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Abstract. This paper considers the notion of α-strong dominating set
based on fuzzy bridges in fuzzy graphs and computes the domination
number of wheel fuzzy graphs and complete (multi) partite fuzzy graphs.
In this regard, we consider the fuzzy cycles and compute the domina-
tion number of wheel fuzzy graphs, supremum center-based wheel fuzzy
graph, infimum center-based wheel fuzzy graph, and complete (multi)
partite fuzzy graphs with any given fuzzy vertices. It investigated the
relationship between the domination number of wheel fuzzy graphs and
complete (multi) partite fuzzy graphs via some critical fuzzy vertices
in these classes of fuzzy graphs. The new conception of domination
number of wheel fuzzy graphs and complete (multi)partite fuzzy graphs
based on fuzzy bridges, was given for the first time in this paper and
we found an Algorithm in this regard. In the final, we apply the domi-
nation number of fuzzy graphs in modeling of real problems of complex
networks.
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1 Introduction

Graph theory as an important branch of mathematics was introduced as
an algebraic structure as a graph that is a convenient tool to model real-
life problems and has many applications in other sciences [6]. A graph on
any given set considers a relationship between elements set (as objects
or vertices) and describes this relationship if it is a weighted graph. It is
an ideal condition if proper weights are known, but in most situations,
the weights may not be known, and the relationships are hesitant in a
natural sense. With the advent of the fuzzy graph, the importance of
this theory increased and the fuzzy graph as a generalization of a graph
provides more information on real-life problems. Based on Zadeh’s fuzzy
relations [21], Kaufman [12], gave the first definition of a fuzzy graph,
and later Rosenfeld, Yeh and Bang introduced and extended the basic al-
gebraic structures of fuzzy graph theory. Due to the importance of fuzzy
graphs, many researchers have worked in this field and a lot of research
has been produced such as m-polar fuzzy graph structures and fuzzy
hypergraph structures [5, 12]. Today, Fuzzy graphs have important ap-
plications and are used in complex networks such as computer science,
wireless sensor networks, machine learning, and other complex hyper
networks. In addition, dominating set in graph and domination number
was studied by Ore in 1962, [18], E. J. Cockayne and S. T. Hedetnieme,
[9], which were motivated by solving some problems, such as queens
problem, locating radar stations, communications in a network, nuclear
power plants, modeling biological networks, modeling social networks,
facility location, coding theory, etc. So fuzzy dominating set in fuzzy
graphs (as one of the most important substructures of fuzzy graphs)
as a generalization of dominating set in graphs in similar applications
but uncertainty data were introduced by A. Somasundaram and S. So-
masundaram in 1998, [19]. Recently, diverse and practical works on
domination in fuzzy graphs were also done by researchers such as dom-
ination in fuzzy incidence graphs based on valid edges [1], the energy
of double dominating bipolar fuzzy graphs [2], novel decision-making
method based on domination in m-polar fuzzy graphs [3], certain types
of domination in m-polar fuzzy graphs [4], a novel concept of domina-
tion in m-polar interval-valued fuzzy graph and its application [7], on
computing domination set in intuitionistic fuzzy graph[8], domination of
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bipolar fuzzy graphs in various settings [10], double domination on in-
tuitionistic fuzzy graphs [15], double vertex-edge domination in graphs:
complexity and algorithms [16], dominating broadcasts in fuzzy graphs
[17] and domination of vertex-edges in bipolar fuzzy graphs [20]. Hamidi
et al. introduced a novel concept of fuzzy dominating sets as α-strong
dominating set and fuzzy domination number in fuzzy graphs based
on fuzzy bridges. They computed fuzzy domination number of special
fuzzy graphs as strong cycle fuzzy graphs and complete fuzzy graphs
based on an application Algorithm [11]. Regarding these points, we
consider some notations of fuzzy dominating sets in fuzzy graphs, such
as effective dominating set, strong (weak) dominating set, and (α, β)-
strong dominating sets in fuzzy graphs and apply the novel notion of
fuzzy dominating sets as α-strong dominating set and fuzzy domination
number in fuzzy graphs based on fuzzy bridges. The concept of α-strong
dominating sets in fuzzy graphs is stronger than (α, β)-strong dominat-
ing sets, such that in α-strong dominating sets equality of fuzzy values
does not occur, and strict inequality of fuzzy values, play an important
role. This study investigates some main results regarding fuzzy bridge-
based domination number of fuzzy graphs and provides some theorems
for simplifying calculations. Our motivation for his work is computations
of fuzzy domination numbers of complete fuzzy graphs based on some
applications in real-world problems. We try to compute the fuzzy domi-
nation numbers of a wheel fuzzy graph and complete (multi)partite fuzzy
graph with distinct vertices and indistinct vertices and so to compute
the fuzzy domination numbers of any wheel fuzzy graph and complete
(multi)partite fuzzy graph. In the final, we introduce some examples
of applications of fuzzy domination numbers of fuzzy graphs in the real
world.

Motivation, main advantages, contribution, and applica-
tion: The proposed method in this study is to introduce the smallest
domination number in fuzzy graphs with fuzzy cyclic in comparison to
previous definitions that theorems, examples, and applications confirm.
The main motivation of this work is the extraction of the minimum
domination number in fuzzy graphs and so introduce a novel method
for computation of domination number in this paper. Another advan-
tage is the different answers to real-world applications, so, there’s an
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open way to compare the definitions. As it’s mentioned in upcoming
sections, optimal numbers and optimal sets provide proper answers to
real-world applications. So there’s a big gap in research concerning these
notions and their applications. These issues imply the main advantages
of new definitions, hence new definition highlights these problems and
their answers. These are the statement of problems that highlight mo-
tivation for us to fill the gap in previous research and previous study.
Another objective is to get some mathematical results that conclude gen-
eral results to have specific mathematical results and specific real-world
problems. So another novelty of the conducted research is to introduce
a new definition to get some chains of mathematical results which are
applied to solve some specific real-world applications. Most previous
methods in the computation of the domination number of fuzzy graphs,
were not optimal, since these methods considered either the fuzzy value
in edges or fuzzy value in vertices to compute of domination number of
fuzzy graphs, which is a defect. Indeed previous methods, can’t be the
appropriate modeling in application in the real world. Therefore, this
motivated us to present this method to solve this problem by combin-
ing the fuzzy value in edges and fuzzy value in vertices to compute of
domination number of fuzzy graphs. Thus the novelty of conducted re-
search is to introduce the new definition, comparative usages of results in
mathematical viewpoint and applications, specific mathematical results,
addressing some issues in applications alongside solutions to them. In
section 2, the preliminaries are represented. In section 3, a new notion
of domination number in wheel fuzzy graphs via a fuzzy bridge and with
a combination of vertex and edge is introduced. Also, basic properties
and clarifications are mentioned in this section. In subsection 3.1, the
concept of infimum center-based wheel strong fuzzy graph, in section
3.2, the concept of supremum center-based wheel strong fuzzy graph
is described. In section 4, the notations of the fuzzy bridge in com-
plete bipartite fuzzy graphs, and complete multipartite fuzzy graphs
are introduced. In section 5, applications of fuzzy domination number
((supremum, infimum) center-based wheel strong, complete (bipartite,
multipartite)) fuzzy graphs and the study, literature review, and presen-
tation are described. The main application of this work is in complex
networks that add some examples in this paper.
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2 Preliminaries

