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Abstract. A numerical technique based on hybrid of radial basis
functions including Guassians (GAs) and Multiquadrics (MQs) is pro-
posed to obtain the solution of nonlinear Fredholm integral equations.
Zeros of the shifted Legendre polynomials are used as the collocation
points. The integral involved in the formulation of the problems are ap-
proximated based on Legendre-Gauss-Lobatto integration rule. Some
numerical examples illustrate the accuracy and validity of the proposed
method.
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1. Introduction

In recent decades, the meshless methods have been extensivly used to
find the approximate solution of various types of linear and nonlinear
equations [1]. A meshless method does not require a structured grid
and only make use of a scattered set of collocation points regardless of
the connectivity information between the collocation points. The radial
basis functions (RBFs) method was known as a powerful tool for the
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scattered data interpolation problem. The main advantage of numeri-
cal methods which use RBF's is meshless characteristic of these methods.
All of the radial basis functions have global support, and in fact many of
them, such as MQs, do not even have isolated zeros [2-4]. RBF's can be
compactly and globally supported, infinitely differentiable, and contain
a free parameter c called the shape parameter [3-5]. These functions can
be used to approximate the solution of integral equations. Parand et al.
[6] used a collocation method based on radial basis functions to obtain
the solution of nonlinear Volterra-Fredholm-Hammerstein integral equa-
tions.

In this paper, we use a hybrid of GAs and MQs, which is called HMGFs,
to approximate the solution of nonlinear Fredholm integral equations.
MQs was ranked as the best based on its accuracy, visual aspects, sen-
sitivity to parameters, execution time, storage requirements, and ease
of implementation [6], and HMGF's give desired results. GAs and MQs
depend on shape parameter and the shape parameter is more important
in accuracy solution. In this paper, a powerful technique based on the
zeros of the shifted Legendre polynomials as the collocation points is
applied. Thus, we organized this paper as follows:

In Section 2, we briefly review of radial basis functions, HMGF's, Legendre-
Gauss-Lobatto nodes and weights and shape parameter c¢. In Section 3,
we implement the problem with the proposed method. Finally, we re-
port our numerical finding and demonstrate the accuracy of the proposed
method.

2. Radial Basis Functions

2.1 Definition

Let RT = {# € R, z > 0} be the non-negative half-line and let v :
Rt — R be a continuous function with 1 (0) > 0. Radial basis functions
on R? are functions of the form

Y|l = 2;l)), (1)

in which z,z; € RY, and ||.|| denotes the Euclidean distance between x
and x;s. If one chooses N points {xj}é-v:l in R then by custom
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N
F@) =Y Aolllz = zll), Aj € R, (2)
j=1
is called the radial basis functions as well [6].
The standard radial functions are categorized into two major classes,

Classl. Infinitely smooth RBFs.

These basis functions are infinitely differentiable and heavily depend
on the shape parameter ¢ e.g. Hardy multiquadric (MQ, v72 + ¢?),
Gaussian (GA, exp(—cr?)), inverse multiquadric (IMQ, (V72 4 ¢2)71)
and inverse quadric (IQ, (r? 4+ ¢?)~1).

Class 2. Infinitely smooth (except at centers) RBFs.

The basic functions of this category are not infinitely differentiable.
These basis functions are shape parameter free and have comparatively
less accuracy than the basis functions discussed in the Class 1. For exam-
ple, thin plate spline (r2"logr, n = 1,2,3,...), cubic 73 and linear r, etc.

2.2 Function approximation using HMGF's

A one dimensional function f(z) can be approximated by HMGFs as
follows

F(@) 2 Ntb(a) + pyyi(a)]) = CTe(x) = @7 (@)C,  (3)
j=1
where
Yiw) = ¢l — ) = \/lle — 2,12 + ¢,
v =yl —ayl) = el
() = [dil2) va(e) .. vn(@) ],
I(z) = [71(95) Y2 () W’N(l‘)] )
®(z) = [¥() T@) ],
A= [ M X aw T,
M = [Ml 25 BN MN}T,
c = [A M,
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where [.]7" denotes transpose, x is input and {)\j}j»v:l, {uj}é-v:l are the
set of constant coefficient of ¥;’s and +;’s, respectively. 1;’s and ~;’s are

the jth element of the n-vectors ¥(x) and I'(z), respectively.

