
proximation of some discrete transforms in a semi-inner product H∗-module.
However, the details are omitted but each of them can be proven in a similar
manner as section 4.
Let A be a Banach ∗-algebra and X be a semi-inner product A-module (see
[3]). Utilizing Schwarz inequality (6) or (7) and a version of Lemma 2.1 for
semi-inner product A-module X. The technique of the proof of Theorem 3.1
is applicable to semi-inner product Banach ∗-modules as well.
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