In what follows, we recall some results from [14], that are needed in our
work. Let G∗ = (V,E) be a simple graph. Then an algebraic struc-
ture G = (V, σ, µ) is called a fuzzy graph on G∗, if σ : V → [0, 1] and
µ : V ×V → [0, 1] are fuzzy subsets and for all xy ∈ E,µ(xy) = µ(x, y) ≤
σ(x) ∧ σ(y). It is called σ as fuzzy vertex set and µ as fuzzy edge set
of G. A fuzzy graph G = (σ, µ) is called a complete fuzzy graph if for
all x, y ∈ V, we have µ(xy) = σ(x) ∧ σ(y) and is called a strong fuzzy
graph if for all xy ∈ E, we have µ(xy) = σ(x) ∧ σ(y). If G = (σ, µ) and
H = (τ, ν) are fuzzy graphs, then H is called a partial fuzzy subgraph
of G, if σ ⊆ τ, µ ⊆ ν and partial fuzzy subgraph H is called a spanning
fuzzy subgraph of G, if τ = σ. A path P (x, y) between x, y of length
n(will denote by l(P (x, y)) = n) is a sequence of distinct vertices P :
x = x0, x1, · · · , xn = y such that for all i ∈ {1, 2, · · · , n}, µ(xi−1xi) > 0

and s(P ) =

n∧
i=1

µ(xi−1xi) is defined as its strength. The strength of

connectedness between two vertices x and y is defined by µ∞(xy) =
max{s(P ) | P is a path between x, y}

(
a strongest path joining any two

vertices x, y has strength µ∞(xy)
)
. A path P : x0, x1, · · · , xn is called

a cycle of length n, if x0 = xn and n ≥ 3. A fuzzy graph G =
(V, σ, µ) is called a wheel fuzzy graph(it’s denoted by Wn), if V =
V1 ∪ V2, that V1 = {c}(it’s called the center of wheel fuzzy graph), V2 =
{x1, x2, · · · , xn}, where P : x1, x2, · · · , xn is a cycle, n ≥ 3, and for all
y ∈ V2, we have µ(cy) > 0. A fuzzy graph G = (V, σ, µ) is called a

multipartite fuzzy graph, if V =

m⋃
i=1

Vi, such that for all 1 ≤ i ̸= j ≤ m,

Vi ∩ Vj = ∅, for all x, y ∈ Vi, µ(xy) = 0 and µ(xy) ̸= 0 implies that
(x, y) ∈ Vi × Vj or (x, y) ∈ Vj × Vi and it is called a complete multi-
partite fuzzy graph (it’s denoted by Kn1,n2··· ,nm), if µ(xy) = 0, implies
that there exists 1 ≤ i ≤ m such that x, y ∈ Vi, where |Vi| = ni. A
(complete)multipartite fuzzy graph is called a (complete)bipartite fuzzy
graph, if m = 2.

In the following we introduce some types of dominating sets in fuzzy
graphs.

Definition 2.1. Let G = (σ, µ) be a fuzzy graph and D ⊆ V. Then
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(i) (A. Somasundaram 1998)[19] D ⊆ V is said to be an effective
dominating set in G, if for every v1 ∈ V \ D, there exists v ∈ D
such that µ(vv1) = σ(v) ∧ σ(v1)(it called that v dominates v1).
If D is a set of all effective dominating sets in G, define γ(G) =∧
D∈D

∑
v∈D

σ(v) as an effective domination number of G;

(ii) (O. T. Manjusha 2014)[13] D ⊆ V is said to be dominating set,
if for every v1 ∈ V \ D, there exists v ∈ D such that µ(vv1) ≥
µ′∞(v, v1)(it called that v dominates v1 as (α, β)-strong). If D is

the set of all dominating sets in G, define γ(G) =
∧
D∈D

∑
v∈D

σ(v) as

domination number of G.

3 Fuzzy Bridge In Wheel Fuzzy Graphs

In this section, we computed the fuzzy domination number of wheel
fuzzy graphs, based on center of wheel fuzzy graphs.

Let G = (σ, µ) be a fuzzy graph and xy ∈ E. Then an edge xy ∈ E
is called an α-strong edge(fuzzy bridge), if µ(xy) > µ′∞(xy), where G′ is
the partial fuzzy subgraph of G obtained by deleting the edge xy, that
is, G′ = (σ, µ′), where µ′(xy) = 0 and µ′ = µ for all other pairs.

Definition 3.1. Let G = (σ, µ) be a fuzzy graph, D ⊆ V and x, y ∈ V.
Then

(i) if µ(xy) > µ′∞(xy), then will say a vertex x dominates a vertex y,

α-strongly in G and will denote it by x
α
↪→ y,

(ii) a set Dα is called an α-strong dominating set in G, if for every

y ∈ V \D, there exists x ∈ D such that x
α
↪→ y;

(iii) the weight of Dα is defined by ω(Dα) =
∑
x∈Dα

xy∈E(Dα,x)

σ(x)µ(xy),

where E(Dα, x) = {xy ∈ E | x α
↪→ y}, E(Dα) =

⋃
x∈Dα

E(Dα, x)

and x ∈ D;
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(iv) the fuzzy domination number of G is defined by γt(G) =
∧

Dα∈Dα

ω(

Dα), where Dα(G) = {Dα | Dα is α-strong dominating set in G}
and the α-strong dominating set with minimum weight is called
by vertex fuzzy dominating set.

Example 3.2. Let G = (σ, µ) be a fuzzy graph in Figures 1 and 2.

v2(0.7)

v5(0.5)

v4(0.75)v3(0.9)

v1(0.5)

0.009

0.005

0.006

0.008
0.003

0.009
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Figure 1: Fuzzy graph G

v2(0.7)

v5(0.5)

v4(0.75)v3(0.9)

v1(0.5)

α-strong α-strong

α-strong

α-strong

Figure 2: Fuzzy graph G with its α-strong edges

Computations show thatDα(G) =
{
Dα

1 = {v2, v3}, Dα
2 = {v2, v3, v1}, Dα

3

= {v2, v3, v1, v4}, Dα
4 = {v2, v3, v1, v4, v5}, Dα

5 = {v1, v5, v4}, Dα
6 = {v1, v5

, v4, v2}
}
so Min(D) = {Dα

1 , D
α
5 }. Then for all Dα ∈ Dα(G),

E(v1) = {v1v3}, E(v2) = {v2v4, v2v5}, E(v3) = {v1v3, v3v4},
E(v4) = {v4v3, v4v2}, E(v5) = {v5v2},

and so E = {v2v5, v2v4, v3v4, v1v3}. Now,

γt(G) =
∧

D∈Min(D)

ω(D) = Tmin(ω(D
α
1 ), ω(D

α
5 )) =

Tmin(0.0258, 0.0195) = 0.0195.

