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Abstract. The concept of essential submodules is a well known con-
cept. In this paper we try to replace an arbitrary submodule of M ,
say T , instead of 0 in the definition of essential submodules. By this,
essential submodules are precisely {0}-essential submodules. For a sub-
module K of right R-module M , we have K ⊆ess M if and only if
(K : m) is annr(m)-essential right ideal of R, for each m ∈ M \ {0}.
Among other things, this generalization of essential submodules gives a
necessary and sufficient condition for M

T
being finitely co-generated.
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1. Introduction

Throughout this article, all rings are associative with identity and all
modules are unitary right modules. We know that the submodule K of
right R-module M is called essential, denoted by K ⊆ess M , provided
that for each submodule L of M , K

⋂
L = 0 implies that L = 0. The

right R-module M is called uniform provided that every non-zero sub-
module of M is an essential submodule. If K is a submodule of right
R-module M , then by Zorn’s Lemma, S = {L| L 6 M and K

⋂
L = 0}
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has a maximal element which is called the complement of K in M and
is denoted by Kc. For each m ∈ M , (K : m) = {r ∈ R| mr ∈ K}. In
Section 2, first, the essentiality with respect to a submodule is defined
and is shown, this concept is different from the concept of essentiality
(Example 2.9). After that, for a submodule T of right R-module M , the
relationship between essential submodules of M with respect to T and
essential right ideals of R with respect to (T : m), for each m ∈M \{0},
will be investigated (Theorem 2.7). Moreover, it will be answered, for a
submodule K of M , when is Kc the largest submodule of M which has
zero intersection with K?
In Section 3, for a submodule T of right R-moduleM , the intersection
of all submodules of M which containing T and also are essential with
respect to T will be investigated. All unexplained terminologies and basic
results on modules that are used in the sequel can be found in [3], [4]
and [5].

2. {}-essential submodules

The reader is reminded that a submodule K of right R-module M is
essential provided that K has non-zero intersection to every non-zero
submodule.

Definition 2.1. Let R be a ring and T be a proper submodule of right
R-module M . The submodule K of M is called T -essential provided that
K * T and for each submodule L of M , K

⋂
L ⊆ T implies that L ⊆ T .

In this case K is denoted by K ET M .

Proposition 2.2. For each m,n ∈ Z , mZ EnZ mZ + nZ.

Proof. Put (n,m) = d, [n,m] = l. Assume that kZ ⊆ mZ + nZ = dZ
such that mZ

⋂
kZ ⊆ nZ. Put (k,m) = g, [k,m] = e. It is clear that

nm = dl and km = ge. Since both d|k and d|m, then d|(k,m) = g.
On the other hand, since n|e and m|e, then l = [n,m]|e. Therefore d|g
and l|e imply that dl|ge. Thus nm|km and hence n|k which implies that
kZ ⊆ nZ. �
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At first glance, it seems that for submodules K and T (6= M) of M ,
K ET M if and only if K+T

T ⊆ess M . But it is not true, generally. For
this, we need some assertions.

Lemma 2.3. Let T ⊆ K ⊆ M be submodules of right R-module
M . Then K E TM if and only if k

T ⊆ess
M
T .

Proof. The verification is immediate. �

Proposition 2.4. Let K and T be submodules of right R-module M .
Then E TM implies that K+T

T ⊆ess
M
T .

Proof. Let A
T be a non-zero submodule of M

T such that A
T

⋂ K+T
T = 0.

Therefore K
⋂
A ⊆ T and hence the T -essentiality of K in M implies

that A ⊆ T , as desired. �

Definition 2.5. Let K be a submodule and T be a proper submodule of
right R-module M . A submodule K ′ of M is called T -complement to K
if K ′ is maximal with respect to the property that K

⋂
K ′ ⊆ T .

Proposition 2.6. Let C and S be submodules of right R-module M and
T = C

⋂
S. Then C is T -complement to S if and only if S+C

C ⊆ess
M
C .

