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1 Introduction

Inequalities play a fundamental role in almost every branch of mathe-
matics. The books like “Inequalities” by Beckenbach and Bellman [3],
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“Analytic Inequalities” by Mitrinovic [18] and “Advanced Inequalities”
by Anastassiou [7], made noticeable contribution to this field and pro-
vide techniques, ideas, and applications. A lot of effort has been devoted
to discover new types of inequalities and their applications in many parts
of analysis. In recent years, this theory has attracted many researchers,
stimulated new research directions, and influenced various aspects of
mathematical analysis and applications. Important advances related to
inequalities along with many important applications, remained active
areas of research in the last few decades. Many researchers have con-
tributed to develop new inequalities in various areas of mathematics
such as Fractional Calculus and Quantum Calculus. For the recent de-
velopment in inequalities and their applications in different fields, we
recommend [17, 18, 19, 23, 25, 35, 36] and the references cited therein
to the interested readers.

Several mathematical models, such as dynamic and static, linear and
non-linear, discrete or continuous, can study the behavior of real-world
systems. The knowledge about the parameters of real-world systems is
uncertain and inadequate because we can not measure these parameters
accurately. Only real numbers can not help us to represent these param-
eters in such situations. This deficiency is reduced by using interval or
fuzzy models. The interval of real numbers is used for the representation
of an uncertain variable for such parameters.

Moore’s [20] book “Interval Analysis” was the outcome of his Ph.D.
thesis and therefore focuses on bounding solutions of initial value prob-
lems for ordinary differential equations. In the past twenty years, many
new advances in interval analysis have been seen. Hukuhara [13] was
the first one who had introduced the Hukuhara difference (H-difference)
and Hukuhara derivative for set-valued mappings and started the new
research topic for researchers in set differential equations and fuzzy dif-
ferential equations. As interval analysis is a special case of set-valued
analysis, therefore many authors have contributed to the field of interval-
valued differential equations with the help of the Hukuhara derivative.
H-difference has the drawback that it does not always applicable to any
two compact intervals of real numbers. Stefanini [29] generalized the
idea of H-difference to generalized Hukuhara difference (gH-difference),
to overcome the drawback of H-difference and proposed the concept
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of gH-derivative. After that, the theory of interval analysis has many
recent developments till now.

By using the concept of gH-difference, Younus et al. [30] developed
the theory of interval-valued fractional q-calculus for interval-valued
functions. Their study investigates the generalized Hukuhara difference,
fractional q-differentiability, q-integrability, and fractional q-integrability
for interval-valued functions defined on the q-geometric set of real num-
bers. The concept of interval-valued fractional calculus was given by
Lupulescu [14]. Many authors have studied interval-valued differen-
tial equations based on the concept of gH-difference in recent years
[15, 16, 28]. Some partial orders on the set of compact intervals exist in
literature, for instance, see, [8, 31, 33], therefore many classical inequal-
ities for real-valued functions were extended to interval-valued functions
by using these partial orders, see, for example [2, 6, 26, 27, 32] and [34].

1.1 Convex analysis

Now, we recall some basic properties, definitions, and results on con-
vex analysis, which are used throughout this article. Convex functions
play a vital role in the theory of inequalities. A lot of inequalities are
established using convex functions, see, for example [1, 4, 5, 9], and [11].

Let I ⊂ R and a mapping z : I −→ R is called convex:

θz (a) + (1− θ)z (b) ≥ z (θa+ (1− θ) b) , (1)

(∀) a, b ∈ I and θ ∈ (0, 1) .
For a1, a2, a3 ∈ I such that a1 < a2 < a3, then (1) is equivalent to

a3 − a2
a3 − a1

z (a1) +
a2 − a1
a3 − a1

z (a3) ≥ z (a2) . (2)

Remark 1.1. Let I ⊂ R and z : I −→ R is second differentiable. Then
z is convex ⇔ 0 ≤ z′′ (r) ∀ r ∈ I.

Convex functions satisfy following properties:

(a) If G,z are convex functions and α, β ≥ 0, then αG+ βz is convex.

(b) The sum of finitely many convex functions is also convex.
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The following is Hadamard’s inequality (HH inequality) for convex
functions.

Let R ⊃I. If z be a convex function from I to R and for all a, b ∈ I
with a < b, then we have:

z
(
a+ b

2

)
≤ 1

b− a

∫ b

a
z (x) dx ≤ z (a) + z (b)

2
.

Hadamard’s contribution motivated many researchers to obtain var-
ious extensions of Hadamard’s inequality. Some of these inequalities are
presented here.