So γt(G) = 0.0195 and Dα
5 = {v1, v5, v4} is the vertex dominating set.

In Table 1, we present the computations to compare the dominating
number based on our definition and other definitions, which determine
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Table 1: Mathematical Discussion on Definitions Based on Fuzzy graph
Figure 1.

Definitions Dominating Set Domination Number

New Definition {v1, v5, v4} 0.0195
(A. Somasundaram 1998)[19] {v1, v2, v3, v4, v5} 3.35
(O. T. Manjusha 2014) [13] {v1, v2} 1.2

a comparison in our results.

In [11], Hamidi et al. computed fuzzy domination number of com-
plete fuzzy graphs and cyclic strong fuzzy graphs as follows.

Theorem 3.3. Let Kn = (σ, µ) be a complete fuzzy graph, V = {v1, v2,
. . . , vn} and k = max{µ(xy) | x, y ∈ V }. If σ(v1) > σ(v2) > σ(v3) >
. . . > σ(vn−1) > σ(vn) is an ascending sequence, then

(i) γt(Kn) = σ2(vn−1).

(ii) {v2, v3, . . . , vn−1, vn} is the vertex fuzzy dominating set.

(i) γt(Kn) = 0 if and only if complete fuzzy graph (K3, k) is a fuzzy
subgraph of Kn.

Theorem 3.4. Let Cn = (σ, µ) be a cyclic strong fuzzy graph, V =

{y1, y2, . . . , yn} and n ≥ 5. If there exists 1 ≤ i ≤ k such that
∧
x∈V

σ(x) =

σ(yi) and σ(v1) > σ(v2) > σ(v3) > . . . > σ(vn−1) > σ(vn) is an ascend-
ing sequence, then

(i) if 3 | n− k − 2, then γt(Cn) = σ(yn)((µ(ynyn−1) +∑
i∈{n−3,n−6,··· ,k+2}

σ(yi)((µ(yiyi−1) + µ(yiyi+1)),

(ii) if 3 | n− k − 3, then

γt(Cn) = σ(yk+1)µ(yk+1yk+2) + σ(yn)µ(ynyn−1) +∑
i∈{n−3,n−6,··· ,k+3}

σ(yi)((µ(yiyi−1) + µ(yiyi+1)),
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(iii) if 3 | n− k − 1, then

γt(Cn) = σ(yk+1)µ(yk+1yk+2) + σ(yn)µ(ynyn−1) +∑
i∈{n−3,n−6,··· ,k+4}

σ(yi)((µ(yiyi−1) + µ(yiyi+1)).

In the following, we consider the wheel fuzzy graph Wn = (σ, µ), in
Figure 3, where for all 1 ≤ i ≤ n, σ(yi) < σ(yi+1). In what follows,

c
y1

y2
y3

y4

.
.

.
yn−1

yn

Figure 3: Strong Wheel Wn

consider a special wheel fuzzy graph Wn = (V, σ, µ), so we assume that

c =
∧
vi∈V

σ(vi), and showed that γt(Wn) = γt(Cn), in this regard.

Definition 3.5. A wheel fuzzy graph Wn = (V, σ, µ), is called an infi-

mum center-based wheel fuzzy graph, if c =
∧
vi∈V

σ(vi).

Example 3.6. Consider Figure 4(a), and for all xi ∈ V, σ(xi) =
i

10
, c =∧

vi∈V
σ(vi). Then, W7 = (V, σ, µ) is an infimum center-based wheel strong

fuzzy graph.

Theorem 3.7. Let Wn = (V, σ, µ) be an infimum center-based wheel
strong fuzzy graph and V = {y1, y2, . . . , yn}. Then

(i) if 3 | n− k − 2, then γt(Wn) = σ(yn)((µ(ynyn−1) +∑
i∈{n−3,n−6,··· ,k+2}

σ(yi)((µ(yiyi−1) + µ(yiyi+1)),
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(ii) if 3 | n− k − 3, then

γt(Wn) = σ(yk+1)µ(yk+1yk+2) + σ(yn)µ(ynyn−1) +∑
i∈{n−3,n−6,··· ,k+3}

σ(yi)((µ(yiyi−1) + µ(yiyi+1)),

(iii) if 3 | n− k − 1, then

γt(Wn) = σ(yk+1)µ(yk+1yk+2) + σ(yn)µ(ynyn−1) +∑
i∈{n−3,n−6,··· ,k+4}

σ(yi)((µ(yiyi−1) + µ(yiyi+1)).

Proof. Since for any yi ∈ V, µ(cyi) = σ(c), there exists the cycle P :
yi, c, yi+1, yi. So for any yi ∈ V, µ′∞(cyi) = σ(c) = µ(cyi). Hence for any
yi ∈ V, µ′∞(yiyi+1) = σ(c) < σ(yi) = µ(yiyi+1). Using Theorem 3.4, the
result is straightforward. □

In the following example, we present the computations of fuzzy dom-
ination number of infimum center-based wheel fuzzy graph of orders
7, 8, 9.

Example 3.8. (i) Let W7 = (V1, σ1, µ1) be an infimum center-based

wheel strong fuzzy graph as Figure 4(a) and for all xi ∈ V1, σ(xi) =
i

10
.

Then, by Theorem 3.7 (ii), γt(W7) = 0.74. If σ(x1) = σ(x2), then by
Theorem 3.7 (i), γt(W7) = 0.70.

(ii) Let W8 = (V2, σ2, µ2) be an infimum center-based wheel strong

fuzzy graph as Figure 4(b) and for all xi ∈ V2, σ(xi) =
i

10
. Then by

Theorem 3.7(iii), γt(W8) = 1.05. If σ(x1) = σ(x2) = σ(x3), then by
Theorem 3.7 (i), γt(W8) = 1.01.

(iii) Let W9 = (V3, σ3, µ3) be an infimum center-based wheel strong

fuzzy graph as Figure 4(c) and for all xi ∈ V3, σ(xi) =
i

10
. Then by

Theorem 3.7 (i), γt(W9) = 1.53. If σ(x1) = σ(x2) = σ(x3) = σ(x4) =
σ(x5), then by Theorem 3.7 (iii), γt(W9) = 1.08.

Let Wn = (σ, µ) be a cyclic strong fuzzy graph and e, e′ ∈ E. Define
a relation R on E, by (e, e′) ∈ R if and only if µ(e) = µ(e′). Clearly R
is an equivalence relation on E and we have the following corollary.