Proof. Let S+C
C ⊆ess

M
C and D be a submodule of M such that C ⊆ D

and D
⋂
S ⊆ T . It is clear that D

C

⋂ (S+C)
c = 0M

C
because d+C = s+C,

for d ∈ D and s ∈ S, implies that s ∈ D
⋂
S ⊆ T = C

⋂
S ⊆ C.

The essentiality S+C
C in M

C implies that C = D. Conversely, assume
that D is a submodule of M containing C such that D

C

⋂ S+C
C = 0. If

x ∈ D
⋂
S, then x + C ∈ D

C

⋂ S+C
C and hence x + C = C. Therefore

D
⋂
S ⊆ C

⋂
S = T . By assumption, D = C. �

By the above definition, it is easy to see thatK is an essential submodule
of right R-module M if and only if K E{0} M . It is well known that
if K ⊆ess M , then (K : m) ⊆ess R, for each m ∈ M . But the converse
is not true. For an example K = {0̄, 2̄, 4̄} is not essential in Z6 as a
Z-module but for each x̄ ∈ Z6, (K : x̄) ⊆ess Z because Z is uniform.
Now consider the following theorem.
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Theorem 2.7. Let M be an R-module and K,T be submodules of M .
The following assertions are equivalent

1. K∆TM ;

2. For each m ∈M \ T , there exists r ∈ R such that mr ∈ K \ T .

3. (K : m) E(T :m) R, for each m ∈M \ T .

Proof. 1⇒ 2 Let m ∈M \T . Since K∆TM , then K
⋂
mR 6⊆ T . Hence

there exists r ∈ R such that mr ∈ K \ T .
2⇒1 By hypotheses, K 6⊆ T . Assume that L is a submodule of M such
that K

⋂
L ⊆ T . If L 6⊆ T , there exists a ∈ L \T . By assumption, there

is an r ∈ R such that ar ∈ K \ T . On the other hand ar ∈ K
⋂
L ⊆ T ,

a contradiction.
1⇒3 Assume that K∆TM and m ∈ M \ T . By 2, there exists r ∈ R

such that mr ∈ K \ T or equivalently (K : m) 6⊆ (T : m). Suppose that
I is a right ideal of R such that (K : m)

⋂
I ⊆ (T : m). It is clear that

K
⋂
mI ⊆ T and hence mI ⊆ T because K∆TM . Now, mI ⊆ T implies

that I ⊆ (T : m), as desired.
3⇒ 1 Suppose that L is a submodule of M such that K

⋂
L ⊆ T . If

L 6⊆ T , there exists x ∈ L \ T . By hypotheses, there exists r ∈ R such
that xr ∈ K \ T . It is a contradiction because xr ∈ K

⋂
L ⊆ T . �

Proposition 2.8. Let {Ni}i∈I , {Mi}i∈I and T be submodules of right
R-module M such that Ni ET Mi for every i ∈ I. Then ⊕i∈INi E⊕i∈IT

⊕Mi.

Proof. By Theorem 2.7, assume that {mi}i∈I ∈ ⊕Mi\⊕T . Since Ni ET

Mi for every i ∈ I, there exists an r ∈ R such that {mir} ∈ ⊕Ni \ ⊕T ,
as desired. �

The following example shows that the converse of Proposition 2.4, is not
true, generally.

Example 2.9. It is easy to check that 6Z+12Z
12Z = 6Z

12Z is an essential Z-
submodule of Z

12Z , but 6Z is not 12Z-essential Z-submodule of Z. To the
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contrary, assume that 6Z E12Z Z. By Theorem 2.7, for 8 ∈ Z\12Z there
exists an n ∈ Z such that 8n ∈ 6Z. Therefore 3|n and hence 8n ∈ 12Z,
a contradiction.

Corollary 2.10. Let K be a submodule of right R-module M . Then
N ⊆ess M if and only if (K : m) Eannr(m) R, for each m ∈M \ {0}.

