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Abstract. This paper generalises the definition of an n-ary variable-
order of one variableα(t)-derivative of multi-variable vector-valued func-
tions. First, we develop the concepts in this new fractional vector cal-
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fundamental theorems (Chain Rule, Mean Value) on the n-ary variable-
order α(t)-derivative calculus are investigated.
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1 Introduction

The ”fractional calculus” (FC) has many applications in different fields
of science. ” Fractional differential equations” (FDE) are very important
in many sciences. For example, control theory of dynamical systems,
mechanics, biology, chemistry, engineering, and physics, using FDEs

Received: August 2021; Published: July 2022
∗Corresponding Author

1



2 A. DEHGHAN NEZHAD AND A. MOSLEMI GHADIKOLAEI

(see, for example, the works of H. Jafari et al. [5, 11, 17, 21, 9] and
references).

Recently many definitions of fractional derivatives (FDs) have been
presented by various researchers. There are several concepts of FDs,
such as Riemann-Liouville or Caputo definitions. Riemann-Liouville and
Caputo FDs satisfy the property that the FD is linear. But all of these
definitions do not satisfy the natural properties of the derivative. In
2014, a new definition of FDs was introduced by R. Khalil which is
the new definitions of all-natural properties of derivative that is called
conformable fractional derivative [16]. For a function f : [0,∞) −→ R,
the ”conformable fractional derivative” (CFD) of order α ∈ (0, 1] for f
at a ∈ [0,∞) is defined as follows

Dαf(a) = lim
h→0

f(a+ ha1−α)− f(a)

h
. (1)

If there is a CFD for α ∈ (0, 1] then we say f is α-differentiable. Accord-
ing to the definition CFD, if f is a α-differentiable at a ∈ [0,∞), then f
is is continuous at a. This FD is improved by Abdeljawad. Properties
such as chain rule, the Leibniz rule, Laplace transform, integration by
parts, and Taylor power are provided in[1]. Here are some theorems and
propositions of CFD.

Proposition 1.1. [16] Assume that α ∈ (0; 1] and f, g : [0;∞) −→ R is

two α-differentiable functions at a > 0. Then

I) Dα(λf + µg) = λDαf + µDαg ; each all λ, µ ∈ R.

II) Dα(xr) = rxr−α ; for all r ∈ R.

III) Dα(c) = 0 ; for all constant functions f(x) = c.

IV) Dα(fg) = fDαg + gDαf .

V) Dα(
f

g
) =

gDαf − fDαg

g2
.

VI) If f is differentiable, then f is α-differentiable at t and Dαf(a) =

a1−αf ′(a).

Proposition 1.2. [1] Suppose that f, g : [0;∞) −→ R is two α-differentiable
functions where α ∈ (0; 1]. Then g ◦ f is α-differentiable and for each
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a ̸= 0 and f(a) ̸= 0, the CFD of (g ◦ f) is equal to

Dα(g ◦ f)(a) = Dαg(f(a))Dαf(a)(f(a))α−1. (2)

Theorem 1.3. (Mean Value for CFD)[16] Assume that a > 0 and
given f : [a, b] −→ R be a function that satisfies
I) f is continuous on [a, b].
II) f is α-differentiable for α ∈ (0, 1).
Then, there exists c ∈ (a, b), such that

Dαf(c) = α.
f(b)− f(a)

bα − aα
. (3)

The ”conformable fractional derivative” (CFD) aims at extension
the usual derivative, gives a new solution for some FDE. For details,
see [4, 7, 8, 10, 14, 18]. The authors of [20] state that the conformable
interpretation of the derivatives gives a larger error than the fractional
framework in each case.

Definition 1.4. Suppose that f : R+ −→ R be a differentiable function.
The ”α(t)-generalized fractional derivative” (α(t)-GFD) for α(t) ∈ (0, ]
at pint a is defined by:

D
α(t)
δ f(a) = lim

h→0

∥f(a+ hδ(α(t), a)a1−α)− f(a)∥
∥h∥

where δ(α(t), a) is a function that may depend on α(t) and a.

Remark 1.5. As a consequence of the above definition, we have

D
α(t)
δ f(a) = δ(α(t), a)a1−α(t)D(t)f(a).