Lemma 1.2. [21] For p, q > 0, a1 ≤ a < b ≤ b1, and all convex
continuous functions z : [a1, b1] −→ R the following inequalities

z (v) ≤ 1
2y

∫ v+y

v−y
z (θ) dθ ≤ 1

2 (z (v − y) + z (v + y))

≤ pz (a) + qz (b)

p+ q
,

hold for v =
pa+ qb

p+ q
, y > 0⇔ y ≤ b− a

p+ q
min {p, q} .

Lemma 1.3. [12] Let z be a real-valued convex function defined on
[a, b], then we can obtain the following inequality

z
(
a+b
2

)
≤ 1

(b−a)2

∫ b

a

∫ b

a
z (θx+ (1− θ) y) dxdy

≤ 1
(b−a)

∫ b

a
z (x) dx

≤ z(b)+z(a)
2 ,

for all θ ∈ [a, b].

The following lemmas are the generalizations and refinements of HH
inequality for linear isotonic functional found in [10] and [22].

Lemma 1.4. Let X be a real vector space and S ⊆ X be a convex set.

(1) Then real-valued functional z : X → R is convex on S if and only
if, the real-valued functional Gx,y : [0, 1] → R defined as Gx,y :=
z (θx+ (1− θ) y) is convex on [0, 1] , ∀ x, y ∈ S.
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(2) If z is real-valued convex functional on S ⊆ X, then ∀ x, y ∈ S,
the real-valued mapping Gx,y on [0, 1], defined by

Gx,y (θ) :=

[
1

2
z (θx+ (1− θ) y)

]
+

[
1

2
z ((1− θ)x+ θy)

]
is also convex on [0, 1] . Moreover, the following inequality is also
satisfied

z (x) + z (y)

2
≥ Gx,y (θ) ≥ z

(
x+ y

2

)
∀ x, y in S and θ ∈ [0, 1] .

1.2 Arithmetic for interval valued functions

The set denoted by KC is defined as follows:

KC =
{
A =

[
a−, a+

]
: a+, a− ∈ R and a+ ≥ a−

}
.

If A = [a−, a+] , B = [b−, b+] ∈ KC , then the scalar multiplication and
Minkowski’s addition are defined as:

λA =


λ [a−, a+] if λ > 0
{0} if λ = 0
λ [a+, a−] if λ < 0

for λ ∈ R, and

A+B =
[
a− + b−, a+ + b+

]
,

respectively.

The definition of difference for interval-valued function is given as:
A − B = A + (−1)B. The set KC is not a vector space because in
general A−A 6= {0}. Hukuhara introduced a H-difference to overcome
the above drawback which is defined as

A = B + C,

and denoted by A−HB. The H-difference only exists for intervals A and
B for which the len (A) ≥ len (B), where len (A) = a+ − a−. Stefanini
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generalized H-difference to reduce this deficiency, for any two compact
intervals A,B ∈ KC , A	gH B is given as follows

C = A	gH B iff

{
(1) B + C = A
(2) A+ (−1)C = B.

In case (1) , the gH-difference is similar as H-difference. Thus the gH-
difference is the extension of H-difference. In general, gH-difference for
two arbitrary closed intervals is given as:

A	gH B =
[
min

{
a− − b−, a+ − b+

}
,max

{
a− − b−, a+ − b+

}]
.

If A ∈ KC , then norm ‖A‖ is defined as: ‖A‖ = max {|a−| , |a+|} .
The Hausdorff metric DH on KC for A,B ∈ KC is given as:

DH (A,B) = max
{∣∣a− − b−∣∣ , ∣∣a+ − b+∣∣} .

Next, we will go through some fundamentals of interval-valued func-
tions on KC . Let I ⊂ R, a mapping H : I −→ KC is called interval-
valued, if H (t) = [h− (t) , h+ (t)] , where h−, h+ : I −→ R and h− (t) ≤
h+ (t) , for all t ∈ I.

Definition 1.5. Consider z : [t1, t2] → KC and t0 ∈ (t1, t2) , then
L ∈ KC is limit of F at the point t0, which is denoted as

lim
t→t0

H (t) = L,

if for any given ε > 0 their exist δ > 0 such that,

0 < |t− t0| < δ =⇒ DH (H (t) , L) < ε.