Theorem 3.9. Wn = (V, σ, µ) be an infimum center-based wheel strong
fuzzy graph. Then |E/R| ≤ 1 if and only if γt(Wn) = 0.
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cx1

x2 x3
x4

x5

x6x7
(a) Wheel fuzzy graphs W7

cx1

x2 x3
x4

x5

x6x7
x8

(b) Wheel fuzzy graphs W8

cx1

x2 x3
x4

x5
x6

x7x8
x9

(c) Wheel fuzzy graphs W9

Figure 4: Infimum center-based wheel strong fuzzy graphs

Proof. Since |E/R| ≤ 1, for all e, e′ ∈ E(Wn), µ(e) = µ(e′). Then for
all e ∈ E(Wn), µ

′∞(e) = µ(e). Thus for all e ∈ E(Wn), e is not an
α−strong edge. It implies γt(Wn) = 0. The converse is clear. □

In what follows, consider a special wheel fuzzy graph Wn = (V, σ, µ),

so we assume c =
∨
vi∈V

σ(vi), then show that γt(Wn) = γt(Kn).

Definition 3.10. A wheel fuzzy graph G = (V, σ, µ), is called a supri-

mum center-based wheel fuzzy graph, if c =
∨
vi∈V

σ(vi).

Example 3.11. Consider Figure 5(a), and for all xi ∈ V, σ(xi) =
0.i, c =

∨
vi∈V σ(vi). Then, W5 = (V, σ, µ) is a suprimum center-based

wheel strong fuzzy graph.

Theorem 3.12. Let Wn = (V, σ, µ) be a suprimum center-based wheel
strong fuzzy graph. Then γt(Wn) = γt(Kn).

Proof. Since for any yn ̸= yi ∈ V, µ(cyi) = σ(yi), there exists a cycle
P : yi, c, yi+1, yi. So for any 1 ≤ i ≤ n − 1, the edge yiyi+1 is not
an α−strong, because of µ′∞(yiyi+1) = σ(yi) = µ(yiyi+1). Applying
Theorem 3.3, the result is straightforward. □
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Corollary 3.13. Let Wn = (V, σ, µ) be a suprimum center-based wheel
strong fuzzy graph. Then γt(Wn) = σ2(vn).

Proof. by Theorems 3.12 and Theorem 3.3, the proof is obtained. □

Corollary 3.14. Wn = (V, σ, µ) be a suprimum center-based wheel
strong fuzzy graph. Then |E/R| ≤ 1 if and only if γt(Wn) = 0.

In the following example, we present the computations of fuzzy dom-
ination number of suprimum center-based wheel strong fuzzy graph of
orders 5, 6, 10.

Example 3.15. LetW5 = (V1, σ1, µ1),W6 = (V2, σ2, µ2),W10 = (V3, σ3, µ3)
be suprimum center-based wheel strong fuzzy graphs as shown in Fig-
ures 5(a),5(b),5(c), where for all j = 1, 2, 3xi ∈ Vj , we define σ(xi) = 0.i.
Then, by Theorem 3.12 and Corollary 3.13, γt(W5) = γt(K5) = 0.25.,
γt(W6) = γt(K6) = 0.36., and γt(W10) = γt(K10) = 1.

cx1

x2 x3
x4

x5

(a) Wheel fuzzy graph W5

cx1

x2 x3
x4

x6

(b) Wheel fuzzy graph W6

cx1

x2 x3
x4

x5
x6

x7x8x9
x10

(c) Wheel fuzzy graph W10

Figure 5: Suprimum center-based wheel strong fuzzy graph

4 Fuzzy Bridge In Complete Bipartite Fuzzy
Graphs

In this section, we compute the fuzzy domination number of complete
bipartite fuzzy graphs and prove some important properties of them.
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From now on, for complete bipartite fuzzy graph Kn,m = (V, σ, µ),
we consider V = V1∪V2, where V1∩V2 = ∅ and for x, y ∈ V, if µ(xy) = 0,
then either x, y ∈ V1 or x, y ∈ V2.

Theorem 4.1. Let Kn,m = (V, σ, µ) be a complete bipartite fuzzy graph
and Dα ∈ Dα(Kn,m). If there exists y1, y2, . . . , ym ∈ V such that∧
a∈V

σ(a) = σ(y1) = σ(y2) = . . . = σ(ym). Then

(i) if x ∈ V , then x
α
̸↪→ yi or yi

α
̸↪→ x, where 1 ≤ i ≤ m,

(ii) if x ∈ {y1, y2, . . . , ym}, then E(Dα, x) = ∅.

Proof. (i) Let x ∈ V. If either x, y ∈ V1 or x, y ∈ V2, then x
α
̸↪→ yi.

Otherwise, let x ∈ V1 and y ∈ V2. Hence, for any z ∈ V1, µ(xyi) =

µ(yiz). It follows that for any x ∈ V, x
α
̸↪→ yi. Thus in any cases, if

x ∈ V , then x
α
̸↪→ yi or yi

α
̸↪→ x, where 1 ≤ i ≤ m.

(ii) By item (i), it is obtained. □

Theorem 4.2. Let Kn,m = (V, σ, µ) be a complete bipartite fuzzy graph
and for all w,w′ ∈ V, σ(w) ̸= σ(w′). If there exist y′ ∈ V1 and y ∈ V2

such that
∨
x∈V1

σ(x) = σ(y),
∨
x∈V2

σ(x) = σ(y′), v ∈ V1 and σ(y) ≤ σ(y′),

then

(i) if σ(v) < σ(y) and σ(v′) < σ(y′), then v
α
̸↪→ v′, where σ(v) ≤ σ(v′)

and v′ ∈ V2,

(ii) σ(v) = σ(y), if and only if v
α
↪→ v′, where σ(v) ≤ σ(v′) and v′ ∈ V2,

(iii) if σ(v) ̸= σ(y), then E(Dα, v) = ∅, where Dα ∈ Dα(Kn,m),

(iv) E(Dα, y) = {yz | σ(z) ≥ σ(y), z ∈ V2}, where Dα ∈ Dα(Kn,m).

Proof. (i) Let v
α
↪→ v′. Then µ′∞(vv′) < µ(vv′) and so there’s a path

P : v, y′, y, v′ such that σ(v) = σ(v) ∧ σ(y′) ∧ σ(y) ∧ σ(v′) < µ′∞(vv′) <
µ(vv′) = σ(v). Thus σ(v) < σ(v) which is a contradiction.
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(ii) (⇒) Assume v
α
̸↪→ v′. Then there exists a path P : v, x, t, v′ such

that σ(v) ∧ σ(x) ∧ σ(t) ∧ σ(v′) = σ(v). It implies σ(y) ≥ σ(t) ≥ σ(v).
Since v ̸= t, σ(y) ≥ σ(t) > σ(v), we get that σ(y) ̸= σ(v).

(⇐) Suppose that v
α
↪→ v′, where σ(v) ≤ σ(v′) and v′ ∈ V2. Thus

µ′∞(vv′) < µ(vv′) and so there’s a path P : v, y′, y, v′ such that σ(v) =
σ(v) ∧ σ(y′) ∧ σ(y) ∧ σ(v′) < µ′∞(vv′) < µ(vv′) = σ(v). So σ(v) = σ(y).