Definition 1.6. A differentiable function f : R+ −→ R is said to be

α(t)-GFD function over R+ if it exists D
α(t)
δ f(a) for all a ∈ R+ and

α(t) ∈ (0, 1].

Example 1.7. We now apply our definition to the following one-dimensional

α(t)-GFD equation of variable-order, D
α(t)
δ f(x) = 7(f(x))2x2. We men-

tion that when α(t) = t
2 ∈ (0, 1]. and δ(α(t), x) = x2 t

2 . One obtains the

classical equation x2 t
2x

1− t
2
df(x)
dx = 7(f(x))2x2. It is easy to check that

f(x) = −1
28
t2

x
t
2+C

for x ̸= 0 is a solution.
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Remark 1.8. In the following, we want to see the relation between
α(t)-GFD and the others definitions:
I) The FD of Khalil, Al Horani, Yousef and Sababheh in [16] is a par-
ticular case of α(t)-GFD where δ(α(t), x) = 1 and α(t) = α.
II) The FD of Anderson and Ulness in [12] is a particular case of α(t)-

GFD where δ(α(t), x) = (1−α(t))xα(t)f(x)+α(t)x1−α(t)Df

α(t)x1−α(t)−1 and α(t) = α.

II) The FD of Guebbai and Ghiat in [13] and Camrud in [7] are particular
cases of α(t)-GFD where δ(α(t), x) = (xDf

f )α(t)−1 and α(t) = α.

Given the recent applications of these fractional derivatives in indus-
try, the authors conclude that they can refine this theory by providing
a new definition. In the first step, the basic concepts and results are
presented. Further application of this new definition will be postponed
to later work.

2 The n-ary variable-order α(t)-derivative of a
multivariable vector-valued functions

The definitions provided so far have only been real value functions. In
2018 the N.Y. Gözütok et al. introduce CFD definition for the vec-
tor valued functions of several variables [12]. In this paper, we define
the n-ary variable-order α(t)-derivative of multi-variable vector-valued
functions. This definition have a many applications for fractional partial
equations α(t)-differential of several orders.

In this article, we will denote by Rn+
the set of a = (a1, ..., an) ∈ Rn

where ai > 0 for i = 1, ..., n. Also we write T = (0, 1] and defined
Tn = T× ...× T︸ ︷︷ ︸

n times

. Note that α(t) = (α1(t), ..., αn(t)) ∈ Tn such that

αi(t) ∈ T for i = 1, ..., n.
In this section, we define the new definition n-ary variable-order α(t)-
derivative of vector valued functions with several variables ((n, α(t)) −
V OD). In this definition, we consider the α(t) ∈ T for each variable of
the multi-variable vector-valued function f . In the particular case this
definition equivalent to the definition N.Y. Gözütok [12] and Z. Toghani

[20]. Let ℧ = (a1+h1δ(α1(t), a1)a
1−α1(t)
1 , ..., an+hnδ(αn(t), an)a

1−αn(t)
n ).
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Definition 2.1. Assume that f : Rn+ −→ Rm be a multi-variable
vector-valued function such that

f(x1, ..., xn) = (f1(x1, ..., xn), ..., fm(x1, ..., xn))

and α(t) ∈ Tn. Then the f is α(t)-differentiable at a ∈ Rn+
, if there is

a linear transformation L : Rn −→ Rm such that

lim
h→0

∥f(℧)− f(a1, ..., an)− L(h)∥
∥h∥

= 0

where h = (h1, ..., hn). The linear transformation L is denoted by
Dα

δ f(a) and called the CD of f of order α(t) ( α(t)-derivative of f)
at a.

Remark 2.2. I) For m = n = 1, Definition 2.1 equivalent to definition
R. Khalil of conformable fractional derivative in [16].
II) For α1 = ... = αn = α, Definition 2.1 equivalent to definition N.Y.
Gözütok of α-derivative of a vector-valued function in [12].

There is a uniqueness proposition here which is as follows:

Proposition 2.3. Let f : Rn+ → Rm be a multi-variable vector-valued
function. If f is α(t)-differentiable at a ∈ Rn+

where α(t) ∈ Tn, then
there is a unique linear transformation L : Rn → Rm such that

lim
h→0

∥f(℧)− f(a1, ..., an)− L(h)∥
∥h∥

= 0.

Proof. Assume that K : Rn −→ Rm satisfies

lim
h→0

∥f(℧)− f(a1, ..., an)−K(h)∥
∥h∥

= 0.