Remark 1.6. LetH : [t1, t2]→ KC be an interval-valued function which
is defined as H (t) = [h− (t) , h+ (t)] for t ∈ [t1, t2] , then the limt→t0 H (t)
for t0 ∈ (t1, t2) exist if and only if both limt→t0 h

− (t) and limt→t0 h
+ (t)

exists as finite real number. So limit of the function H can be defined
as:

lim
t→t0

H (t) =

[
lim
t→t0

h− (t) , lim
t→t0

h+ (t)

]
.

The interval-valued function H : T → KC is continuous at t0 if and
only if limt→t0 H (t) = H (t0) .
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Definition 1.7. Let H : [t1, t2] → KC be a function and for any t ∈
(t1, t2) , we can define H

′
(t) ∈ KC as

H
′
(t) = lim

h→0

H (t+ h)	gH H (t)

h
.

If the limit exists, then H is generalized Hukuhara differentiable at t.
Further, H is twice generalized Hukuhara differentiable at t, if

H
′′

(t) = lim
h→0

H
′
(t+ h)	gH H

′
(t)

h
.

Theorem 1.8. Let H be interval-valued function defined on [t1, t2] such
that H (t) = [h− (t) , h+ (t)] for t ∈ [t1, t2] , the function H is gH-
differentiable if and only if h− (t) and h+ (t) are differentiable real-valued
functions and

H
′
(t) =

[
min

{
h−
′
(t) , h+

′
(t)
}
, max

{
h−
′
(t) , h+

′
(t)
}]

.

Remark 1.9. Suppose H : [t1, t2] → KC be a gH-differentiable at any
point t0 ∈ (t1, t2) . H is said to be (i) gH-differentiable and (ii) gH-
differentiable at t0 if

H
′
(t) =

[
h−
′
(t0) , h

+
′
(t0)
]
,

and
H
′
(t) =

[
h+
′
(t0) , h

−′ (t0)
]
,

respectively.

Proposition 1.10. If H : [t1, t2] → KC is gH-differentiable at t0 ∈
(t1, t2) then (h− (t) + h+ (t)) is also a differentiable function at t0.

2 Interval Valued Inequalities for CW Convex
Functions

Since KC is not a totally order set. For the comparison of images of
interval-valued functions in the context of optimization problems, several
partial order relations exist in KC , see, for example [6, 33].
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For a given interval A = [a−, a+] ∈ KC , the center and half width of
interval A can be defined as

AC =
1

2

(
a+ + a−

)
and AW =

1

2

(
a+ − a−

)
, (3)

respectively. For A,B ∈ KC , CW partial order on KC is defined as
following

A �CW B if and only if AC ≤ BC and AW ≤ BW (4)

and A ≺CW B iff A �CW B and A 6= B.

Definition 2.1. Let H : I −→ KC be an interval-valued function de-
fined on a convex subset I ⊆ R such that H (a) = [h− (a) , h+ (a)] where
h− (a) ≤ h+ (a) for all a ∈ I. The function H is CW -convex, if the
following relation holds

H (θa+ (1− θ) b) �CW (1− θ)H (a) + θH (a) (5)

for all θ ∈ (0, 1) , and for all a, b ∈ I.

By using (4), H is CW -convex if and only if the following two in-
equalities hold

HC (θa+ (1− θ) b) ≤ θHC (a) + (1− θ)HC (b) (6)

and

HW (θa+ (1− θ) b) ≤ θHW (a) + (1− θ)HW (b) , (7)

for all θ ∈ (0, 1) and a, b ∈ I, where HC = 1
2 (h+ + h−) and HW =

1
2 (h+ − h−) , respectively.

Moreover, by using (3), inequalities (6) and (7) can be written as

1
2 (1− θ) (h− + h+) (b) + 1

2θ (h− + h+) (a)
≥ 1

2 [(h− + h+) (θa+ (1− θ) b)] (8)

and
1
2 (1− θ) (h+ − h−) (b) + 1

2θ (h+ − h−) (a)
≥ 1

2 [(h+ − h−) (θa+ (1− θ) b)] , (9)

respectively.
It is illustrated in the following example that CW convexity of interval-

valued function does not imply the convexity of real-valued function h−.
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Example 2.2. LetH : [1,∞) −→ KC such thatH (x) =
[
x

1
2 − x2,−x

1
2 + 2x2

]
,

where h− (x) = x
1
2 −x2, h+ (x) = −x

1
2 +2x2. The function h+ is convex

but h− is not convex function. The addition and subtraction of h− and
h+ is convex i.e., h− (x)+h+ (x) = x2 and h+ (x)−h− (x) = −2x

1
2 +3x2

are convex functions. It follows that HC and HW are both convex func-
tions which implies H is CW -convex function.