Proof. It is clear that for each m ∈ M , annr(m) = ({0} : m). By
Theorem 2.7, we have N ⊆ess M if and only if N E{0} M if and only if
(N : m) E({0}:m) R, for each m ∈M . �

Let R be a ring. An element x ∈ R is said to be regular provided that
annr(x) = annl(x) = 0 and the set of all regular elements of R is denoted
by CR. For a right R-module M , put T(M) = {m ∈M | annr(m)

⋂
CR 6=

∅}. If T(M) = 0, M is called torsion free and if T(M) = M , M is called
torsion R-module. See [4, §10, Exercise 19].

Corollary 2.11. Let R be a domain, M be a right R-module and K be
a non-zero submodule of M . Then K is an essential submodule of M if
and only if M

K is a torsion R-module.

Proof. For each 0 6= m ∈M , we have annr(m) = 0 because CR = R\{0}
and

T(M) = {x ∈M | ann(x)
⋂

(R\{0}) 6= ∅} = {x ∈M | annr(x) 6= 0} = {0}.

By Theorem 2.7, K ⊆ess M if and only if K E{0} M if and only if
(K : m) 6⊆ (0 : m),∀m ∈ M \ {0} if and only if (K : m) 6⊆ annr(m) =
0,∀m ∈M \ {0} if and only if M

K is a torsion R-module. �

Proposition 2.12. Let K,L and T be submodules of right R- module.
Then
1. If K and L are T -essential submodules of M , then K

⋂
L is T -

essential too.
2. Let K ⊆ L ⊆M . Then K ET M if and only if K ET L and L ET M .

Proof. The verification is immediate. �

Theorem 2.13. Let T1 6 K1 6 M1 6 M and T2 6 K2 6 M2 6 M
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such that M1
⋂
M2 = T1

⋂
T2. Then, K1 +K2 E(T1+T2) M1 +M2 if and

only if K1 ET1 M1 and K2 ET2 M2.

Proof. Assume that K1 +K2 E(T1+T2) M1 +M2 and L1 is a submodule
of M1 such that K1

⋂
L1 ⊆ T1. It is clear that (K1 + K2)

⋂
L1 ⊆

T1 + T2(∵ If x ∈ K1, y ∈ K2 and z ∈ L1 such that x + y = z, then
x − z = −y ∈ M1

⋂
M2 = T1

⋂
T2. Hence y ∈ T1 ⊆ K1. Therefore

z = x + y ∈ K1
⋂
L1 ⊆ T1. In the other hand x − z ∈ T1 implies that

x ∈ T1. Thus x+ y ∈ T1 + T2). By hypothesis, L1 ⊆ T1 + T2. It implies
that L1 ⊆ T1. Similarly, we can show that K2 ET2 M2. Conversely,
suppose that x + y ∈ M1 + M2 \ T1 + T2, where x ∈ M1 and y ∈ M2.
Either x 6∈ T1 or y 6∈ T2. Assume that x ∈ M1 \ T1. There exists
r ∈ R such that xr ∈ K1 \T1. If yr ∈ K2, then the proof is completed(∵
(x+y)r ∈ K1+K2\T1+T2). If yr ∈M2\K2 ⊆M2\T2, then there exists
s ∈ R such that yrs ∈ K2 \T2. Hence (x+ y)rs ∈ K1 +K2 \T1 +T2. �

Theorem 2.14. Let M and N be R-modules, T 6 N and f ∈ HomR(M,N)
such that Imf * T . Then Imf ET N if and only if, for each homomor-
phism h, if kerh

⋂
Imf ⊆ T , then kerh ⊆ T .

Proof. The “only if ” part is clear. Conversely, let K be a submodule of
N such that Imf

⋂
K ⊆ T . Define the map h : (Imf +K) −→ M

f−1(T )
,

with h(f(m) + k) = m + f−1(T ), for each m ∈ M and k ∈ K. It is
clear that h is an R-homomorphism such that kerh

⋂
Imf ⊆ T . By

hypotheses, K ⊆ kerh ⊆ T . �

Lemma 2.15. Let M and N be right R-modules, T and K be submod-
ules of N and f ∈ HomR(M,N). If ET N , then f−1(K) Ef−1(T ) M .