Then,

lim
h→0

∥L(h)−K(h)∥
∥h∥

≤ lim
h→0

∥L(h)− f(℧)− f(a)∥
∥h∥
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+ lim
h→0

∥f(℧)− f(a)−K(h)∥
∥h∥

= 0.

If x ∈ Rn, then tx → 0 as t → 0. Therefore for x ̸= 0 we see that

0 = lim
t→0

∥L(tx)−K(tx)∥
∥tx∥

=
∥L(x)−K(x)∥

∥x∥
.

Hence L(x) = K(x). □

Example 2.4. Consider the function f defined by f(x, y) = (ex, cos y)
and the point (a, b) ∈ R2 such that a, b > 0, α(t) = (α1(t), α2(t)) ∈ T2,
δ(α1(t), x) = δ(α2(t), y) = 1 and h = (h1, h2). Then Dα(t)f(a, b) = L
satisfies L(x, y) = (xa1−α1(t)ea, ya1−α2(t) cos b).
We prove this, note that

lim
h→0

∥f(a+ h1a
1−α1(t), b+ h2b

1−α2(t))− f(a, b)− L(h1, h2)∥
∥h∥

= lim
h→0

∥(ea+h1a1−α1(t) , cos(b+ h2b
1−α2(t)))− (ea, cos b)− (L(h1, h2))∥

∥h∥

= lim
(h1,h2)→0

∥
(
E1

h1
,
E2

h2

)
∥, (4)

where

E1 = ea+h1a1−α1(t) − (1 + h1a
1−α1(t))ea,

E2 = cos(b+ h2b
1−α2(t))− (1 + h2b

1−α2(t)) cos b.

Let

A = ea+h1a1−α1(t) − ea − h1a
1−α1(t)ea,

B = cos(b+ h2b
1−α2(t))− cos b− h2b

1−α2(t) cos b.

Therefore (4) becomes

lim
(h1,h2)→0

∥
(
(
A

h1
, 0) + (0,

B

h2
)

)
∥ ≤ lim

(h1,h2)→0

(
∥( A
h1

, 0)∥+ ∥(0, B
h2

)∥
)

= 0,
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because

lim
h1→0

ea+h1a1−α1(t) − ea − h1a
1−α1(t)ea

h1
= 0,

lim
h2→0

cos(b+ h2b
1−α2(t))− cos b− h2b

1−α2(t) cos b

h2
= 0.

Definition 2.5. Consider the matrix of the linear transformationD
α(t)
δ f

with the standard ordered bases of Rn and Rm. This m×n matrix rep-

resentation of D
α(t)
δ f is called the α(t)-derivative Jacobian matrix of f

at a and denoted by J
α(t)
δ,f (a).

Example 2.6. If f(x, y) = (ex, cos y), then

Jα
δ,f (a, b) =

(
a1−α1(t)ea 0

0 b1−α2(t) cos b

)
.

Proposition 2.7. Assume that f is α(t)-differentiable at a ∈ Rn+
,

where α ∈ Tn. If f is differentiable at a, then Dαδ(t)f(a) = Df(a) ◦
L
1−δ,α(t)
a where Df(a) is the derivative of f and L

1−α(t)
δ,a is the linear

transformation from Rn to Rm defined by

L
1−α(t)
δ,a (x1, ..., xn) = (x1δ(α1(t), x1)a

1−α1(t)
1 , ..., xnδ(αn(t), xn)a

1−αn(t)
n ).

Proof. Let ℧ = (a1+h1δ(α1(t), a1)a
1−α1(t)
1 , ..., an+hnδ(αn(t), an)a

1−αn(t)
n )

It is sufficient to prove that

lim
h→0

∥f(℧)− f(a)−Df(a) ◦ L1−α(t)
a (h)∥

∥h∥
= 0. (5)

Let ε = (ε1, ..., εn) = (h1δ(α1(t), x1)a
1−α1(t)
1 , ..., hnδ(αn(t), xn)a

1−αn(t)
n )

then ε → 0 as h → 0. We set M = max{((δ(αi(t), ai))a
1−αi(t)
i )2 ; ai >

0, i = 1, ..., n}. Thus,

∥ε∥ =

√
(h1(δ(α1(t), a1)a

1−α1(t)
1 )2 + ...+ (hnδ(αn(t), an)a

1−αn(t)
n )2

≤
√

(h1)2M+ ...+ (hn)2M =
√
nM∥h∥.