Throughout this section, H is considered to be interval-valued func-
tion.

Theorem 2.3. If H : [a, b] −→ KC is CW -convex mapping, then the
following inequality holds

H

(
a+ b

2

)
�CW

1

b− a

∫ b

a
H (x) dx �CW

1

2
[H (a) +H (b)] (10)

Proof. Since H is a CW -convex function. By integrating the inequality
(9) with respect to θ on interval [0, 1] , we get

1
2

∫ 1

0
[(h+ − h−) (θa+ (1− θ) b)] dθ

≤ 1
2

∫ 1

0
θ (h+ − h−) (a) dθ + 1

2

∫ 1

0
(1− θ) (h+ − h−) (b) dθ

= 1
4 [(h+ − h−) (a) + (h+ − h−) (b)] .

We obtain the following inequality by using the definition of convexity

HW
(
a+b
2

)
= HW

(
a+(θa−θa)+(θb−θb)+b

2

)
≤ 1

2H
W (θa+ (1− θ) b) + 1

2H
W ((1− θ) a+ θb) .

(11)

By using (9) in inequality (11) and integrating it with respect to θ on
interval [0, 1] , we obtain

1
2

∫ 1

0
(h+ − h−)

(
a+b
2

)
dθ ≤

1
4

(∫ 1

0
(h+ − h−) (θa+ (1− θ) b) dθ +

∫ 1

0
(h+ − h−) ((1− θ) a+ θb) dθ

)
.

(12)
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Now, by replacing 1− θ = λ in the following integral, we get∫ 1

0

(
h+ − h−

)
((1− θ) a+ θb) dθ =

∫ 1

0

(
h+ − h−

)
(λa+ (1− λ) b) dθ.

(13)
Using (13) in (12), we have

1

2

∫ 1

0

(
h+ − h−

)(a+ b

2

)
dθ ≤ 1

2

∫ 1

0

(
h+ − h−

)
(θa+ (1− θ) b) dθ (14)

By taking θa+ (1− θ) b = x in inequality (14), it follows that

(h+ − h−)
(
a+b
2

)
≤
(

1
b−a

)∫ b

a
(h+ − h−) (x) dx

≤ 1
2 ((h+ − h−) (a) + (h+ − h−) (b)) ,

(15)

which implies that

HW

(
a+ b

2

)
≤ 1

b− a

∫ b

a
HW (x) dx ≤ HW (a) +HW (b)

2
. (16)

Similarly, for HC , we obtain the following inequality

(h+ + h−)
(
a+b
2

)
≤ 1

(b−a)

∫ b

a
(h+ + h−) (x) dx

≤ 1
2 ((h+ + h−) (a) + (h+ + h−) (b)) ,

which yields

HC

(
a+ b

2

)
≤ 1

b− a

∫ b

a
HC (x) dx ≤ HC (a) +HC (b)

2
. (17)

We get inequality (10) from (16) and (17). �

Example 2.4. LetH : [2, 10] −→ KC such thatH(x) =
[
x

1
2 − x2,−x

1
2 + 2x2

]
,

where h− (x) = x
1
2 − x2, h+ (x) = −x

1
2 + 2x2. The interval-valued func-

tion H is CW -convex. According to Theorem 2.3, we have H(6) =

[−33.5, 69.5], HC(6) = 18 and HW (6) = 51.5. For A := 1
8

∫ 10

2
H (x) dx =
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[−38.9, 80.2] , we have AC = 20.6 and AW = 59.6. Finally, for the right
hand side of inequality (10), we have H(2) = [−2.6, 6.6] , H(10) =

[−96.8, 196.8] , B :=
H (2) +H (10)

2
= [−49.7, 101.7] . The center and

half width of interval B is BC = 25.9 and BW = 75.7.
SinceHC(6) < AC < BC andHW (6) < AW < BW . Therefore, H(6) ≺CW
A ≺CW B.

Theorem 2.5. Suppose H : [a, b] −→ KC be a CW -convex function, for

all p, q > 0, and v =
pa+ qb

p+ q
, we have the following inequalities

H
(
pa+qb
p+q

)
�CW 1

2y

∫ v+y

v−y
H (θ) dθ �CW 1

2 [H (v − y) +H (v + y)]

�CW pH(a)+qH(b)
p+q .

