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Abstract. In this paper we focus on generalized semi-infinite opti-
mization problem in which the index set of the inequality constraints
depends on the decision vector and all emerging functions are assumed
to be convex, not necessarily differentiable. We introduce three con-
straint qualifications which are based on the convex subdifferential, and
derive some Kuhn-Tucker type necessary optimality conditions for the
problem.
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1 Introduction

In the present paper, we consider the following “generalized semi-infinite
programming problem” (GSIP in brief),

(P ) : min f(x) s.t. x ∈ S,

where the feasible set S is defined by

S := {x ∈ Rn | g(x, `) ≥ 0, ` ∈ L(x)}, (1)
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and the index set L(x) is described by a finite number of inequalities as

L(x) :=
{
` ∈ Rm | ϑi(x, `) ≤ 0, i ∈ I := {1, . . . , p}

}
,

in which all appearing functions f : Rn → R and g, ϑi : Rn × Rm → R
are convex on their domains, and the set-valued mapping x 7→ L(x) is
uniformly bounded on S; i.e., for each x ∈ S there exists a neighborhood
Ux of x such that the set

⋃
y∈Ux L(y) is bounded. The latter assump-

tion implies that for each x̂ ∈ S, the index set L(x̂) is compact and
the set-valued mapping x 7→ L(x) is upper semi-continuous (u.s.c), i.e.,
for every sequences {xr} → x̂ and {`r} with `r ∈ L(xr), we can find a
ˆ̀ ∈ L(x̂) such that ˆ̀ is a cluster point of {`r}∞r=1 (cf. [1]). These as-
sumptions are standing throughout the whole paper. It should be noted
that the mentioned standing assumptions are standard in the analyzing
of GSIPs, see, e.g.,[5, 16, 17, 18, 20, 21, 22, 23] for smooth case, and [11]
for nonsmooth case (of course, some papers, such as [6, 12], have not
assumed the latter condition).

It is worth mentioning that when the index set Lx does not depend to
x (i.e., Lx is constant for all x ∈ S, named L), the problem (P ) decreases
to the following standard “semi-infinite programming problem” (SIP),

min f(x) s.t. g`(x) ≥ 0, ` ∈ L,

where, g`(x) := g(x, `) for all (x, `) ∈ S × L. Optimality conditions of
SIP problems have been studied by many authors; see for instance [9]
in linear case, [13] in quasiconvex case, and [2, 7, 8, 10] locally Lipschitz
case.

In almost all existing literature on GSIP theory, in order to establish
optimality conditions for problem (P ), several kinds of lower-level con-
straint qualifications (CQ, briefly) are introduced. Extensive references
to these CQs and optimality conditions, as well as their applications and
historical notes, in the case that all appearing functions are continuously
differentiable (while not necessarily convex), can be found in the book
by Stein [21]. These CQs and optimality conditions have been extended
to GSIPs with locally Lipschitz and DC (difference of convex functions)
data by Kanzi and Nobakhtian [11] and by Kanzi [6, 12], respectively.

In the case when all appearing functions of GSIP are continuously
differentiable, the optimality conditions under some upper-level CQs are
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presented only in [5, 21], but according to our latest information for the
nonsmooth case nothing has been done so far. The aim of this paper is
to fill this gap as the first task, for the convex case.

The structure of subsequent sections of this paper is as follows: In
Sec. 2, we define required definitions and preliminary results which are
requested in sequel. Section 3, which is devoted to the main results,
contains introducing some upper-level CQs, expressing the relationships
between them, and setting several necessary optimality conditions for
problem (P ).

2 Preliminaries

In this section, we briefly address some notations and standard prelimi-
naries which are used in the sequel, from [4, 14].

The symbols R+, 0n, and a>b denote the set of non-negative real
numbers, the zero vector in Rn, and the standard inner product of two
vectors a, b ∈ Rn, respectively.

The function ϕ : Rn → R is said to be convex if

ϕ
(
λx+ (1− λ)y

)
≤ λϕ(x) + (1− λ)ϕ(y), ∀x, y ∈ Rn, λ ∈ [0, 1].