8 A. DEHGHAN NEZHAD AND A. MOSLEMI GHADIKOLAEI

Consequently
1√
nM

∥ε∥ ≤ ∥h∥, and finally, we can write

lim
h→0

∥f(℧)− f(a)−Df(a) ◦ L1−α
a (h)∥

∥h∥

= lim
h→0

∥f(℧)− f(a)−Df(ε)∥
∥h∥

≤ lim
ε→0

∥f(a1 + ε1, ..., an + εn)− f(a)−Df(ε)∥
1√
nM

∥ε∥

=
√
nM lim

ε→0

∥f(a1 + ε1, ..., an + εn)− f(a)−Df(ε)∥
∥ε∥

=
√
nM.0 = 0.

The (5) is proved. □

Remark 2.8. Proposition 2.7 is the generalized case of the part slowro-
mancapvi@ of Proposition 1.2.

Proposition 2.9. Let f : Rn+ → Rm be a multi-variable vector-valued
function. If f is α(t)-differentiable at a ∈ Rn+

where α ∈ Tn, then f is
continuous at a.

Proof. Let ℧ = (a1+h1δ(α1(t), a1)a
1−α1(t)
1 , ..., an+hnδ(αn(t), an)a

1−αn(t)
n )

Because

∥f(a1 + h1δ(α1(t), a1)a
1−α1(t)
1 , ..., an + hnδ(αn(t), an)a

1−αn(t)
n )− f(a1, ..., an)∥

= lim
h→0

f(℧)− f(a1, ..., an)− L(h) + L(h)∥
∥h∥

∥h∥

≤ lim
h→0

f(℧)− f(a)− L(h)∥
∥h∥

∥h∥+ ∥L(h)∥.

By taking limits of the two sides of the inequality as h → 0, we obtain

lim
h→0

∥f(℧)− f(a1, ..., an)∥

≤ lim
h→0

∥f(℧)− f(a)− L(h)∥
∥h∥

∥h∥+ ∥L(h)∥ = 0.
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Let ε = (ε1, ..., εn) = (h1a
1−α1(t)
1 , ..., hna

1−αn(t)
n ) so ε → 0 as h → 0.

Since

lim
ε→0

∥f(a1 + ε1, ..., an + εn)− f(a1, ..., an)∥ ≤ 0,

we see limε→0 ∥f(a1 + ε1, ..., an + εn) − f(a1, ..., an)∥ = 0. Therefore f
is continuous at a ∈ Rn+

. □

Theorem 2.10. (Chain Rule) Assume that f : Rn+ −→ Rm is α(t)-
differentiable at a ∈ Rn+

where α(t) ∈ Tn, (δ(α1(t), a1), ..., δ(αn(t), an)) =
(1, ..., 1) and function g : Rm+ → Rp is β(t)-differentiable at f(a) =
(f1(a), ..., fm(a)) ∈ Rm+

such that β ∈ Tm.
I) If n > m, then (g ◦ f) is γ(t)-differentiable at a ∈ Rn+

where for
i = 1, ..., n, γ(t) = (γ1(t), ..., γn(t)) defined by

γi(t) =

{
αi(t) = βi(t) i = 1, ...,m
αi(t) i = m+ 1, ..., n.

(6)

II) If m > n, then (g ◦ f) is γ(t)-differentiable at a ∈ Rn+
where for

i = 1, ..., n, γ(t) = (γ1(t), ..., γn(t)) defined by

γi(t) = αi(t) = βi(t), i = 1, ..., n. (7)

The CFD of (g ◦ f) for order γ(t) is equal to

Dγ(t)(g ◦ f)(a) = Dβ(t)g(f(a)) ◦ Lβ(t)−1
f(a) ◦Dα(t)f(a) (8)

where L
β(t)−1
f(a) : Rm −→ Rm is the linear transformation defined by

L
β(t)−1
f(a) (x1, ..., xm) = (x1(f1(a))

β1(t)−1, ..., xn(fm(a))βm(t)−1).