(18)
Proof. Since H be a CW -convex, so that HC , HW are convex. From
Lemma 1.2, if

0 < y ≤ min {p, q}
(
b− a
p+ q

)
then it implies that a ≤ v − y < v + y ≤ b. Therefore, H is CW -convex
as well as defined on [v − y, v + y]. Now, by applying inequality (10) for
a = v − y and b = v + y, we have

H (v) �CW
1

2y

∫ v+y

v−y
H (θ) dθ �CW

H (v − y) +H (v + y)

2
.

First, we observe that

1
2 ((h− + h+) (v)) ≤ 1

4y

∫ v+y

v−y
(h− + h+) (θ) dθ

≤ 1
4 ((h− + h+) (v − y) + (h− + h+) (v + y)) .

(19)

Since HC is convex and by applying (2) for x1 = a, x3 = b and x2 = v−y,
we have

1
2 ((h− + h+) (v − y))

= 1
2

((
b−(v−y)
b−a

)
(h− + h+) (a) +

(
(v−y)−a
b−a

)
(h− + h+) (b)

)
.

(20)
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Similarly, for x2 = v + y, we have
1
2 ((h− + h+) (v + y))

= 1
2

((
b−(v+y)
b−a

)
(h− + h+) (a) +

(
(v+y)−a
b−a

)
(h− + h+) (b)

)
.

(21)

respectively. Using (20) and (21) in (19), we obtain

1
4y

∫ v+y

v−y
(h− + h+) (θ) dθ

≤ 1
4 ((h− + h+) (v − y) + (h− + h+) (v + y))

= 1
2

((
b−v
b−a

)
(h− + h+) (a) +

(
v−a
b−a

)
(h− + h+) (b)

)
= 1

2(b−a) ((b− v) (h− + h+) (a) + (v − a) (h− + h+) (b)) .

By putting v =
pa+ qb

p+ q
in above expression, we get

1

4y

∫ v+y

v−y

(
h− + h+

)
(θ) dθ ≤ 1

2

(
p (h− + h+) (a) + q (h− + h+) (b)

p+ q

)
.

(22)
Now, by using inequalities (19) and (22), we obtain

HC
(
pa+qb
p+q

)
≤ 1

2y

∫ v+y

v−y
HC (θ) dθ ≤ 1

2

(
HC (v − y) +HC (v + y)

)
≤ pHC(a)+qHC(b)

p+q .

(23)
Similarly for HW , we get

HW
(
pa+qb
p+q

)
≤ 1

2y

∫ v+y

v−y
HW (θ) dθ

≤ 1
2

(
HW (v − y) +HW (v + y)

)
≤ pHW (a) + qHW (b)

p+ q
.

(24)

We get inequality (18) from (23) and (24). �

Theorem 2.6. Suppose H : [a, b] −→ KC be a CW -convex mapping.
We have the following inequalities

H
(
a+b
2

)
�CW 1

(b−a)2

∫ b

a

∫ b

a
H (θx+ (1− θ) y) dxdy

�CW 1
b−a

∫ b

a
H (x) dx �CW H(a)+H(b)

2

(25)
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for all θ ∈ [a, b] .
Proof. Since H be a CW -convex function. Therefore, HC and HW are
convex. For θ ∈ [0, 1] , and for all x, y ∈ [a, b] , integrating inequality (8)
with respect to x, y on [a, b]× [a, b] , we get

1
2

∫ b

a

∫ b

a
(h− + h+) (θx+ (1− θ) y) dxdy

≤ 1
2

∫ b

a

∫ b

a
(θ (h− + h+) (x) + (1− θ) (h− + h+) (y)) dxdy

= (b−a)
2

[
θ

∫ b

a
(h− + h+) (x) dx+ (1− θ)

∫ b

a
(h− + h+) (x) dx

]
= (b−a)

2

∫ b

a
(h− + h+) (x) dx

(26)

By using inequality (26) and right half of (15) from Theorem 2.3 , it
follows that

1
2(b−a)2

∫ b

a

∫ b

a
(h− + h+) (θx+ (1− θ) y) dxdy

≤ 1
2(b−a)

∫ b

a
(h− + h+) (x) dx

≤ 1
4 [(h− + h+) (a) + (h− + h+) (b)] .

(27)

By Jensen’s inequality for double integrals, we obtain

1
2 (h− + h+)

(
1

(b−a)2

∫ b

a

∫ b

a
(θx+ (1− θ) y) dxdy

)
≤ 1

2(b−a)2

∫ b

a

∫ b

a
(h− + h+) (θx+ (1− θ) y) dxdy.

