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Abstract. In this paper, we shall attempt to introduce a new contin-
uous analog of the regularly varying generalized hypergeometric distri-
bution by the dediscretization method. The density, cumulative distri-
bution, survival and hazard rate functions are obtained for the model.
The density, cumulative distribution and hazard rate functions are il-
lustrated by some figures. With the help of Monte Carlo method, sim-
ulation studies are done to obtain biases and mean square errors of the
maximum likelihood estimations for the model’s unknown parameters.
We see that our simulation method has satisfactory results.
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1 Introduction and Preliminaries

The mechanism of large-scale biomolecular systems often is stated using
Birth-Death Process (BDP) with various constraints on its coefficients.
The stationary distributions of the process, which have skewness to the
right, are considered as frequency distributions of different events aris-
ing in molecular evolution, biological networks and biosystems [3, 22].
Based on BDP and establishment the statistical facts such as regular
variation at infinity, upward/downward convexity, convexity, unimodal-
ity, and etc several frequency distributions have been proposed (see
[3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]). One of the
important and useful frequency distributions is the three-parameter gen-
eralized hypergeometric distribution which was introduced by Danielian
and Astola [7] (see also [3, 11]).

We note that all of distributions mentioned above are in discrete
cases. In continuous cases, only Astola and Danielian [2] (see also
[3]) considered continuous analog of the Waring distribution by the
dediscretization method and then obtain new frequency distributions
by discretization for the needs of bioinformatics systems. In this pa-
per, by dediscretization method, we introduce a Continuous Analog of
Three-Parameter Regularly Varying Generalized Hypergeometric Distri-
bution (in short we call CGHD) as a new distribution and then consider
some theoretical and numerical statistical inferences including simula-
tion studies for this continuous distribution.

Astola and Danielian [2, 3] proposed some advantages and motiva-
tions of dediscretization idea, but after these studies in the year 2007,
the dediscretization approach has not been considered more in researches
and has been remained open problems in this subject. Hence, our mo-
tivation for this study is to:

a) introduce (by dediscretization method) a model CGHD as a new
distribution;

b) obtain some statistical inferences such as cumulative distribution
function (cdf), probability density function (pdf), hazard rate function
(hrf) and survival function in practical forms for this continuous model;

c) do simulation studies by Monte Carlo method to obtain maximum
likelihood estimations (MLEs) and their biases and mean square errors
(MSEs) of the unknown parameters.
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A three-parameter regularly varying generalized hypergeometric distri-
bution generated by stochastic BDPs was introduced by Danielian and
Astola [7] (see also [3, 11]). A revised form of the proposed frequency
model by Danielian and Astola [7] has the following probability mass
function [20]


px(α) = p0(α) ·

∏x
t=1

(t+r1−1)(t+r2−1)
t(t+q)

p0(α) =
[
1 +

∑∞
x=1

∏x
t=1

(t+r1−1)(t+r2−1)
t(t+q)

]−1 (1)

where pα(0) is the normalization factor, x = 0, 1, 2, ...; α = (r1, r2, q) is
the unknown parameter such that r1 > 0, r2 > 0, q > 0. r1 and r2
are called numerator parameters and q denominator parameter. Also,
ρ = q+ 2− r1− r2 > 1 and (−ρ) is called the exponent of regular varia-
tion of px(α). The discrete model (1) was introduced for discreption of
phenomena arising in large-scale biomolecular systems. The model (1)
so-called a three-parameter regularly varying generalized hypergeomet-
ric distribution generated by BDP.

Astola and Danielian [2, 3] suggested a method of replacement of
sums in (1) by integrals (we present

∏
with the help of

∑
), which does

not change the behavior of distributions. It simplifies the obtained for-
mulas and allows to suggestion of new distributions for bioinformatics.
This method so-called dediscretization. Thereafter, it can be proposed
new discrete distributions with the same properties as before for bioinofr-
matics.