In this section, we suppose that ϕ is a convex function, defined on wholl
of Rn. The subdifferential of ϕ at x0 ∈ Rn is defined by

∂ϕ(x0) := {ξ ∈ Rn | ϕ(x)− ϕ(x0) ≥ ξ>(x− x0), ∀x ∈ Rn}
= {ξ ∈ Rn | ϕ′(x0; d) ≥ ξ>d, ∀d ∈ Rn},

where, ϕ′(x0; d) denotes directional derivative of ϕ at x0 in direction
d ∈ Rn, defined as

ϕ′(x0; d) := lim
t→0

ϕ(x0 + td)− ϕ(x0)

t
.

Also, we know from [4] that ∂ϕ(x0) is always a non-empty compact con-
vex set in Rn, and if ϕ is differentiable at x0, then ∂ϕ(x0) = {∇ϕ(x0)},
in which ∇ϕ(x0) denotes the gradient of ϕ at x0. The following equality
will be used in sequel:

ϕ′(x0; d) = max{d>ξ | ξ ∈ ∂ϕ(x0)}. (2)
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For a convex function φ : Rr×Rs −→ R and a point (x̄, ȳ) ∈ Rr×Rs, let
∂xφ(x̄, ȳ) ⊆ Rr and ∂yφ(x̄, ȳ) ⊆ Rs denote the partial subdifferentials of
φ(·, ·) at (x̄, ȳ), which are defined as ∂φ(·, ȳ)(x̄) and ∂φ(x̄, ·)(ȳ).

Finally, we recall that for D ⊆ Rn and x0 ∈ D (:=the closure of D),
the contingent cone of D at x0, denoted by TD(x0), is defined as the
set of all vectors z ∈ Rn that can find two sequences {tr} → 0+ and
{zr} → z in such a way x0 + trzr ∈ D for all r ∈ N. Notice that TD(x0)
is always a closed cone (generally non-convex) in Rn, and it is convex
when D is convex.

3 Necessary Conditions

As beginning, for each x̂ ∈ S, we define the index set of active constraints
and the lower-level problem at x̂, respectively as

Lx̂ := {` ∈ L(x̂) | g(x̂, `) = 0},

(P x̂) : min g(x̂, `) s.t. ` ∈ L(x̂).

Also, the set (probably empty) of active inequalities of (P x̂) at each
`0 ∈ L(x̂) is denoted by I x̂(`0),

I x̂(`0) := {i ∈ I | ϑi(x̂, `0) = 0}.

Clearly, each ˆ̀ ∈ Lx̂ is a global minimizer of the lower-level problem
(P x̂), and by well-known Fritz-John first-order necessary condition (see,
e.g., [4]), there exist non-negative scalars α̂ ≥ 0 and β̂i ≥ 0 as i ∈ I x̂(ˆ̀),
satisfying

α̂+
∑

i∈Ix̂(ˆ̀)

β̂l = 1, and 0m ∈ ∂`£x̂
ˆ̀(x̂, ˆ̀, α̂, β̂),

where, β̂ :=
(
β̂i
)
i∈Ix̂(ˆ̀)

, and £x̂
ˆ̀ denotes the Lagrangian function, defined

as:

£x̂
ˆ̀(x, `, α, β) = αg(x, `) +

∑
i∈Ix̂(ˆ̀)

βiϑi(x, `).
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For each x̂ ∈ S, set

Ωx̂ :=
⋃
` ∈ Lx̂

(α, β) ∈ F x̂
`

∂x£x̂
` (x̂, `, α, β),

where, for any ` ∈ Lx̂, the Fritz-John multipliers set F x̂` is defined as

F x̂` :=
{

(α, β) ∈ R+×R|I
x̂(`)|

+ | α+
∑

i∈Ix̂(`)

βi = 1, 0m ∈ ∂`£x̂
` (x̂, `, α, β)

}
.

Notice, if all the appearing functions are continuously differentiable, Ωx̂

coincides to V (x̂), defined in [5]. In the following, we introduce two
upper-level CQs for problem (P ).

Definition 3.1. We say that (P ) satisfies the Abadie constraint quali-
fication (ACQ) at x̂ ∈ S if the following implication holds:(

d>ζ ≥ 0, ∀ζ ∈ Ωx̂

)
=⇒ d ∈ TS(x̂).

Also, wee say that (P ) satisfies the Guignard constraint qualification
(GCQ) at x̂ ∈ S if the following implication holds:(

d>ζ ≥ 0, ∀ζ ∈ Ωx̂

)
=⇒ d ∈ cone

(
TS(x̂)

)
,

where, cone(A) denotes the smallest nonempty convex cone containing
A ⊆ Rn, and the closure of cone(A) is denoted by cone(A), i.e.,

cone(A) := cone(A). (3)

We observe that ACQ is stronger than GCQ at any feasible point.
Now, the Kahn-Tucker (KT) type necessary optimality condition for (P )
can be stated as follows.