(28)

Evaluating the following integral, we have

1

(b− a)2

∫ b

a

∫ b

a
(θx+ (1− θ) y) dxdy =

a+ b

2
(29)

By using (29) in (28), we get

1
2 (h− + h+)

(
a+b
2

)
≤ 1

2(b−a)2

∫ b

a

∫ b

a
(h− + h+) (θx+ (1− θ) y) dxdy.

(30)
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By using (27) and (30), we have

(h− + h+)
(
a+b
2

)
≤ 1

(b−a)2

∫ b

a

∫ b

a
(h− + h+) (θx+ (1− θ) y) dxdy

≤ 1
(b−a)

∫ b

a
(h− + h+) (x) dx ≤ 1

2 [(h− + h+) (a) + (h− + h+) (b)] ,

which yields

HC
(
a+b
2

)
≤ 1

(b−a)2

∫ b

a

∫ b

a
HC (θx+ (1− θ) y) dxdy

≤ 1
b−a

∫ b

a
HC (x) dx ≤ HC(a)+HC(b)

2 .

(31)

Similarly, for HW , we obtain the following inequality

HW
(
a+b
2

)
≤ 1

(b−a)2

∫ b

a

∫ b

a
HW (θx+ (1− θ) y) dxdy

≤ 1
b−a

∫ b

a
HW (x) dx ≤ HW (a)+HW (b)

2 .

(32)

By using (31) and (32), we have (25). �

Corollary 2.7. Let H : [a, b] −→ KC be an interval valued CW convex
mapping. Then, for all θ ∈ [a, b], we have the following inequalities

H
(
a+b
2

)
�CW 1

(b−a)2

∫ b

a

∫ b

a
H
(x+y

2

)
dxdy

�CW 1
b−a

∫ b

a
H (x) dx

�CW H(a)+H(b)
2 .

(33)

Proof. By using θ = 1
2 in Theorem 2.6, we have inequality (33). �

Theorem 2.8. If H : [a, b] −→ KC is CW convex and gH-differentiable,
then the following inequality

2

(b− a)

∫ (a+3b)/4

(3a+b)/4
H (x) dx �CW

1

(b− a)

∫ b

a
H (x) dx, (34)
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is valid. In addition, if (h+ − h−) (t) is differentiable, then the following
inequality holds

1
b−a

(∫ b

a
H (x) dx+ 1

2

∫ b

a
H (x) dx

)
�CW 1

2
H(a)+H(b)

2 + 2
(b−a)

∫ (a+3b)/4

(3a+b)/4
H (x) dx.

(35)

Proof. Since F is CW convex on [a, b] , so HC , HW are also convex on
[a, b] , Moreover, by using inequality (8) for θ = 1

2 and integrating it on
[a, b] , for all x, y in [a, b], we have

1
b−a

∫ b

a
(h+ + h−)

(
1
2x+

(
1
2

)
a+b
2

)
dx

≤ 1
2(b−a)

∫ b

a
(h+ + h−) (x) dx+

(
1
2

)
(h+ + h−)

(
a+b
2

)
.

From (10), we have

1

b− a

∫ b

a

(
h+ + h−

)(1

2
x+

1

2

a+ b

2

)
dx ≤ 1

b− a

∫ b

a

(
h+ + h−

)
(x) dx.

(36)
Now, consider integral of left side and put

(
1
2x+

(
1
2

)
a+b
2

)
= y, implies

1
b−a

∫ b

a
(h+ + h−)

(
1
2x+

(
1
2

)
a+b
2

)
dx

= 2
(b−a)

∫ (a+3b)/4

(3a+b)/4
(h+ + h−) (y) dy

(37)

By using inequalities (36) and (37), we get

2

(b− a)

∫ (a+3b)/4

(3a+b)/4

(
h+ + h−

)
(x) dx ≤ 1

b− a

∫ b

a

(
h+ + h−

)
(x) dx. (38)

Similarly for HW , we obtain

2

(b− a)

∫ (a+3b)/4

(3a+b)/4

(
h+ − h−

)
(x) dx ≤ 1

b− a

∫ b

a

(
h+ − h−

)
(x) dx. (39)
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Combining inequalities (38) and (39), we get (34).
Given function (h+ − h−) being differentiable and convex on [a, b] , we
get

(h+ − h−)
(
1
2x+

(
1
2

)
a+b
2

)
− (h+ − h−) (x)

≥
(
1
2

) (
a+b
2 − x

)
(h+ − h−)

′
(x) ,

∀x ∈ [a, b] .
Multiplying by 1

b−a on both side of the above inequality and integrating
it with respect to x on [a, b] , we get

1
b−a

∫ b

a
(h+ − h−)

(
1
2x+

(
1
2

)
a+b
2

)
dx− 1

b−a

∫ b

a
(h+ − h−) (x) dx

≥
( 1

2
b−a

)∫ b

a

(
a+b
2 − x

)
(h+ − h−)

′
(x) dx.