Proof. We prove (I). Similar arguments apply to the case (II). In case
(I) since for i = 1, ...,m we have αi(t) = βi(t). Therefore

L
β(t)−1
f(a) (x1, ..., xm) = (x1(f1(a))

α1(t)−1, ..., xn(fm(a))αm(t)−1).

For abbreviation, let L = Dα(t)f(a), G = Dβ(t)g(f(a)) and h = (h1, ..., hn) ∈
Rn, k = (k1, ..., kn) ∈ Rn. If we consider the maps
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1) µ(a1 + h1a
1−α1(t)
1 , ..., an + hna

1−αn(t)
n )

= f(a1 + h1a
1−α1(t)
1 , ..., an + hna

1−αn(t)
n )− f(a1, ..., an)− L(h),

2) η(f1(a) + k1(f1(a))
1−α1(t), ..., fm(a) + km(fm(a))1−αm(t))

= g(f1(a)+k1(f1(a))
1−α1(t), ..., fm(a)+km(fm(a))1−αm(t))−g(f(a))−

G ◦ (f(a))

3) φ(a1 + h1a
1−γ1(t)
1 , ..., an + hna

1−γn(t)
n )

= g◦f(a1+h1a
1−α1(t)
1 , ..., an+hna

1−αn(t)
n )−g◦f(a)−G◦Lβ−1

f(a)◦L(h),

then according to the above maps, we have

4) limh→0
∥µ(a1 + h1a

1−α1(t)
1 , ..., an + hna

1−αn(t)
n )∥

∥h∥
= 0,

5) limh→0
∥η(f1(a) + k1(f1(a))

1−α1(t), ..., fm(a) + km(fm(a))1−αm(t))∥
∥k∥

=

0,

Let Υ = a1 + h1a
1−α1(t)
1 , ..., an + hna

1−αn(t)
n . We must prove that,

lim
h→0

∥φ(a1 + h1a
1−γ1(t)
1 , ..., an + hna

1−γn(t)
n )∥

∥h∥
= 0.

Now,

φ(a1 + h1a
1−γ1(t)
1 , ..., an + hna

1−γn(t)
n )

=g ◦ f(Υ)− g ◦ f(a)−G ◦ Lβ(t)−1
f(a) ◦ L(h)

=g

(
f1(Υ), ..., fm(Υ)

)
−g(f(a))−G ◦ Lβ(t)−1

f(a)

(
f(Υ)− f(a)− µ(Υ)

)
by (1).
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Hence, the above equation becomes[
g

(
f1(Υ), ..., fm(Υ)

)
− g(f(a))−G

(
L
β(t)−1
f(a) (f(Υ)− f(a))

)]
+G ◦ Lβ(t)−1

f(a)

(
µ(Υ)

)
=

[
g

(
f1(Υ), ..., fm(Υ)

)
−g(f(a))−G

(
L
β(t)−1
f(a) (f1(Υ)− f1(a), ..., fm(Υ)− fm(a))

)]
+G ◦ Lβ−1

f(a)

(
µ(Υ)

)
=

[
g

(
f1(Υ), ..., fm(Υ)

)
−g(f(a))−G

[(
f1(Υ)− f1(a)

)
(f1(a))

α1−1, ...

,

(
fm(Υ)− fm(a)

)
(fm(a))αm−1 +G ◦ Lβ(t)−1

f(a)

(
µ(Υ)

)
.

If ui =

(
fi(Υ)− fi(a)

)
(fi(a))

αi(t)−1 for i = 1, ...,m, then we see

fi(Υ) = fi(a) + ui(fi(a))
1−αi(t)

and u = (u1, .., um) → 0 as h = (h1, ..., hn) → 0. It follows that,

φ(a1 + h1a
1−γ1(t)
1 , ..., an + hna

1−γn(t)
n )

=

[
g

(
f1(Υ), ..., fm(Υ)

)
− g(f(a))−G(u)

]
+G ◦ Lβ(t)−1

f(a)

(
µ(Υ)

)
(9)

where by (2), (9) becomes

η(f1(a) + u1(f1(a))
1−α1(t), ..., fm(a) + um(fm(a))1−αm(t))

+G ◦ Lβ(t)−1
f(a)

(
µ(Υ)

)
.