2.3 Legendre-Gauss-Lobatto Nodes and Weights

Let Sy[—1, 1] denote the space of algebraic polynomials of degree < N,
let (Li)r>o0 denote the family of well-known Legendre polynomials of
order ¢ in this space as

2
(LiaLj) = méij’ (4)
where (.,.) represents the usual L?[—1,1] inner product and norm. Leg-
endre polynomials are orthogonal with respect to the weight function

w(z) =1 on the interval [—1, 1], and satisfy the following formula

Lo(x) =1, Li(x) ==,

20+ 1 7

L; =(——)xLi(z) — (——)Li—1, i=1,2,....
+1(2) = (S )eli@) — (g )Lioy, (5)
Then, let z;, j = 0,1,..., N denote the zeros of

(1 -2 L(x), (6)

with

ro=—-1<x1 <9< ... <N =1,
where L(z) is the first derivative of L(zx).
No explicit formula for the nodes z;’s, 1 < j < N —1 is known. However,
they are computed numerically using the existing subroutines [7,8].
Now, assume g € Son_1[—1,1], we have the Legendre-Gauss-Lobatto
quadrature rule as the following

1 N
[ a0 at =Y waty. (7)
J

=0
where the weights are given in [9]

2 1
NN +1) " (L))

wy; =
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2.4 Shape Parameter c

We have a sharp noise for a small change to the shape parameter c.
Thus, the problem of how to select a good value for the parameter c
appears in front of us. Several methods for selecting ¢ where suggested
in the literature . Hardy [10] used ¢ = 0.815d, where d = (1/N) sz\il d;
and d; is the distance between the ¢th node and its neighbour node. d
is replaced by D/ V/N, where D is the diameter of the minimal circle
enclosing all supporting points and suggested to use ¢ = 1.25 (D/V/'N),
[11]. Up to now, optimization of shape parameter and its distribution
are still under research (see [6] and references in it). We can say the
interval of stability for any problem is difference which is observed in
numerical examples.

3. Problem Statement

Consider a nonlinear Fredholm integral equations as follows:

1
F@) = g(z) + /\/0 k(G f(1) d, 0<z <1, (8)

where ) is constant and g(z) and the kernel k(z,t) are known functions
assumed to have nth derivatives on the interval 0 <z <land 0 <t < 1.
G(t, f(t)) = F(f(t)), where F(f(t)) is given as a continuous function
which is nonlinear with respect to f(¢). In this paper, we propose a
meshless collocation method based on HMGFs to obtain the solution of
nonlinear Fredholm integral equations given in Eq. (8), Using Eq. (3),
it yields

&7(2)C = g(z) + A/l k(2 DG ®T(N)C) dt, 0< 2 <1 (9)
0

Now, we collocate Eq. (9) at points {x;}}¥, as the zeros of Legendre
polynomials

&7 (2,)C = g(x;) + )\/1 k(x;, t)G(t,®T(#)C) dt, 0 <z <1. (10)
0
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We first transform the integral over [0, 1] into the integral over [—1,1]
by using the following transformations,

n=2t—1, t €[0,1]. (11)

Let
H(zi,t) = k(x;,t)G(t, T (1)), (12)

by substituting Eq. (12) in Eq. (10), we get

1
¥ @)C=gw)+ 5 [ Hewg+n)dn  (13)

By using the Legendre-Gauss-Lobatto integration rule, we can rewrite
Eq. (13) as follows

A 1 ,
®"(2,)C = g(a;) + o) > wi;H(xs, S +1) i=1... N (14)
=0

Eq. (14) generates a system of 2N equations and 2N unknowns which
can be solved by MATLAB software for the constant coefficients {); };VZI
and {uj}é\]:l, respectively.

4. Numerical Examples

In order to illustrate the performance of the proposed method to obtain
the numerical solution of IEs and justify the accuracy and efficiency of
the proposed method in this paper, we consider absolute error between
the exact solution and the presented solution defined as

e(z) = ly(x) —y(z)], = €[0,1], (15)

where y(x) is exact and g(z) is approximate solution, respectively. The
obtained errors of examples listed in Tables 1 and 2 for different values
of shape parameter, where x;’s are the zeros of the shifted Legendre
polynomials.
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The Maximum errors of the proposed method compared with the method
in [12] which were calculated using three RBFs, are considered as follows

E; = max{|y(z) — gi(x)| :x €[0,1]}, i=1,2,3.

In addition, Maximum errors for Example 4.2 are listed in Table 4 which
are calculated in zeros of shifted Legendre polynomials of degree 10. All
the computations associated with the examples were performed using

MATLAB on a PC.

Example 4.1. Consider a nonlinear integral equation given in [12,13]

1
y(z) = sinh(z) — % + %Cosh(l) sinh(1) — /0 y2(x) dz,

where the exact solution is y(z) = sinh(z).