(iii), (iv) are obtained by item (ii). □

Theorem 4.3. Let Kn,m = (V = V1 ∪ V2, σ, µ) be a complete bipartite
fuzzy graph and for all w,w′ ∈ V, σ(w) ̸= σ(w′). If there exists y′ ∈ V1

and y ∈ V2 such that
∨
x∈V1

σ(x) = σ(y),
∨
x∈V2

σ(x) = σ(y′), v ∈ V1, and

σ(y) ≤ σ(y′), then

(i) Op(D(Kn,m)) = {V \ {y}, V \ {z | σ(z) ≥ σ(y), z ∈ V2}},

(ii) γt(Kn,m) = Tmin{σ(y)µ(yz), σ(z)µ(yz) | σ(z) ≥ σ(y), z ∈ V2}},

(iii) γt(Kn,m) = tσ2(y), where t = |{z | σ(z) ≥ σ(y), z ∈ V2}|,

(iv) V \ {z | σ(z) ≥ σ(y), z ∈ V2} is the vertex fuzzy dominating set.

Proof. (i) By Theorem 4.2(ii), v
α
↪→ v′ implies σ(v) = σ(y). Hence

V \{y} ∈ Op(D(Kn,m)). Using Theorem 4.2(iv), E(Dα, y) = {yz | σ(z) ≥
σ(y), z ∈ V2}, where Dα ∈ Dα(Kn,m). So by y

α
↪→ z, V \ {z | σ(z) ≥

σ(y), z ∈ V2} ∈ Op(D(Kn,m)).
(ii) By item (i), Op(D(Kn,m)) = {V \ {y}, V \ {z} | σ(z) ≥ σ(y), z ∈

V2}. So w(V \{y}) = σ(z)µ(yz) and w(V \{z}) = σ(y)µ(yz) imply that
γt(Kn,m) = Tmin{σ(y)µ(yz), σ(z)µ(yz) | σ(z) ≥ σ(y), z ∈ V2}.

(iii) Since σ(y) < σ(z), we get that σ(z)µ(yz) > σ(y)µ(yz) =
σ(y)(σ(z) ∧ σ(y)) = σ2(y). Hence γt(G) = σ2(y). Since t = |{z | σ(z) ≥
σ(y), z ∈ V2}|, we get that

σ(z)µ(yz) + · · ·+ σ(z)µ(yz) > σ(y)µ(yz) + · · ·+ σ(y)µ(yz)

= σ(y)(σ(z) ∧ σ(y) + · · ·+ σ(z) ∧ σ(y))

= σ(y)(σ(y) + · · ·+ σ(y)).

Thus γt(Kn,m) = tσ2(y).
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(iv) For any z ∈ V2 such that σ(z) ≥ σ(y), we have y
α
↪→ z. Hence

V \ {z | σ(z) ≥ σ(y), z ∈ V2} ∈ Op(D(Kn,m)).
□ In the following example, we compute the fuzzy domination

number of some complete bipartite fuzzy graph.

Example 4.4. (i) Consider the complete bipartite fuzzy graph K4,3 =
(V1, σ1, µ1) as shown in Figure 6(a), where and for all vi ∈ V1, σ1(vi) =
i

10
. By Theorem 4.2, we get that v4

α
↪→ v5, v4

α
↪→ v6 and v4

α
↪→ v7. Com-

putations show thatD = {Dα
1 = {v1, v2, v3, v4}, Dα

2 = {v1, v2, v3, v5, v6, v7
}} and so Op(D) = {Dα

1 , D
α
2 }. Using Theorem 4.3, γt(G) = σ4(y) =

0.0256 and so a set {v1, v2, v3, v4} is the vertex fuzzy dominating set.
(ii) Consider the complete bipartite fuzzy graph K3,3 = (V2, σ2, µ2)

as shown in Figure 6(b), where for all vi ∈ V2, we have σ2(vi) =
i

10
. Applying Theorem 4.2, v5

α
↪→ v6, so routine computations show

that D = {Dα
1 = {v1, v2, v3, v4, v5}, Dα

2 = {v1, v2, v3, v4, v6}} and so
Op(D) = {Dα

1 , D
α
2 }. Using Theorem 4.3, γt(G) = σ2(y) = 0.25 and

{v1, v2, v3, v4, v5} is the vertex fuzzy dominating set.

v1

v2

v6

v4

v5

v3

v7

(a) K4,3

v1

v2

v3

v4

v5

v6

(b) K3,3

Figure 6: Complete Bipartite Fuzzy Graphs K3,3 and K4,3.

Theorem 4.5. Let Kn,m = (V = V1 ∪ V2, σ, µ) be a complete bipartite
fuzzy graph. If there exists y′ ∈ V1 and y ∈ V2 such that {a | a ∈
V1, σ(a) =

∨
x∈V1

σ(x)} = {y},
∨
x∈V2

σ(x) = σ(y′), v ∈ V1, and σ(y) ≤

σ(y′), then

(i) Op(D(Kn,m)) = {V \ {y}, V \ {z | σ(z) ≥ σ(y), z ∈ V2}},
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(ii) γt(Kn,m) = Tmin{σ(y)µ(yz), σ(z)µ(yz) | σ(z) ≥ σ(y), z ∈ V2},

(iii) γt(Kn,m) = tσ2(y), where t = |{z | σ(z) ≥ σ(y), z ∈ V2}|,

(iv) V \ {z | σ(z) ≥ σ(y), z ∈ V2} is the vertex fuzzy dominating set.

Proof. (i), (ii), (iii), (iv) are obtained by Theorem 4.3, □

Example 4.6. (i) Let K4,5 = (V1, σ1, µ1) be a complete bipartite fuzzy

graph as shown in Figure 7(a), where for all vi ∈ V1, σ1(vi) =
i

10
. By

Theorem 4.2, v7
α
↪→ v8 and v7

α
↪→ v9, so computations show that

D = {Dα
1 = {v1, v2, v3, v4, v5, v6, v7}, Dα

2 = {v1, v2, v3, v4, v5, v6, v8, v9}}

and so Op(D) = {Dα
1 , D

α
2 }. Using Theorem 4.3, γt(G) = σ2(y) = 0.49

and so {v1, v2, v3, v4, v5, v6, v7} is the vertex fuzzy dominating set.

(ii) Consider the complete bipartite fuzzy graph K5,6 = (V2, σ2, µ2)
as shown in Figure 7(b), where vi ∈ {v1, v2, v3, v4, v5, v6}, implies that

σ2(vi) = 0.2 and otherwise, σ2(vi) =
i

10
. By Theorem 4.5, v10

α
↪→ v11, so

computations show that D = {Dα
1 = {v1, v2, v3, v4, v5, v6, v7, v8, v9, v10},

Dα
2 = {v1, v2, v3, v4, v5, v6, v7, v8, v9, v11}} and so Op(D) = {Dα

1 , D
α
2 }.

Using Theorem 4.5, γt(G) = σ2(y) = 1 and {v1, v2, v3, v4, v5, v6, v7, v8, v9,
v10} is the vertex fuzzy dominating set.