Since

lim
h→0

∥η(f1(a) + k1(f1(a))
1−α1(t), ..., fm(a) + km(fm(a))1−αm(t))∥

∥k∥
= 0



12 A. DEHGHAN NEZHAD AND A. MOSLEMI GHADIKOLAEI

and the linear transformation satisfies

∥G ◦ Lβ(t)−1
f(a)

(
µ(Υ)

)
∥ ≤ K∥µ(Υ)∥

such that K ≥ 0, therefore

lim
h→0

∥G ◦ Lβ(t)−1
f(a)

(
µ(a1 + h1a

1−α1(t)
1 , ..., an + hna

1−αn(t)
n )

)
∥

∥k∥
= 0.

It follows that limh→0
∥φ(a1 + h1a

1−γ1(t)
1 , ..., an + hna

1−γn(t)
n )∥

∥h∥
= 0. We

give the proof only for the case (I). □

Remark 2.11. For, m = n = p = 1, Theorem 2.10 states that

Dα1(t)(g ◦ f)(a) = Dα1(t)g(f(a))Dα1(t)f(a)(f(a))α1(t)−1.

Let αi(t) = α(t) = βj(t) for i = 1, ..., n and j = 1, ...,m. We can show
that the Theorem 2.10 equivalent to the Theorem 3.9 in [12].

Corollary 2.12. Suppose all conditions of Theorem 2.10 is satisfied.

Then J
γ(t)
g◦f (a) = J

β(t)
g (f(a))×

(f1(a))
α1(t)−1 0 · · · 0

0 (f2(a))
α2(t)−1 · · · 0

...
...

. . .
...

0 0 · · · (fm(a))αm(t)−1

 J
α(t)
f (a).

Theorem 2.13. Assume that f : Rn+ −→ Rm be a multivariable vector-
valued function such that f(x1, ..., xn) = (f1(x1, ..., xn), ..., fm(x1, ..., xn))
and α(t) ∈ Tn. Then f is α(t)-differentiable at a ∈ Rn+

, if and only if
each fi is α(t)-differentiable, and Dα(t)f(a) = (Dα(t)f1(a), ..., D

α(t)fm(a)).

Proof. Suppose that for each i = 1, ..., n, fi is α(t)-differentiable at a.
If we take L = (Dα(t)f1(a), ..., D

α(t)fm(a)) then

f(a1 + h1a
1−α1(t)
1 , ..., an + hna

1−αn(t)
n )− f(a1, ..., an)− L(h)

= f1(a1 + h1a
1−α1(t)
1 , ..., an + hna

1−αn(t)
n )− f1(a1, ..., an)−Dαf1(h), ...

, fm(a1 + h1a
1−α1(t)
1 , ..., an + hna

1−αn(t)
n )− fm(a1, ..., an)−Dαfm(h).
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Hence,

lim
h→0

∥f(a1 + h1a
1−α1(t)
1 , ..., an + hna

1−αn(t)
n )− f(a1, ..., an)− L(h)∥

∥h∥

≤ lim
h→0

m∑
i=1

∥fi(a1 + h1a
1−α1(t)
1 , ..., an + hna

1−αn(t)
n )− fi(a1, ..., an)−Dα(t)fi(h)∥
∥h∥

.

If f is α(t)-differentiable at a ∈ Rn+
, then according to Theorem 2.10

fi = πi ◦ f is α(t)-differentiable at a. □

Theorem 2.14. Let α(t) ∈ Tn and f, g be two α(t)-differentiable multi-
variable vector-valued function at a ∈ Rn+

and (δ(α1(t), x1), ..., δ(αn(t), xn)) =
(1, ..., 1), then we have
I) Dα(t)(λf + µg) = λDα(t)f + µDα(t)g ; for all λ, µ ∈ R.
II) Dα(t)(fg) = fDα(t)g + gDα(t)f .

Proof. (I) This proof follows from the definition.