Theorem 3.2. (KT Condition under ACQ): Suppose that x̂ is an
optimal solution for (P ) and ACQ holds at x̂. Then, we have

0n ∈ ∂f(x̂)− cone(Ωx̂). (4)

In addition, if cone(Ωx̂) is closed, there exist finite number `ν ∈ Lx̂,
(αν , βν) ∈ F x̂`ν , and µν ∈ R+ as ν = 1, . . . , q, satisfying

0n ∈ ∂f(x̂)−
q∑

ν=1

µν∂x£x̂
`ν (x̂, `ν , αν , βν).
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Proof. As the beginning, we note that (4) is equivalent to

∂f(x̂) ∩ cone(Ωx̂) 6= ∅. (5)

The proof of (5) is by contradiction. If

∂f(x̂) ∩ cone(Ωx̂) = ∅,

according to well-known strong separation theorem (see, e.g., [14, Corol-
lary 11.4.1]), and observing the compactness of ∂f(x̂) and the closedness
of cone(Ωx̂), we obtain a vector d ∈ Rn, satisfying

d>ξ < 0 ≤ d>ζ, for all ξ ∈ ∂f(x̂), ζ ∈ cone(Ωx̂).

The above inequality and the fact that Ωx̂ ⊆ cone(Ωx̂), conclude that{
d>ξ < 0, for all ξ ∈ ∂f(x̂),
d>ζ ≥ 0, for all ζ ∈ Ωx̂.

(6)

Thus, employing the ACQ assumption and (2), we deduce
f ′(x̂; d) < 0,

d ∈ TS(x̂),
=⇒


∃δ > 0, f(x̂+ td)− f(x̂) < 0, ∀ t ∈ (0, δ),

∃{(dr, tr)} → (d, 0+), x̂+ trdr ∈ S, ∀r ∈ N.
(7)

Hence, for large enough r̂ ∈ N we have{
f(x̂+ tr̂dr̂) < f(x̂),
x̂+ tr̂dr̂ ∈ S, (8)

which contradicts the optimality of x̂. Thus, the claimed (5) is proved.
Now, if cone(Ωx̂) is closed, the inclusion (4) and definition of Ωx̂

imply that

0n ∈ ∂f(x̂)− cone
( ⋃

` ∈ Lx̂

(α, β) ∈ F x̂
`

∂x£x̂
` (x̂, `, α, β)

)
. (9)

On the other hand, it is easy to see that (see, e.g., [14]) if {Mγ | γ ∈ Γ}
is a collection of convex sets in Rn, then:

cone
( ⋃
γ∈Γ

Mγ
)

=
⋃
q∈N

⋃
(µ1,...,µq)∈Rq+

q∑
ν=1

µνMν .
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From this, (9), and convexity of subdifferential, we get

0n ∈ ∂f(x̂)−
⋃
q∈N

⋃
(µ1,...,µq)∈Rq+

q∑
ν=1

µν∂x£x̂
`ν (x̂, `ν , αν , βν),

for some `ν ∈ Lx̂ and (αν , βν) ∈ F x̂`ν . Therefore, we can find a natural
number q ∈ N, some non-negative scalars µ1, . . . , µq, as well as some
`ν ∈ Lx̂ and (αν , βν) ∈ F x̂`ν for ν = 1, . . . , q, such that

0n ∈ ∂f(x̂)−
q∑

ν=1

µν∂x£x̂
`ν (x̂, `ν , αν , βν).

The proof is complete. �
As special case of problem (P ), we can consider the objective function

f is affine. For this special case, we can state the KT necessary condition
under GCQ, as follows.

Theorem 3.3. (KT Condition under GCQ): Suppose that x̂ is an
optimal solution of the following GSIP with affine objective function:

min(a>x+ b), s.t. x ∈ S,

where S is defined as (1), and (a, b) ∈ Rn ×R. If GCQ holds at x̂, then
we have

a ∈ cone(Ωx̂). (10)

In addition, if cone(Ωx̂) is closed, there exist finite number `ν ∈ Lx̂,
(αν , βν) ∈ F x̂`ν , and µν ∈ R+ as ν = 1, . . . , q, satisfying

a ∈
q∑

ν=1

µν∂x£x̂
`ν (x̂, `ν , αν , βν).