Proof. Assume that L be a submodule of M such that f−1(K)
⋂
L ⊆

f−1(T ). It is clear that K
⋂
f(L) ⊆ T and hence f(L) ⊆ T . Thus

L ⊆ f−1(T ), as desired. �

Corollary 2.16. Let M and N be right R-modules, K be a submodule of
N and f ∈ HomR(M,N). If K ⊆ess N , then f−1(K) Eker f M . More-
over, if f is an epimorphism, then K ⊆ess N if and only if f−1(K) Eker f

M .
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Proof. The first part is immediate consequence of Lemma 2.15, because
f−1(0) = ker f . Now suppose that L be a submodule of N such that
K

⋂
L = 0. It is obvious that f−1(K)

⋂
f−1(L) ⊆ ker f . Thus f−1(L) ⊆

ker f since f−1(K) Eker f M . If y ∈ L, there exists x ∈ M such that
y = f(x). Therefore x ∈ f−1(L) ⊆ ker f and hence y = f(x) = 0. �

Lemma 2.17. Let K and T be submodules of right R-module M . If
K ET M , then Kc ⊆ T . Moreover, if K ET M and K

⋂
T = 0, then

Kc = T .

Proof. The verification is immediate. �

The following proposition shows that when the complement of the sub-
module K of a right R-module M , is the largest submodule which has
zero intersection with K.

Proposition 2.18. Let K be a submodule of right R-module M . The
following assertions are equivalent.

1. K is Kc-essential in M ;

2. For each submodule N of M , K
⋂
N = 0 implies that N ⊆ Kc;

3. For each x ∈M \Kc there exists r ∈ R such that 0 6= xr ∈ K.

Proof. 1⇒2 It is clear by definition.
1⇒3 By Theorem 2.7, For each x ∈M \Kc there exists r ∈ R such that
xr ∈ K \Kc = K \ {0}.
2⇒1 Let N be a submodule of M such that K

⋂
N ⊆ Kc. Then

K
⋂
N ⊆ K

⋂
Kc = {0} and by hypotheses N ⊆ Kc.

3⇒1 it is clear by Theorem 2.7. �

As an application of the Proposition 2.18, we have the following theorem.

Theorem 2.19. Let R be a commutative ring and M = ⊕i∈FMi be
an R-module, where Mi’s are non-isomorphic simple submodules of M
and F = {1, 2, · · · , n}. Then, for each I ⊆ F , ⊕i∈IMi ET M , where
T = ⊕j∈F\IMj
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Proof. Let K be a submodule of M such that (⊕i∈IMi)
⋂
K = 0. We

must show that K ⊆ T . By [1, Lemma 9.2], there exists a subset J ⊆ F

such that M = (⊕i∈IMi)⊕K ⊕ (⊕j∈JMj). Hence

ann(K) = ann(⊕t∈F\(I∪J)Mt) ⊇ ann(⊕t∈F\IMt) =
⋂

t∈F\I

ann(Mt).

In the other hand for each disjoint i, j ∈ F \ I, ann(Mi) and ann(Mj)
are coprime and hence⋂

t∈F\I

ann(Mt) =
∏
t∈F\I

ann(Mt),

by [2, Proposition 1.10]. Therefore for each x ∈ K, x = m1 +m2 + · · ·+
mr, where 0 6= mi ∈Mji . Hence∏

t∈F\I

ann(Mt) ⊆ ann(x) ⊆ ann(mi) (∀i),

therefore there exists ti ∈ F \ I such that ann(Mti) ⊆ ann(mi) =
ann(Mji). By maximality of ann(Mt)’s we have ann(Mti) = ann(Mji).
Thus Mti

∼= Mji and hence Mti = Mji . Therefore x ∈ ⊕i∈F\IMi, as
desired. �

3. The {}-Socle

In this section, for a proper submodule T of right R-moduleM , the inter-
section of all submodules of M which containing T and simultaneously
are T -essential is investigated.