The remainder of the paper is formed as follows. In section 2 we
introduce the model CGHD by the dediscretization method and then
obtain cdf, pdf, hrf and survival function for this model in practical
forms. Also, some figures for the cdf, pdf and hrf of the CGHD model are
plotted. In section 3, using Monte Carlo method we do simulation study
to obtain biases and MSEs for the MLEs of the unknown parameters.
Section 4 concludes.
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2 On the CGHD

For the formula (1), in dediscretization method we use equality

x∏
t=1

(t+ r1 − 1)(t+ r2 − 1)

t(t+ q)
= exp

( x∑
t=1

ln
((t+ r1 − 1)(t+ r2 − 1)

t(t+ q)

))
Let us have definition of dediscretization. Compared to Astola and

Danielian [3] we present the following definition for the model (1).

Definition 1. The function Fx(α) defined on x ∈ (0,∞)

Fx(α) =

∫ x
0 exp

( ∫ t
0 ln

( (u+r1−1)(u+r2−1)
u(u+q)

)
du
)
dt∫∞

0 exp
( ∫ t

0 ln
( (u+r1−1)(u+r2−1)

u(u+q)

)
du
)
dt

(2)

is a dediscretization of {px(α)}.
Let us explain the dediscretization for some class of distributions

{px(α)}. The dediscretization is a procedure on a class of distributions
which leads to the concrete construction of corresponding and in some
sense close class of smooth enough (for example, infinite differentiable)
distribution functions. The constructed class of distribution function
gives a continuous form and it has to satisfy definite restrictions. In the
other words, it must conserve the main properties of distributions of the
original class such as regular variation at infinity with the same expo-
nent, upward/downward convexity, unimodality, convexity, existence of
moments, etc (for more details see [2, 3]).

Now, we obtain cdf, pdf, hrf and survival function of the class of
CGHD. At first and using (2) we give the following lemma.

Lemma 1. The cdf Fx(α) = P (X ≤ x, α) of CGHD is given for
x ∈ (0,∞) as

Fx(α) =
1

c(α)
×
∫ x

0

(t+ r1 − 1)t+r1−1(t+ r2 − 1)t+r2−1

tt(q + t)q+t
dt (3)
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where c(α) is the normalization factor as

c(α) =

∫ ∞
0

(t+ r1 − 1)t+r1−1(t+ r2 − 1)t+r2−1

tt(q + t)q+t
dt. (4)

Proof. We define the cdf of discrete model generalized hypergeometric
distribution (1) as follows for x ∈ (0,∞)

F̂x(α) = F̂0(α)×
[x]∑
n=0

exp
( n∑
m=1

ln
(m+ r1 − 1)(m+ r2 − 1)

m(m+ q)

)
(5)

By dediscretization method and from (5), we define the cdf for contin-
uous analog of the model (1) in the following when x ∈ (0,∞)

Fx(α) = 1∫∞
0 exp

( ∫ t
0 ln

(u+r1−1)(u+r2−1)
u(u+q)

du

)
dt

×
∫ x
0 exp

( ∫ t
0 ln (u+r1−1)(u+r2−1)

u(u+q) du
)
dt.

(6)

Suppose that f(u) = ln
(
(u+r1−1)(u+r2−1)

u(u+q)

)
, u ∈ (0,∞). Then we have

∫ t
0 f(u)du = t · f(t)−

∫ t
0 uf(u)du

= t ln(t+ r1 − 1) + t ln(t+ r2 − 1)− t ln t− t ln(q + t)

−
∫ t
0

u
u+r1−1du−

∫ t
0

u
u+r2−1du+

∫ t
0
u
udu+

∫ t
0

u
q+udu

= ln
(
(t+r1−1)t+r1−1 (t+r2−1)t+r2−1 qq

tt (q+t)q+t (r1−1)r1−1 (r2−1)r2−1

)
(7)

By substituting (7) into (6) the proof is completed. �

Corollary 1. From (3) in Lemma 1 and using fx(α) = dFx(α)
dx , we can

obtain the pdf of the model. The pdf of the CGHD is given as follows
for x ∈ (0,∞)

fx(α) =
1

c(α)
× (r1 + x− 1)r1+x−1(r2 + x− 1)r2+x−1

xx(q + x)q+x
(8)
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where c(α) is the normalization factor as in (4).

Remark 1. We call (3) as CGHD. Its pdf is written in the form (8).