Proof. As start, we observe that (10) is a special case of (4) with
f(x) = a>x + b. Thus, if (10) does not hold, from (6) and GCQ we
obtain a vector d∗ ∈ Rn such that:{

d>∗ a < 0,
d∗ ∈ cone

(
TS(x̂)

)
=⇒ ∃{dr∗} ⊆ cone

(
TS(x̂)

)
, d∗ = lim

r→∞
dr∗.

(11)
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For each dr∗ ∈ cone
(
TS(x̂)

)
, we can find some sr ∈ N, some non-negative

scalars γr1 , . . . , γ
r
sr , and some vectors dr1, . . . , d

r
sr ∈ TS(x̂) such that

dr∗ =
sr∑
=1

γr d
r
 . (12)

If (dr )
>a < 0 for some  ∈ {1, . . . , sr}, since dr ∈ TS(x̂), we give a

relation in state of (7), and we deduce a contradiction in state of (8).
Thus, (dr )

>a ≥ 0 for all  ∈ {1, . . . , sr}. From this and (12) we get

(dr∗)
> =

( sr∑
=1

γr d
r


)>
a =

sr∑
=1

γr (d
r
 )
>a ≥ 0.

The above inequality and the second relation in (11) imply that

d>∗ a =
(

lim
r→∞

dr∗

)>
a = lim

r→∞
(dr∗)

>a ≥ 0,

which contradicts the first inequality in (11). This contradiction justifies
(10). The second part of proof is quite similar to the proof of Theorem
3.2. �

The value function of lower-level problem (P x) is defined as follows:

Φ(x) :=

{
inf
{
g(x, `) | ` ∈ L(x)

}
if L(x) 6= ∅,

+∞ if L(x) = ∅.

The following theorem has been proved in [19, Theorem 10.4] where
the functions g and ϑi as i ∈ I are convex and differentiable.

Theorem 3.4. The value function Φ(·) : Rn → R ∪ {+∞} is convex.

Proof. Suppose that (x, r) and (y, s) are chosen in

epi(Φ) :=
{

(z, τ) ∈ Rn × R | Φ(z) ≤ τ
}
,

i.e., Φ(x) ≤ r and Φ(y) ≤ s. The case when L(x) = ∅ and\or L(y) = ∅,
the inequality

Φ
(
λx+ (1− λ)y

)
≤ λΦ(x) + (1− λ)Φ(y),
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is trivially true. Thus, we assume that L(x) 6= ∅ and L(y) 6= ∅, and so,
we can choose some `x ∈ L(x) and `y ∈ L(y) such that

g(x, `x) ≤ r and g(y, `y) ≤ s. (13)

Since ϑi is convex as i ∈ I, for each λ ∈ [0, 1], we have

ϑi

(
λ(x, `x) + (1− λ)(y, `y)

)
≤ λϑi(x, `x) + (1− λ)ϑi(y, `y) ≤ 0, i ∈ I,

where, the last inequality holds by ϑi(x, `x) ≤ 0 and ϑi(y, `y) ≤ 0
(

since
`x ∈ L(x) and `y ∈ L(y)

)
. The above inequality and the fact that

ϑi

(
λ(x, `x)+(1−λ)(y, `y)

)
= ϑi

(
λx+(1−λ)y, λ`x+(1−λ)`y

)
, i ∈ I,

imply that λ`x + (1− λ)`y ∈ L
(
λx+ (1− λ)y

)
, and hence

Φ
(
λx+ (1− λ)y

)
≤ g
(
λx+ (1− λ)y, λ`x + (1− λ)`y

)
.

From this and (13), we get

Φ
(
λx+ (1− λ)y

)
≤ g

(
λ(x, `x) + (1− λ)(y, `y)

)
≤ λg(x, `x) + (1− λ)g(y, `y)

≤ λr + (1− λ)s.