Lemma 3.1. Let K and T (6= M) be submodules of right R-module M
such that T ⊆ K. Then there exists a submodule K ′ of M such that
K +K ′ ET M and K+K′

T = K
T ⊕

K′+T
T .

Proof. Define S = {N | N is a submodule of M and N
⋂
K ⊆ T}. By

Zorn’s Lemma, S has a maximal element, say K ′. Assume that L is a
submodule of M such that (K +K ′)

⋂
L ⊆ T . We clime that K

⋂
(K ′ +

L) ⊆ T . For, suppose that x ∈ K, y ∈ K ′, and z ∈ L such that
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x = y+ z. Thus x− y = z ∈ (K +K ′)
⋂
L ⊆ T ⊆ K. Hence y = x− z ∈

K
⋂
K ′ ⊆ T and hence x ∈ T , as desired. The maximality of K ′ in S

implies that L ⊆ K ′ and hence L ⊆ T . For the second part it is enough
to show that K

T

⋂ K′+T
T = 0. Assume that x ∈ K and y ∈ K ′ such that

x + T = y + T . Thus x − y ∈ T ⊆ K and hence y ∈ K
⋂
K ′ ⊆ T , as

desired. �

Definition 3.2. Let K and T be submodules of right R-module M .
K is called T -simple submodule of M provided that K+T

T is a simple
R-module. Moreover,

SocT (M) =
∑

{K : K is a T − simple submodule of M}.

Lemma 3.3. Let T be a submodule of right R-module M and

ST (M) =
⋂
{L : T ⊆ L and L ET M}.

Then ST (M)
T is a semisimple right R-module.

Proof. Let H
T be a submodule of ST (M)

T . By Lemma 3.1, there exists
a submodule H ′ of M such that H + H ′ ET M . Then H

T ⊆ ST (M)
T ⊆

H+H′

T = H
T ⊕

H′+T
T . Then

ST (M)
T

=
ST (M)
T

⋂
(
H

T
⊕ H ′ + T

T
) =

H

T
⊕ (

ST (M)
T

⋂ H ′ + T

T
). �

Proposition 3.4. Let T be a submodule of right R-module M . Then

SocT (M) =
⋂
{L : T ⊆ L and L ET M}.

Proof. Let S be a T -simple submodule of M and L be a submodule
of M containing T such that L ET M . Since (S

⋂
L)+T
T is a submodule

of S+T
T , then either (S

⋂
L) + T = T or (S

⋂
L) + T = S + T . But

(S
⋂
L) + T = T and L ET M imply that S ⊆ T , a contradiction. Thus

(S
⋂
L)+T = S+T . At the other hand L

⋂
(T +S) = T +(L

⋂
S) and



24 S. SAFAEEYAN AND N. SABOORI SHIRAZI

hence S + T ⊆ L. Therefore S ⊆ L and hence SocT (M) ⊆
⋂
{L : T ⊆

L and L ET M} = ST (M). In the other hand by Lemma 3.3,

ST (M)
T

=
∑
i∈I

Si
T

=
∑

i∈I Si

T
,

where Si
T ’s are simple R-modules. Then for each i ∈ I, Si is a T -simple

submodule of M and hence ST (M) ⊆ SocT (M). �

The following theorem gives a necessary and sufficient condition under
which M

T is finitely co-generated.

Theorem 3.5. Let T be a submodule of right R-module M . Then M
T is

finitely co-generated if and only if SocT (M)
T is finitely co-generated and

SocT (M) ET M .

Proof. Let {Li
T }i∈I be a family of submodules of MT such that

⋂
i∈I

Li
T =

0. Then
⋂
i∈I

Li
⋂

SocT (M)
T = 0. since SocT (M)

T is finitely co-generated,
then

⋂
i∈I0

Li
⋂

SocT (M)
T = 0, for some finite subset I0 of I. Therefore

(∩i∈I0Li) ∩ SocT (M) ⊆ T . Since SocT (M) ET M , then (∩i∈I0Li) ⊆ T

or equivalently ∩i∈I0 Li
T = 0. Conversely, assume that K be a submodule

of M such that SocT (M)∩K ⊆ T . By Proposition 3.4, we have (
⋂
{L :

T ⊆ L and L ET M}) ∩K ⊆ T . Since M
T is finitely co-generated, then

so (∩ni=1Li) ∩K ⊆ T for finite number Li ∈ {L : T ⊆ L and L ET M}.
By Proposition 2.12, ∩ni=1Li ET M and hence K ⊆ T . �

Corollary 3.6. Let T be a submodule of right R-module M . Then M
T

is finitely co-generated if and only if SocT (M)
T is finitely generated and

SocT (M) ET M .