Corollary 2. From (3) and (4) it is possible to propose the asymp-
totic as x −→∞ of the function Fx(α) tail. So, we have when x −→∞

1− Fx(α) = 1
c(α) ×

∫∞
x

(t+r1−1)t+r1−1 (t+r2−1)t+r2−1(1+
r1−1

t
)t(1+

r2−1
t

)t

tt (q+t)q+t 1t(1+ q
t
)t

dt

≈ 1
c(α) × exp(−(q + 2− r1 − r2))×

∫∞
x

(t+r1−1)t+r1−1 (t+r2−1)t+r2−1

tt (q+t)q+t dt

≈ 1
c(α) × exp(−(q + 2− r1 − r2))×

∫∞
x t−(q+2−r1−r2)dt

= 1
c(α) × exp(−(q + 2− r1 − r2))× 1

q+2−r1−r2x
−(q+2−r1−r2).

(9)
From (9) we conclude that the only tail 1− Fx(α), x ∈ R+ of distri-

bution function Fx(α) varies regularly with exponent (−ρ) such that

−ρ = −(q + 2− r1 − r2) < −1

and it turns out

1− Fx(α) = x−(q+2−r1−r2)L(x) (10)

of the tail the slowly varying component L(x) holds condition

lim
x−→∞

L(x) =
1

c(α)
exp(−(q + 2− r1 − r2))

1

q + 2− r1 − r2
. (11)

Now, based on (10) and (11) we see that 1−Fx(α) shows a constant
slowly varying component.

Corollary 3. The survival function of CGHD can be given in a practical
form as the following integral

Sx(α) = 1− Fx(α) =
1

c(α)
×
∫ ∞
x

(t+ r1 − 1)t+r1−1(t+ r2 − 1)t+r2−1

tt(q + t)q+t
dt



A CONTINUOUS ANALOG OF THE GENERALIZED ... 7

and hrf as

hx(α) = fx(α)
Sx(α)

=
( ∫∞

x
(t+r1−1)t+r1−1(t+r2−1)t+r2−1

tt(q+t)q+t dt
)−1

× (x+r1−1)x+r1−1(x+r2−1)x+r2−1

xx(q+x)q+x .

Remark 2. From (9) it can also be considered survival function and
hrf in more suitable forms approximately as x −→∞.

2.1 Figures

Here, we plot the cdf, hrf and pdf of CGHD for different possible values
of parameters r1, r2 and q in Figures 1 and 2.

From Figure 1, we see that the hrf is very flexible. From Figure 2 and
as we expected, we see that for the different parameter sets the density
functions are unimodal. Moreover, the values of ρ corresponding to the
selected three parameters are satisfied in the condition ρ > 1.
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Figure 1: Plots of the cdf and hrf of CGHD for different values of
parameters r1, r2 and q
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Figure 2: Plots of the pdf of CGHD for different values of parameters
r1, r2 and q

3 Estimation

In this section, we are going to obtain MLEs of the unknown parameters
of the model (8), but it is not possible to have the estimates analyti-
cally. Hence, numerical methods and simulation studies shall be used
to evaluate the MLEs. To do simulation studies we use Monte Carlo
method.

3.1 Simulation study

A simulation study is done to evaluate the performance of the maximum
likelihood method. We write a new program in R statistical software by
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using the Monte Carlo method. Samples of size n = 20, 50, 100, 200, 500
from (8) for selected values of parameters are generated. For each sam-
ple, the MLEs are derived and repeated in this process 1000 times. Then
the average of biases and the MSEs are computed. The results are pro-
posed in Tables 1 – 3. We consider different possible values for initial
values of the unknown parameters and as we see from Tables 1 – 3, the
estimated parameters have satisfactory values and by increasing sample
sizes the biases and MSEs decrease.

Note 1. To the best of our knowledge, it has not been proposed any
closed form for the cdf of the model (8) and hence we can not generate
data based on the cdf. To overcome this difficulty, we use Monte Carlo
method.