This means λ(x, r) + (1 − λ)(y, s) ∈ epi(Φ), and so epi(Φ) is a convex
set. Since epi(Φ) is convex if and only if Φ(·) is convex (see e.g., [4]),
the proof is complete. �

It should be noted that due to the importance of function Φ(·), many
papers have worked on the upper estimate of its subdifferential. For
example, [8, 11, 12, 21] show that the inclusion

∂Φ(x̂) ⊆ conv(Ωx̂), (14)

holds for SIPs and GSIPs, under some suitable assumptions. Here,
conv(Ωx̂) denotes the smallest convex set contains Ωx̂, named convex
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hull of Ωx̂. It is easy to see ([14])

z∗ ∈ conv(Ωx̂) ⇐⇒ ∃s ∈ N, ∃λ1, . . . , λs ∈ R+, ∃z1, . . . , zs ∈ Ωx̂,

such that z∗ =
s∑
=1

λz and
s∑
=1

λ = 1. (15)

Motivated by [5], we define the Mangasarian-Fromovitz constraint qual-
ification for problem (P ).

Definition 3.5. We say that (P ) satisfies the Mangasarian-Fromovitz
constraint qualification (MFCQ) at x̂ ∈ S if there exists a vector d ∈ Rn
such that

d>ζ > 0, for all ζ ∈ Ωx̂. (16)

Since the cheking of satisfying ACQ depends to calculating tangent
cone of feasible set and this is difficult in general, the following theorem
lets us checking it by initial data of problem.

Theorem 3.6. Suppose that the inclusion (14) and MFCQ hold at a
feasible point x̂ ∈ S. Then, ACQ is also satisfied at x̂.

Proof. Assume that d ∈ Rn is satisfied (16). If ζ∗ ∈ conv(Ωx̂), by (15)
we can find a natural number s ∈ N, some scalars λ1, . . . , λs ∈ R+, and
some vectors ζ1, . . . , ζs ∈ Ωx̂, such that

ζ∗ =
s∑
=1

λζ and
s∑
=1

λ = 1.

Thus,

d>ζ∗ = d>
( s∑
=1

λζ
)

=
s∑
=1

λd>ζ > 0,

where the last strict inequality holds by (16) and
∑s

=1 λ
 = 1. From

this and (14), we obtain d>ξ > 0 for all ξ ∈ ∂Φ(x̂). This means that

Ψ′(x̂, d) = max
{
d>ξ | ξ ∈ ∂Φ(x̂)

}
> 0,
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which together with definition of directional derivation implies that the
exists a ε > 0 such that Ψ(x̂ + δd) − Ψ(x̂) > 0 for all δ ∈ (0, ε). This
inequality and Ψ(x̂) ≥ 0 conclude that

Ψ(x̂+ δd) > 0 ⇒
(
g(x̂+ δd, `) > 0, ∀` ∈ L(x̂+ δd), ∀δ ∈ (0, ε)

)
⇒

(
x̂+ δd ∈ S, ∀δ ∈ (0, ε)

)
⇒ d ∈ TS(x̂).

Summarizing, we proved that

D :=
{
d ∈ Rn | d>ζ > 0, for all ζ ∈ Ωx̂

}
⊆ TS(x̂).

Now, if a vector d∗ ∈ Rn is given such that d>∗ ζ ≥ 0 for all ζ ∈ Ωx̂, we
have d∗ ∈ D, and by above inclusion we obtain d∗ ∈ TS(x̂). From this
and closedness of TS(x̂), we conclude that(

d>∗ ζ ≥ 0, ∀ζ ∈ Ωx̂

)
=⇒ d∗ ∈ TS(x̂),

which deduces the satisfying ACQ at x̂. �

4 Conclusion

As the final point of this paper, we compare the results obtained above
with some known developments. In the case where all function g and
ϑi as i ∈ I are linear, Theorem 3.3 is proved in [17]. Also, if all the
appealing functions f, g, ϑi as i ∈ I are continuously differentiable, The-
orem 3.2 has been justified in [17, 21]. The following theorem which was
proved in [21] can be deduced from Theorem 3.6. It is noteworthy that
[5, Corollary 4.1] can not be deduced from Theorem 3.6, because there
assumes only the continuously differentiability of the functions, not their
convexity.

Theorem 4.1. [21] Suppose that all the functions f, g, and ϑi as i ∈ I
are continuously differentiable and convex. Let x̂ be an optimal solution
of (P ) and MFCQ holds at x̂. Then, there exist finite number `ν ∈ Lx̂,
(αν , βν) ∈ F x̂`ν , and µν ∈ R+ as ν = 1, . . . , q, satisfying

∇f(x̂)−
q∑

ν=1

µν∇x£x̂
`ν (x̂, `ν , αν , βν) = 0n.
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