(40)

Now, we compute the integral∫ b

a

(
a+b
2 − x

)
(h+ − h−)

′
(x) dx

= a+b
2

∫ b

a
(h+ − h−)

′
(x) dx−

∫ b

a
x (h+ − h−)

′
(x) dx

= a+b
2 [(h+ − h−) (b)− (h+ − h−) (a)]− [b (h+ − h−) (b)− a (h+ − h−) (a)]

+

∫ b

a
(h+ − h−) (x) dx

=

∫ b

a
(h+ − h−) (x) dx−

[
a
2 (h+ − h−) (b) + b

2 (h+ − h−) (b)− a
2 (h+ − h−) (a)

− b
2 (h+ − h−) (a)− b (h+ − h−) (b) + a (h+ − h−) (a)

]
=

∫ b

a
(h+ − h−) (x) dx+

[
(h+ − h−) (a)

{
a− a

2 −
b
2

}
+ (h+ − h−) (b)

{
−b+ a

2 + b
2

}]
=

∫ b

a
(h+ − h−) (x) dx− (b− a)

[
(h+−h−)(a)+(h+−h−)(b)

2

]
.

Inequality (37) and (40) yields

1
b−a

[∫ b

a
(h+ − h−) (x) dx+ 1

2

∫ b

a
(h+ − h−) (x) dx

]
≤ 1

2

[
(h+−h−)(a)+(h+−h−)(b)

2

]
+ 2

(b−a)

∫ (a+3b)/4

(3a+b)/4
(h+ − h−) (x) dx.

(41)
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The function (h+ + h−) is differentiable by the Proposition 1.10. Simi-
larly, we have

1
b−a

[∫ b

a
(h+ + h−) (x) dx+ 1

2

∫ b

a
(h+ + h−) (x) dx

]
≤ 1

2

[
(h++h−)(a)+(h++h−)(b)

2

]
+ 2

(b−a)

∫ (a+3b)/4

(3a+b)/4
(h+ + h−) (x) dx.

(42)
By using inequalities (42) and (41), we obtain (35). �

Theorem 2.9. If X be a real linear space and A ⊆ X, H : X −→ KC ,
then the mapping H : X −→ KC is CW -convex on A if and only if ∀
x, y ∈ A, the mapping Gx,y : [0, 1] −→ KC defined as

Gx,y = H (θx+ (1− θ) y)

is CW -convex on [0, 1] .
Proof. Consider H is CW -convex on A, that is, inequalities (5), (6)
and (7) are satisfied for all x, y ∈ A and α ∈ (0, 1) . Let θ1, θ2 ∈ [0, 1]
and λ1, λ2 ≥ 0, with λ1+λ2 = 1. First we have to show that the mapping
Gx,y : [0, 1] −→ KC is CW convex, i.e., GCx,y (θ) and GWx,y (θ) are convex
functions. More explicitly, we have to show that

GCx,y (θ) =
1

2

(
h− + h+

)
(θx+ (1− θ) y) (43)

and

GWx,y (θ) =
1

2

(
h− − h+

)
(θx+ (1− θ) y)

are convex on [0, 1] . By using (43), it follows

GCx,y (λ1θ1 + λ2θ2)

= 1
2 (h− + h+) (λ1θ1 + λ2θ2)x+ (1− λ1θ1 − λ2θ2) y

= 1
2 (h− + h+) [(λ1θ1 + λ2θ2)x+ (λ1 + λ2 − λ1θ1 − λ2θ2) y]

= 1
2 (h− + h+) [λ1θ1x+ λ1 (1− θ1) y + λ2θ2x+ λ2 (1− θ2) y]

= 1
2 (h− + h+) [λ1 (θ1x+ (1− θ1) y) + λ2 (θ2x+ (1− θ2) y)]

≤ λ1 12 (h− + h+) (θ1x+ (1− θ1) y) + λ2
1
2 (h− + h+) (θ2x+ (1− θ2) y)

≤ λ1GCx,y (θ1) + λ2G
C
x,y (θ2) .
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Hence, GCx,y is convex on [0, 1] .
Conversely, now we have to show that H is CW -convex. Let x, y ∈ A
and λ1, λ2 ≥ 0, λ1 + λ2 = 1, then by (43), we have

(h− + h+) (λ1x+ λ2y) = (h− + h+) (λ1x+ (1− λ1) y)
= GCx,y (λ1)

≤ λ1GCx,y (1) + λ2Gx,y (0)

= λ1 (h− + h+) (x) + λ2 (h− + h+) (y) .