Note 2. In simulation studies, we see that when q − r1 − r2 is small,
the results are better. On the other hand, a small value of q − r1 − r2
causes smaller biases and MSEs (see Tables 1–3).
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Table 1: The biases and MSEs of the MLEs for the simulated data

n r1 r2 q bias (r1) bias (r2) bias (q) mse (r1) mse (r2) mse (q)

20 0.5 1 1.7 0.0816 -0.2133 -0.0418 0.1946 0.2638 0.1694
50 0.5 1 1.7 0.0617 -0.1773 -0.0525 0.1628 0.2156 0.0892

100 0.5 1 1.7 0.0605 -0.1373 -0.0481 0.1405 0.1747 0.0524
200 0.5 1 1.7 0.0699 -0.0869 -0.0286 0.1214 0.1473 0.0294
500 0.5 1 1.7 0.0841 -0.0590 -0.0142 0.1023 0.1341 0.0144

20 0.5 1 2 0.1867 -0.0722 0.0026 0.3244 0.3352 0.2289
50 0.5 1 2 0.1468 -0.0543 -0.0218 0.2755 0.3038 0.1284

100 0.5 1 2 0.1334 -0.0050 -0.0184 0.2406 0.2670 0.0782
200 0.5 1 2 0.1175 0.0652 -0.0004 0.2055 0.2643 0.0468
500 0.5 1 2 0.1051 0.1114 0.0106 0.1726 0.2796 0.0247

20 0.5 2 2.7 0.3978 -0.7170 -0.0605 0.6400 1.0750 0.3316
50 0.5 2 2.7 0.3420 -0.6764 -0.0853 0.5383 0.9677 0.1898

100 0.5 2 2.7 0.3335 -0.6390 -0.0845 0.4917 0.8527 0.1235
200 0.5 2 2.7 0.3296 -0.5489 -0.0544 0.4314 0.7159 0.0727
500 0.5 2 2.7 0.3186 -0.5103 -0.0403 0.3619 0.6845 0.0424

20 0.5 2 3 0.5008 -0.5840 -0.0266 0.8751 1.0511 0.4114
50 0.5 2 3 0.4159 -0.5443 -0.0661 0.7265 0.9771 0.2464

100 0.5 2 3 0.4020 -0.5188 -0.0699 0.6624 0.8878 0.1644
200 0.5 2 3 0.3827 -0.4104 -0.0376 0.5794 0.7587 0.0992
500 0.5 2 3 0.3428 -0.3470 -0.0252 0.4648 0.7472 0.0588
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Table 2: The biases and MSEs of the MLEs for the simulated data

n r1 r2 q bias (r1) bias (r2) bias (q) mse (r1) mse (r2) mse (q)

20 0.1 0.5 1 0.2354 -0.0562 0.0783 0.1597 0.1410 0.1254
50 0.1 0.5 1 0.1860 -0.0576 0.0425 0.1199 0.1162 0.0642

100 0.1 0.5 1 0.1670 -0.0470 0.0287 0.1078 0.1096 0.0380
200 0.1 0.5 1 0.1241 -0.0184 0.0229 0.0734 0.1048 0.0235
500 0.1 0.5 1 0.0730 0.0203 0.0146 0.0430 0.1108 0.0104

20 0.1 0.5 1.5 0.3896 0.1614 0.1827 0.4036 0.3484 0.2618
50 0.1 0.5 1.5 0.2660 0.1423 0.1079 0.2579 0.3450 0.1410

100 0.1 0.5 1.5 0.2219 0.1243 0.0757 0.2156 0.3247 0.0880
200 0.1 0.5 15 0.1576 0.1170 0.0545 0.1479 0.3016 0.0534
500 0.1 0.5 1.5 0.0859 0.1236 0.0327 0.0793 0.2868 0.0228

20 0.1 0.5 2 0.5727 0.3786 0.2908 0.8170 0.7155 0.4599
50 0.1 0.5 2 0.3897 0.3234 0.1764 0.5184 0.7231 0.2583

100 0.1 0.5 2 0.3083 0.2812 0.1242 0.4024 0.6755 0.1654
200 0.1 0.5 2 0.2209 0.2550 0.0907 0.2914 0.6333 0.1021
500 0.1 0.5 2 0.1308 0.2215 0.0538 0.1843 0.5714 0.0444