Proof. By [1, Corllary 10.16], finitely co-generated semisimpleR-modules
are precisely finitely generated semisimple R-modules. Now by Lemma
3.3 and Proposition 3.4, SocT (M)

T is semisimple, hence SocT (M)
T is finitely

co-generated if and only if it is finitely generated. �

Definition 3.7. Let T be a proper submodule of right R-module M . M
is called T -uniform provided that for each submodule K of M , if K 6⊆ T ,
then K ET M .
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Lemma 3.8. Let T be a proper submodule of right R-module M . Then
M is T -uniform if and only if for each two submodules K and N of M ,
K

⋂
N ⊆ T implies that either K ⊆ T or N ⊆ T .

Proof. Let K and N be two submodules of M such that K
⋂
N ⊆ T

and K 6⊆ T . By hypotheses, K ET M and hence L ⊆ T . Conversely,
assume that K and N are submodules of M such that K 6⊆ T and
K

⋂
L ⊆ T , Then L ⊆ T , as desired. �

The right R-module M is said to be uniserial provided that the lattice
of all submodules of M is totally ordered with inclusion.

Proposition 3.9. The right R-module M is uniserial if and only if for
each proper submodule T , M is T -uniform.

Proof. Let T be proper submodule of M . Assume that N and K are
submodules ofM such thatK

⋂
N ⊆ T . SinceM is uniserial, eitherN ⊆

K or K ⊆ N . Hence either K
⋂
N = K or K

⋂
N = N . Conversely,

assume that N and K are submodules of M such that K 6⊆ N . Hence
K 6⊆ (K

⋂
N) and by assumption K E(K∩N) M . On the other hand

K
⋂
N ⊆ K

⋂
N . Thus N ⊆ K

⋂
N and hence N ⊆ K. �

Note that if R-module M is T -uniform, then M
T is a uniform R-module

but the converse is not true. For instance, assume that R = Z2 and
M = R ⊕ R as an R-module. We know that T = {(x, x)| x ∈ R} is a
maximal submodule of M , hence M

T is uniform. But R ⊕ 0 6⊆ T and
R⊕ 0 is not T -essential submodule of M because (0, 1) ∈M \ T and for
each r ∈ R, (0, 1)r 6∈ (R⊕ 0) \ T .

Example 3.10. 1. UniformR-modules are precisely 0-uniformR-module.
2. If P is a prime ideal of a commutative ring R, then R is a P -uniform
R-module. Moreover, P is a prime ideal of R if and only if R is a P -
uniform R-module. Moreover, P is a semi-prime ideal of R if and only
if R

P is uniform and P is a semi-prime ideal of R.

Proposition 3.11. For each positive integer number n, Z
nZ is a uniform

Z-module if and only if Z is an nZ-uniform Z-module.
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Proof. The “if” part is always true. For the “only if” part, assume that
Z
nZ is a uniform Z-module. It is clear that there exist a positive integer
number k and a prime number p such that n = pk. Suppose that m ∈ Z
such that mZ 6⊆ nZ (or equivalently n 6 |m). If t ∈ Z \ nZ, then there
exist integer numbers 0 6 r, s < k and prime numbers p1, p2, · · · pa such
that

m = prpn1
1 pn2

2 ...pna
a and

t = pspm1
1 pm2

2 ...pma
a .

It is clear that there exists integer number b such that tb ∈ mZ\nZ and
by Lemma 2.7, proof is complete. �
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