We observe that HC is convex. Similarly, HW is also convex. It com-
pletes our proof. �

Theorem 2.10. Suppose X is a real linear space and A ⊆ X, H : X −→
KC . If the mapping H : X −→ KC is CW -convex on A, then ∀ x, y ∈ A,
the interval valued mapping Gx,y on [0, 1] , given by

Gx,y (θ) =
1

2
[H (θx+ (1− θ) y) +H ((1− θ)x+ θy)] (44)

is CW -convex. In addition, the following inequality is satisfied

H

(
x+ y

2

)
�CW Gx,y (θ) �CW

H (x) +H (y)

2
, (45)

for all x, y ∈ A and θ ∈ [0, 1] .

Proof. Let x, y ∈ A, θ1,θ2 ∈ [0, 1] and λ1, λ2 ≥ 0, with λ1 + λ2 = 1.
To show that the mapping Gx,y be CW -convex on [0, 1] . Let

GCx,y (θ) =
1

2

[(
HC
)

(θx+ (1− θ) y) +
(
HC
)

((1− θ)x+ θy)
]

(46)

Working on the same steps as in Theorem 2.9 and by using (46) it
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follows,

GCx,y (λ1θ1 + λ2θ2) =
1
2

[
HC((λ1θ1 + λ2θ2)x+ (1− λ1θ1 − λ2θ2) y)

+HC((1− λ1θ1 − λ2θ2)x+ (λ1θ1 + λ2θ2) y)
]

= 1
4 [(h− + h+) {(λ1θ1 + λ2θ2)x+ (λ1 + λ2 − λ1θ1 − λ2θ2) y}

+ (h− + h+) {(λ1 + λ2 − λ1θ1 − λ2θ2)x+ (λ1θ1 + λ2θ2) y}]
= 1

4 [(h− + h+) {λ1 (θ1x+ (1− θ1) y) + λ2 (θ2x+ (1− θ2) y)}
+ (h− + h+) {λ1 ((1− θ1)x+ θ1y) + λ2 ((1− θ2)x+ θ2y)}]
≤ 1

4 [λ1 (h− + h+) (θ1x+ (1− θ1) y) + λ2 (h− + h+) (θ2x+ (1− θ2) y)
+λ1 (h− + h+) ((1− θ1)x+ θ1y) + λ2 (h− + h+) ((1− θ2)x+ θ2y)]
≤ λ1

[
1
4 {(h

− + h+) θ1x+ (1− θ1) y + (h− + h+) ((1− θ1)x+ θ1y)}
]

+λ2
[
1
4 {(h

− + h+) (θ2x+ (1− θ2) y) + (h− + h+) ((1− θ2)x+ θ2y)}
]

= λ1G
C
x,y (θ1) + λ2G

C
x,y (θ2) ,

Thus, GCx,y is convex on [0, 1] . Similarly GWx,y defined as

GWx,y =
1

2

[
HW (θx+ (1− θ) y) +HW ((1− θ)x+ θy)

]
is also convex function on [0, 1] and we have (44).
By the CW -convexity of H, we can define

Gx,y (θ) ≥ H
(
x+ y

2

)
= H

(
1

2
(θx+ (1− θ) y + (1− θ)x+ θy)

)
and

Gx,y (θ) ≤ 1
2 [θH (x) + (1− θ)H (y) + θH (y) + (1− θ)H (x)]

= H(x)+H(y)
2 ,

for all θ ∈ [0, 1] . Hence, we obtain (45). �

3 Conclusion

In this work, using the partial order CW on the space KC of non-empty
convex and compact subsets of R, we have defined CW convex interval-
valued functions. We have shown that if the interval-valued function
is CW convex, then the endpoint real-valued functions used in it don’t
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need to be convex. We established some new Hadamard-Hermite type
inequalities for interval-valued functions by using CW convexity. The
results are helpful for future research in the generalization of inequal-
ities involving fractional calculus and quantum calculus for fuzzy and
interval-valued functions.
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[4] P. R. Beesack and J. E. Pečarić, On Jessen’s inequality for convex
functions. Journal of Mathematical Analysis and Applications, 110
(1985), no. 2, 536-552.
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