20 0.1 0.5 2.5 0.7626 0.6105 0.3949 1.3536 1.2642 0.7103
50 0.1 0.5 2.5 0.5487 0.4938 0.2442 0.9361 1.1953 0.4101

100 0.1 0.5 2.5 0.4461 0.4206 0.1771 0.7487 1.0822 0.2718
200 0.1 0.5 2.5 0.3114 0.4138 0.1327 0.5312 1.1200 0.1741
500 0.1 0.5 2.5 0.1877 0.3587 0.0818 0.3593 1.0368 0.0783



12 D. FARBOD, A. IRANMANESH AND M. BASIRAT

Table 3: The biases and MSEs of the MLEs for the simulated data

n r1 r2 q bias (r1) bias (r2) bias (q) mse (r1) mse (r2) mse (q)

20 0.5 1 2.5 0.3653 0.1435 0.0699 0.6326 0.5844 0.3632
50 0.5 1 2.5 0.2875 0.1461 0.0249 0.5382 0.5458 0.2126

100 0.5 1 2.5 0.2678 0.1683 0.0186 0.4884 0.5233 0.1407
200 0.5 1 2.5 0.2456 0.2492 0.0373 0.4590 0.5890 0.0878
500 0.5 1 2.5 0.1726 0.3381 0.0408 0.3486 0.7103 0.0494

20 0.5 1 3 0.5544 0.3764 0.1402 1.0747 1.0035 0.5312
50 0.5 1 3 0.4310 0.3421 0.0673 0.8720 0.9255 0.3154

100 0.5 1 3 0.3935 0.3609 0.0520 0.7947 0.9039 0.2188
200 0.5 1 3 0.3537 0.4288 0.0653 0.7411 1.0226 0.1466
500 0.5 1 3 0.2614 0.5301 0.0662 0.5910 1.2683 0.0848

20 0.5 1 3 0.7520 0.5836 0.2087 1.6276 1.4618 0.7155
50 0.5 1 3 0.5867 0.5308 0.1062 1.3279 1.3921 0.4309

100 0.5 1 3 0.5574 0.5102 0.0782 1.2729 1.3445 0.3110
200 0.5 1 3 0.4995 0.6090 0.0957 1.1670 1.5675 0.2158
500 0.5 1 3 0.3683 0.7135 0.0885 0.9139 1.9538 0.1323

20 0.5 1 4 0.9575 0.7622 0.2654 2.2882 2.0179 0.9206
50 0.5 1 4 0.7530 0.7016 0.1398 1.8988 1.9271 0.5653

100 0.5 1 4 0.6897 0.6925 0.1016 1.7075 1.9231 0.4134
200 0.5 1 4 0.6582 0.7512 0.1172 1.6907 2.1209 0.2977
500 0.5 1 4 0.5201 0.8451 0.1088 1.4182 2.5770 0.1914

In Figure 3 we show the pdf of CGHD (8) for true values of pa-
rameters and estimated parameters. This Figure confirms the accuracy
of the simulation calculations. Meanwhile, simulation observations are
satisfied with the variation of the value of regular variation ρ, at which
is (negative) exponent of the pdf.

4 Conclusion

In the present paper, by dediscretization method we have introduced
a new three-parameter continuous distribution so-called CGHD. Some
statistical inferences for this continuous distribution were considered.
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Figure 3: Plots of the pdf of CGHD (8) for true values of parameters
(black) and estimated parameters (blue for n = 20 and red for n = 500)

Using the Monte Carlo method we have done simulation studies to obtain
biases and MSEs of the unknown parameters. It was seen that our
suggested method works well and the numerical results are acceptable.
For the model CGHD, some figures of the pdf, cdf and hrf for different
values of parameters have been presented. All computations have been
done by R statistical software (version 4.0.3).

Future work. In this paper, using dediscretization method we intro-
duced a new continuous distribution. As future studies, real applications
of the proposed model (8) may be considered. Moreover, using the model
(8) and discretization method (the reverse to dediscretization procedure
introduced by Astola et al. [4, 5]), we are able to construct some new
discrete distributions for the needs of biosystems.

Acknowledgement. The authors would like to thank the anonymous
referees for their helpful comments.
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