Example 4.2. Consider a nonlinear integral equation given in [14]

1
y(z) = sin(mx) + ;/0 cos(mx) sin(mt) (y(t))? dt,

where the exact solution is y(z) = sin(nx)

- 20% V391 cos(ma).

5. Conclusion

In this paper, we applied an approximation technique to solve the non-
linear Fredholm integral equations. This method is based on the collo-
cation method and the hybrid of radial basis functions including MQs
and GAs, which is called HMGFs. We applied powerful search tech-
nique and obtained the best value of ¢ in any example. As, it is shown
in Tables, the numerical results which were obtained by HMGFs have
more accuracy than those of MQs and GAs. The interval of stability
for ¢ is [0,2] and Table 4 showed that the Maximum error of HMGF's
is less than those of MQs and GAs. Choosing the parameter shape is a
fundamental point to calculate less errors. Therefore, the comparison of
numerical results with the exact solution is shown the good reliability
and efficiency of HMGF's method.
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Table 1: Errors for Examples 4.1 and 4.2 with N = 5.

Examplel, ¢ =1 Example 2, ¢ = 0.1

€GA eMQ €EHMGF €GA eMQ €EHMGF

0.0130 1.9556E-3 1.2947E-3  1.2556E-9 1.0212E-3  4.8898E-2 8.2192E-5
0.0675 7.0164E-4 4.7476E-4 1.2557E-9 8.7940E-4 1.8901E-2 8.0407E-5
0.1603 1.0355E-3  7.2488E-4  1.2556E-9 9.5286E-4  2.1450E-2 7.2038E-5
0.2833 6.9573E-4  5.0509E-4  1.2557E-9 3.8334E-5 1.1574E-3 5.1750E-5
0.4256 7.7640E-4 5.7948E-4  1.2556E-9 1.1857E-4  7.5407E-3 1.9059E-5
0.5744 7.4096E-4  5.5922E-4  1.2557E-9 1.7580E-5 8.6619E-3 1.9065E-5
0.7167 6.0739E-4 4.5607E-4  1.2556E-9 3.0791E-4 1.0653E-3 5.1775E-5
0.8397 8.3748E-4  6.1987E-4  1.2557E-9 1.5347E-4  2.1684E-2 7.2034E-5
0.9325 5.3584E-4  3.9066E-4  1.2557E-9 1.8983E-4 1.8692E-2 8.0401E-5
0.9870 1.4445E-3 1.0428E-3  1.2557E-9 1.1492E-3  5.1168E-2 8.2164E-5

Table 2: Errors for Examples 4.1 and 4.2 with N = 10.

Examplel Example2
T c=1.7 c=0.5 c=1.7
0.0130 9.4325E-1 3.7009E-2 3.2875E-2
0.0675 3.3012E-1 3.1299E-2 2.7752E-2
0.1603 3.3012E-1 3.1299E-2 2.7752E-2
0.2833 3.5868E-1 2.1991E-2 2.1723E-2
0.4256 3.5868E-1 2.1991E-2 2.1723E-2
0.5744 4.0346E-1 2.7479E-2 3.0981E-2
0.7167 4.0346E-1 2.7479E-2 3.0981E-2
0.8397 4.4662E-1 3.7332E-2 4.1465E-2
0.9325 4.4662E-1 5.8385E-2 2.2518E-2
0.9870 4.7418E-1 1.6997E-1 1.6584E-1

Table 3: Muximum errors for Example 4.1, using HMGF method and the method in [12] with N = 5.

HMGF method Method in [12]

c=1 c=1.9 By ¢r(x) = el Ey: ¢o(z) = e%z Es: ¢3(x) =
1.255722E-9 1.157696E-9 6.0E-3 1.1E-5 2.0E-3

1
1+z2
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Table 4: Maximum errors for Example 4.2 with N = 5.

¢ Eca Eng Enncr
0.0 9.9026E-1 1.1718E-1 9.9026E-1
0.2 8.5630E-4 2.9839E-2 3.8879E-4
0.4 5.0159E-4 0.0167E-2 4.1647E-4
0.6 6.3526E-4 1.9737E-3 4.1668E-4
0.8 9.3549E-4 2.6729E-3 4.1714E-4
1.0 1.0637E-3 3.1340E-3 4.1717E-4
1.2 1.0403E-3 2.8694E-3 4.1588E-4
14 8.8347E-4 2.3882E-3 4.1700E-4
1.6 7.8687E-4 1.8846E-3 4.1703E-4
1.8 1.1987E-3 1.4261E-3 4.1695E-4
2.0 6.2430E-4 1.0299E-3 4.1698E-4
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