Theorem 4.7. Let Kn,m = (V = V1 ∪ V2, σ, µ) be a complete bipar-
tite fuzzy graph. Suppose there exists y′ ∈ V1 and y ∈ V2 such that∨
x∈V1

σ(x) = σ(y),
∨
x∈V2

σ(x) = σ(y′), v ∈ V1 and σ(y) ≤ σ(y′). For

vi, vj ∈ V ,

(i) if σ(vj) ̸= σ(y) and σ(vi) ̸= σ(y), then vi
α
̸↪→ vj,

(ii) if
∧
x∈V1

σ(x) = σ(vi) and σ(vi) ̸= σ(y), then vi
α
̸↪→ vj,

(iii) if vi ∈ {a | a ∈ V1, σ(a) =
∨
x∈V1

σ(x)} and vi ̸= y, then vi
α
̸↪→ vj,
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v1

v2

v3

v4

v5

v6

v7
v8

v9

(a) K4,5

v1

v2

v3

v4

v5

v6

v7
v8

v9
v10 v11

(b) K5,6

Figure 7: Complete Bipartite Fuzzy Graphs

(iv) if vj ̸∈ {z | σ(z) ≥ σ(y), z ∈ V2}, then vi
α
̸↪→ vj.

Proof. (i) Let vi, vj ∈ V . Because σ(vi) ̸= σ(y) and σ(vj) ̸= σ(y),
there’s a cycle P : vi, vj , y, y

′, vi. It implies vivj ̸∈ E(Dα, vi) and so

vi
α
̸↪→ vj .

(ii) Because σ(vi) ̸= σ(y), we get σ(vi) < σ(y). If σ(vi) < σ(vj),
then there’s a cycle P : vi, vj , y, y

′, vi. It implies that vivj ̸∈ E(Dα, vi).
Now if σ(vi) > σ(vj), then there’s a cycle P : vj , vi, y

′, y, vj . It implies

vivj ̸∈ E(Dα, vj) and so vi
α
̸↪→ vj .

(iii) Since vi ∈ {a | a ∈ V1, σ(a) =
∨
x∈V1

σ(x)}, we obtain that

σ(vi) = σ(y). So by vi ̸= y, there’s a cycle P : vi, vj , y, y
′, vi. It implies

that vivj ̸∈ E(Dα, vi) and then vi
α
̸↪→ vj .

(iv) Since vj ̸∈ {z | σ(z) ≥ σ(y), z ∈ V2}, we get that σ(vj) < σ(y).
Then there’s a cycle P : vi, vj , y, y

′, vi. It implies vivj ̸∈ E(Dα, vi), and

hence vi
α
̸↪→ vj . □

Example 4.8. (i) Let K4,4 = (V1, σ1, µ1) be a complete bipartite fuzzy
graph as shown in Figure 8(a). Define σ2(vi) = 0.1., where vi ∈ {v1, v2, v4}
and for all vi ∈ V1, define σ1(vi) =

i

10
. Using Theorem 4.7, v7

α
̸↪→
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v3, v7
α
̸↪→ v5 and v7

α
̸↪→ v6, because of vj ̸∈ {z | σ(z) ≥ σ(y), z ∈ V2}.

Also using Theorem 4.7, v1
α
̸↪→ v8, v2

α
̸↪→ v8 and v4

α
̸↪→ v8, because of∧

x∈V1

σ(x) = σ(vi) and σ(v7) ̸= σ(vi). In addition, Theorem 4.7, shows

that v1
α
̸↪→ v3, v2

α
̸↪→ v5, v4

α
̸↪→ v6, since σ(vj) ̸= σ(v8) and σ(vi) ̸= σ(v7).

(ii) Let K5,5 = (V2, σ2, µ2) be a complete bipartite fuzzy graph as
shown in Figure 8(b). Define σ2(vi) = 0.9, where vi ∈ {v9, v6, v5}, and
for vi ∈ V \ {v9, v6, v5}, σ2(vi) =

i

10
. Thus by Theorem 4.7, for all

vi, vj ∈ V , we get that vi
α
̸↪→ vj .

v1

v3

v2

v5

v4

v6

v7
v8

(a) K4,4

v1

v9

v10

v6

v4

v5

v7
v2

v8
v3

(b) K5,5

Figure 8: Complete Bipartite Fuzzy Graphs

Corollary 4.9. Let Kn,m = (V = V1 ∪ V2, σ, µ) be a complete bipartite

fuzzy graph and there exist y′ ∈ V1 and y ∈ V2 such that
∨
x∈V1

σ(x) =

σ(y),
∨
x∈V2

σ(x) = σ(y′). If |{a | a ∈ V1, σ(a) =
∨
x∈V1

σ(x)}| ≥ 2, then

γt(Kn,m) = 0.

Proof. Since there’s vi ∈ {a | a ∈ V1, σ(a) =
∨
x∈V1

σ(x)} and vi ̸= y, by

Theorem 4.7, for all vi, vj ∈ V, vi
α
̸↪→ vj . It implies γt(Kn,m) = 0. □
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4.1 Complete Multipartite Fuzzy Graphs

In this subsection, we compute the fuzzy domination number of complete
multipartite fuzzy graph and prove that it is equal to zero.

Theorem 4.10. Let Kn1,n2,··· ,nr = (V, σ, µ) be a complete multipartite

fuzzy graph such that V =
r⋃

i=1

Vi, Vi = {xi1, xi2, · · · , xini} and ni ≥ 2.

If r ≥ 3, and for all w,w′ ∈ V, σ(w) ̸= σ(w′), then γt(Kn1,n2,··· ,nr) =

γt(Knr−1,nr), where yi =
∨
x∈Vi

σ(x) and y1 < y2 < · · · < yr.

Proof. Assume y =
∨
x∈Vi

σ(x) < y′ =
∨
x∈Vj

σ(x) < y′′ =
∨

x∈Vm

σ(x).

By n ≥ 3 and y < y′ < y
′′
, there’s y′′ ∈ Vm such that P : y, y′, y′′, y

is a cycle. It implies yy′ ̸∈ E(Dα, y). Hence y
α
̸↪→ y′. By n ≥ 3 and

y < y′ < y
′′
, there’s y′ ∈ Vj such that P : y, y′′, y′, y is a cycle. It

implies yy′′ ̸∈ E(Dα, y). Hence y
α
̸↪→ y′′. By Theorem 4.5, y

′ α
↪→ y′′ and

V \ {z | σ(z) ≥ σ(y), z ∈ Vm} is the vertex fuzzy dominating set. Thus

γt(Kn1,n2,··· ,nr) = γt(Knr−1,nr) = tσ2(y), where yi =
∨
x∈Vi

σ(x), y1 <

y2 < · · · < yr and t = |{z | σ(z) ≥ σ(y), z ∈ Vm}|. By induction on r the
result in this case is obvious.
Otherwise, the result is straightforward. □

Example 4.11. (i) Let K2,2,3 = (V1, σ1, µ1) be a complete multipartite
fuzzy graph as shown in Figure 9(a). Define σ2(vi) = 0.6, where vi ∈
{v6, v3}, and for all vi ∈ V1, σ1(vi) =

i

10
. It is clear that v3

α
̸↪→ v6,

because of the cycle P : v3, v11, v10, v3 and v6
α
̸↪→ v10, because of the

cycle P : v6, v10, v3, v6. v6
α
̸↪→ v11 because of the cycle P : v6, v11, v3, v6.

Then γt(K2,2,3) = 0.

(ii) Let K2,2,2 = (V2, σ2, µ2) be a complete multipartite fuzzy graph

as shown in Figure 9(b). Define σ2(vi) =
i

10
, where vi ∈ V. One can see

that v3
α
̸↪→ v10, because of the cycle P : v3, v10, v4, v3. By Theorem 4.7, we
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get that v4
α
↪→ v10 and v4

α
↪→ v11. Applying Theorem 4.10, γt(K2,2,2) =

γt(K2,2) = 2× σ2(v4) = 0.32.

v1

v2

v3

v4

v6

v10 v11

(a) K2,2,3

v1

v2

v3

v4

v10 v11

(b) K2,2,2

Figure 9: Complete Multipartite Fuzzy Graphs

5 Fuzzy Bridges And Applications

In this section, we consider the concepts of fuzzy domination number
((supremum, infimum) center-based wheel strong, complete (bipartite,
multipartite)) fuzzy graph and introduce some applications in real-life
related to these concepts. The results of this paper are applied in four
applications. The applications are simulated. In every case, by using the
results of this paper, the issue in the model is solved and the solutions
are addressed by the introduced results. In some cases, one solution is
advised. So this could be considered a limitation and drawback of this
article. Using the model which is simulated by the complete fuzzy graph,
allows us to simulate a situation that has full connections between its
part. So the advantages of this paper are highlighted by proposing some
solutions to the model when full connections are simulated by complete
bipartite fuzzy graphs and complete multipartite fuzzy graphs. These
models are studied and they address some solutions to the situation. In
other models, using a specific wheel gives us a special case when one
part has a different position in the situation. So it’s stimulated by the
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model and it gets some attention. It’s considered an advantage of this
study. This study uses two different models. First model, the position
of all parts is the same but in the second model, one part has a different
position and this part has full connections to which other parts.

We present some applications with the following Algorithm (with
two cases):
Step 1. Let {v1, v2, · · · , vn} be a set of vertices and {vivi+1}n−1

i=1 be a set
of edges.
Step 2. Consider a model with Table.
Step 3. Define the values of vertices and edges in the model.
Step 4. Consider a model with a Figure, as a strong cyclic fuzzy graph
and descriptions of the model to clarify.
Step 5. Using Theorems for an initial model is done.
Step 6. Using Theorems for modified models is done as two cases with
clarifications about issues and solutions.

Common Server Problem

The server is the decider about what’s going on on the world wide web.
To visit a website, it’s expected to face some problems. The common
server problems are slow page loads, hardware failure, viruses, and over-
load. These problems of servers are common when the subject is about
the relationship between servers and clients. Consider the problem con-
cerning slow page loads. In this case, either server takes too long to
respond or the website’s contents are postponed. The model is built
based on the obsession with both the server and the website’s contents.
In this case, we represent an application of fuzzy domination numbers
and the common server problem. Let {v1, v2, · · · , v8} be a set of web-
sites, {v1v2, v2v3, v3v4, v4v5, v5v6, v7v8, v8v1} be a set of connections be-
tween websites, {cv1, cv2, cv3, cv4, cv5, cv6, cv8} be a set of connections
between websites and the server. Consider the current obsession with
websites and the current obsession between websites in Table 2. The
current obsession between website and server is the obsession of the
website. The current obsession of the server is fixed and it equals the
maximum obsession of websites.

Define σ(vi) =
Current Obsession of vi

1000
and µ(vivi+1) = σ(vi), be fuzzy
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Table 2: Current Obsession.

Websites v1 v2 v3 v4 v5 v6 v7 v8
Obsession 100 200 300 400 500 600 700 800

Connections v1v2 v2v3 v3v4 v4v5 v5v6 v6v7 v7v8 v8v1
Obsession 100 200 300 400 500 600 700 100

value of current obsession of website vi and fuzzy value of current obses-
sion of connections vivi+1, respectively, where i ∈ N and 1 ≤ i ≤ 8. We
modelify it in Figure 10, as a supremum center-based wheel strong fuzzy
graph such that starting a website is v1 and a website only connects to
another website in the clockwise motion on the connections as Table 2,
whereby Theorem 3.12, the optimal vertex domination of this model is
optimal vertex domination of complete fuzzy graph from the order 8, K8,
γt(W8) = γt(K8). By Corollary 3.13, γt(W8) = σ(v8)

2 = 0.64. This num-
ber is a warning about the time when the obsession of the model takes
the maximum and it has the structure of the model, a complete fuzzy
graph. When the obsession of the server c is the maximum, there’s only
one website, v8, to connect to the server c. The obsession of the system
is 0.64. Thus in the case that, the server has the maximum obsession,
website v8 has only a connection with the server, and in this case, the
model has the situation in that, two given websites have connections and
obsessions with each other and with the server as the model complete
fuzzy graph.

Civil engineer’s problem

A civil engineer engages in many problems usually concerning design.
The design of highways is the solution to the problem of traffic, where
the reduction is the concern. Commuters are involved with this prob-
lem which the iteration facing is daily. Commuters and the traffic on
highways are two subjects which need to make balanced to achieve the
best situation possible. Consider the problem concerning reducing traffic
through highway design. In this case, the center is the junction, where
all other junctions in this model are connected to it. The model is built
based on the traffic inside both the center and other places. In this case,
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v1

v2
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v4

v5

v6
v7

v8

c

Figure 10: Suprimum Center-based Wheel Strong Fuzzy Graph W8

we represent an application of fuzzy domination numbers and the high-
way design problem concerning reducing traffic. Let {v1, v2, · · · , v8} be
a set of places, {v1v2, v2v3, v3v4, v4v5, v5v6, v7v8, v8v1} be a set of connec-
tions between places, {cv1, cv2, cv3, cv4, cv5, cv6, cv8} be a set of connec-
tions between places and the center. Current traffic between places and
the center is the traffic of the places. The current traffic of the center is
fixed and it equals the minimum traffic of all places.

Table 3: Current Traffic.

Places v1 v2 v3 v4 v5 v6 v7 v8
Traffic 100 200 300 400 500 600 700 800
Roads v1v2 v2v3 v3v4 v4v5 v5v6 v6v7 v7v8 v8v1
Traffic 100 200 300 400 500 600 700 100

The traffics is twofold: The traffic, inside of the place, and the traffic,
outside of the place. So the traffic of the place means the traffic inside of
the place and the traffic of connection means the traffic of the outside of

the place. Define σ(vi) =
Current Traffic of vi

1000
and µ(vivi+1) = σ(vi), be

fuzzy value of current traffic of place vi and fuzzy value of current traffic
of connections vivi+1, respectively, where i ∈ N and 1 ≤ i ≤ 8. We mod-
elify it in Figure 11, as an infimum center-based wheel strong fuzzy graph
such that starting place is v1 and a place only connects to another place
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in the clockwise motion on the connections as Table 3, whereby Theorem
3.7, the optimal vertex domination of this model is to redesign to the
time when the traffic of the place has the minimum values. Consider the
place v2, v3 has decreased to take the same traffic as the place v1. Two
models are redesigned: the first design is as the Table 3, and the second
design is obtained from Table 3. By Theorem(iii) 3.7, γt(W8) = 1.05.
for the design as Table 3. By Theorem(iii) 3.7, γt(W8) = 1.01. for the
design as Table 3, where σ(v2) = σ(v3) = σ(v1) = 0.1. If the same traffic
spreads to all vertices, by Theorem 3.9, γt(W8) = 0 which is the ideal
case. The center has minimum traffic inside so other place connects
to the center when one road outside the place is occupied. The design
proposes roads to avoid traffic outside. In this case, the design suggests
the places and precisely, the navigation v8cv5cv2cv1. So there’s time to
decrease the traffic of other ways which are occupied. The beginning is
about the time when the number is zero and after that, the roads take
the maximum capacity of their traffic until they take the situation as
Table 3. In this case, the number is changed from 0 and 1.01 to 1.05.
The number 1.05 is the critical number that is aware of the full capacity
of the traffic in this design.

v1

v2
v3

v4

v5

v6
v7

v8

c

Figure 11: Infimum Center-based Wheel Strong Fuzzy Graph W8
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Common challenge in the manufacturing industry

The manufacturing industry is a big part of the industry. It’s one of
the biggest employers. Challenge in this industry is about the skills
and the adaptation of the skills with the roles. There are challenges in
this industry about selling directly, being trends, managing the projects,
and lack of skills. The skills related to a role are the common challenges
among manufacturers in the topic of the manufacturing industry. One
solution is to be in partnership with institutions to fill the gap between
skills and roles. Other solutions are to make a flexible environment for
working and upgrading skills. Hence initial decision about the employees
is prominent.

Consider the problem concerning employee’s skills. In this case, the
skills of the nominated and the roles of employees are a matter of mind.
The model is built based on the skills of both the nominate and the roles.
In this case, we represent an application of fuzzy domination numbers
and the common problem in the manufacturing industry. Let {v1, v3, v4}
be a set of nominates, {v1v2, v1v5, v1v6, v3v2, v3v5, v3v6,
v4v2, v4v5, v4v6} be a set of connections between nominates’ skills and
employees’ roles. Consider rates of skills and rates of roles in Table 4.

Table 4: Current Rates of Skills and Roles

Nominates v1 v2 v3 v4 v5 v6
Rates 100 200 300 400 500 600

Connections v1v2 v2v3 v3v4 v4v5 v5v6 vivj
Rates 100 200 300 400 500 j00

Define σ(vi) =
Current Rate of vi

1000
and µ(vivi+1) = σ(vi), be fuzzy value

of current rate of skills of vi and fuzzy value of current rate of roles
of connections vivi+1, respectively, where i ∈ N and 1 ≤ i ≤ 6. We
modelify it in Figure 12, as a complete bipartite fuzzy graph K3,3 such
that starting nominate is v1 and a nominate only connects to all roles
as Table 2. By Theorems 4.3 and 4.5, γt(K3,3) = 0.44. This number
is interpreted to the situation, where the adaptions of nominates’ skills
and employees’ roles have the least costs. This case suggests the optimal
situation to decide about the positions and people. If some nominate
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and some people have the same rates but the maximum rate is uniquely
assigned, by Theorem 4.5, γt(K3,3) = 0.44. Therefore the number isn’t
changed. The optimal set and the optimal number advise some choices
about the employees and their roles to occupy the positions.

v1

v2

v3

v5

v4

v6

Figure 12: Complete Bipartite Fuzzy Graph K3,3

Common challenges in the medical laboratory

A medical laboratory is an environment to research diseases. It’s the
heart of medical science. The research and treatment take away to the
laboratory. So the problems of this place are important. This place is
stressful. There are a lot of challenges concerning the limited time to do
the work, pressure for obtaining results, pressure on doing fast, and so
on. The challenge to decide fast and obtain results is of them.
Consider the problem concerning deciding fast about adding some dozes
of material, where the same material are in a category and they don’t
count to combine. In this case, the amounts of the elements in dif-
ferent categories are a matter of mind. The model is built based on
amounts of elements in different categories. In this case, we represent
an application of fuzzy domination numbers and the common prob-
lem in a medical laboratory. Let V1, V2 and V3 be three different cat-
egories and elements of same categories have no connection inside of
categories but they connect to all elements in different categories, where
V1 = {v1, v3, v5, v7}, V2 = {v10, v11}, V3 = {v2, v4, v6, v8, v9}. Consider
amounts of dozes, and rates of combinations in Table 5.

Define σ(vi) =
Doze of vi

1000
and µ(vivi+1) = σ(vi), be fuzzy value of doze

of element of vi and fuzzy value of rate of combination vivi+1, respec-
tively, where i ∈ N and 1 ≤ i ≤ 11. We modelify it in Figure 13, as a
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Table 5: Amounts of Dozes, Rates of Combinations

Elements v1 v2 v3 v4 v5 vi
Dozes 100 200 300 400 500 i00

Combination v1v2 v2v3 v3v4 v4v5 v5v6 vivj
Rates 100 200 300 400 500 j00

complete multipartite fuzzy graph K4,5,2 such that starting element is v1
and an element only connects to all other elements in different categories
as Table 5. By Theorem 4.1, γt(K4,5,2) = 0. This number is interpreted
to the situation, where the maximum dozes of elements and maximum
rates of combinations devise the model. In this situation, the number is
zero so the decision about finding the best match between three different
categories has, by Theorem 4.1, no result. This decision is immediately
obtained by modeling the situation, where the fast decision and right
decision are parameters reflecting the skill in such a situation, where fast
decision leading to result is critical.

v1

v2

v3

v4

v5

v6

v7
v8

v9
v10 v11

Figure 13: Complete Multipartite Fuzzy Graph K4,5,2

6 Conclusion

The current paper has applied a novel concept of fuzzy dominating sets
as α-strong dominating set and fuzzy domination number in fuzzy graphs
based on fuzzy bridges. We modelify some real problems in fuzzy graphs
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and apply the properties of fuzzy vertex domination numbers in this re-
gard. Based on the application of fuzzy vertex domination numbers,
we proved some results that make the optimal fuzzy vertex domination.
In more detail, the notion of dominating set and domination number is
applied in some classes of fuzzy graphs. Specific classes of wheel strong
fuzzy graphs are defined and the notions of dominating set and domina-
tion number are applied to them. Also, complete bipartite fuzzy graphs
and complete multipartite fuzzy graphs are some classes of fuzzy graphs
which are studied as some cases for domination numbers and dominating
sets. Some applications from the real world are simulated as concluding
sections and the results of the paper address some solutions to some
issues which are arising from the real world. We hope that these results
are helpful for further studies in the theory of graphs. In our future
studies, we hope to obtain more results regarding fuzzy dominating sets
as α-strong dominating sets and fuzzy domination numbers in fuzzy
hypergraph and their applications.
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