(II) Given A = (a1 + h1a
1−α1(t)
1 , ..., an + hna

1−αn(t)
n ), then

lim
h→0

∥(fg)(A)− (fg)(a)−
(
f(a)Dα(t)g(a) + g(a)Dα(t)f(a)

)
(h)∥

∥h∥

≤ lim
h→0

∥f(A)g(A)− f(a)g(A)− g(A)Dα(t)f(a)(h)∥
∥h∥

+ lim
h→0

∥f(a)g(A)− f(a)g(a)− f(a)Dα(t)g(a)(h)∥
∥h∥

+ lim
h→0

∥g(A)Dα(t)f(a)(h)− g(a)Dα(t)f(a)(h)∥
∥h∥

(10)

Therefore (10) becomes

lim
h→0

∥g(A)∥∥f(A)− f(a)−Dα(t)f(a)(h)∥
∥h∥

+ lim
h→0

∥f(a)∥∥g(A)− g(a)−Dα(t)g(a)(h)∥
∥h∥
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+ lim
h→0

∥Dα(t)f(a)(h)∥∥g(A)− g(a)∥
∥h∥

≤ lim
h→0

K∥h∥∥g(A)− g(a)∥
∥h∥

= 0.

The proof is complete. □

Theorem 2.15. (Mean Value) Assuming that E is convex subset of

Rn+
= {(x1, ..., xn) ∈ Rn ; xi > 0 for all i = 1, ..., n}

and f : E −→ R is α(t)-differentiable at of all E where α(t) ∈ Tn and
(δ(α1(t), x1), ..., δ(αn(t), xn)) = (1, ..., 1). If for any x, y ∈ E, define
[x, y] = {(1− t)x+ ty | 0 ≤ t ≤ 1}, then there is (1− t0)x+ t0y = z =
(z1, ..., zn) ∈ [x, y] ⊆ Rn+

such that

α1t
α1(t)−1
0

(
f(y)− f(x)

)
=

(
Dα(t)f(z) ◦ Lα(t)−1

z

)
(y − x)

where L
α(t)−1
z is the linear transformation from Rn to Rn defined by

Lα(t)−1
z (w1, ..., wn) = (w1z

α1(t)−1
1 , ..., wnz

αn(t)−1
n ).

Proof. Let g(t) = (1 − t)x + ty, then Dα1(t)g(t) = t1−α1(t)(y − x).
According to Theorem (2.10), the function F (t) = (f ◦ g)(t) is γ(t)-
differentiable at t ∈ [0, 1]. Therefore, we have

Dα1(t)F (t) = Dγ(f ◦ g)(t) = Dα(t)f(g(t)) ◦ Lα(t)−1
g(t) ◦Dα1(t)g(t), (11)

where γ(t) is obtained from equation (7). Since F (t) is a real val-
ued one variable function, so from mean value Theorem (3) for con-
formable fractional differentiable functions, there is t0 ∈ [0, 1] such that

α1(t).
F (1)− F (0)

1α1(t) − 0α1(t)
= Dα1(t)F (t0). Since

F (1) = f(g(1)) = f(y)

F (1) = f(g(0)) = f(x)

g(t0) = (1− t0)x+ t0y = z,
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therefore (11) at t0 becomes

α1(t)(F (1)− F (0)) = Dα1(t)F (t0) = Dα(t)f(g(t0)) ◦ Lα(t)−1
g(t0)

◦Dα1(t)g(t0)

α1(t)

(
f(y)− f(x)

)
=

(
Dα(t)f(z) ◦ Lα(t)−1

z

)
(t

1−α1(t)
0 (y − x))

α1(t)t
α1(t)−1
0

(
f(y)− f(x)

)
=

(
Dα(t)f(z) ◦ Lα(t)−1

z

)
(y − x).

□

Theorem 2.16. Suppose that U is open subset of Rn+
. If f : U −→ R

have a local extremum at a ∈ U ⊆ Rn+
and f is α(t)-differentiable at

a where α(t) ∈ Tn and (δ(α1(t), x1), ..., δ(αn(t), xn)) = (1, ..., 1), then
Dα(t)f(a) = 0.

Proof. Suppose f have a local maximum at a ∈ U . Therefore,

∃δ > 0 ∀y ∈ U ⊆ Rn+ ∥a− y∥ < δ ⇒ f(y) ≤ f(a).

Let L = Dα(t)f(x). Therefore for each h = (h1, ..., hn)

f(a1 + h1a
1−α1(t)
1 , ..., an + hna

1−αn(t)
n )− f(a1, ..., an) = L(h) + r(h).

Since f : U ⊆ Rn+ −→ R isα(t)-differentiable at a then limh→0
∥r(h)∥
∥h∥

=

0.
Let v ∈ Rn and ε > 0 small enough such that h = tv, then L(tv)+r(tv) ≤
0 because f have a local maximum at a. Therefore,

lim
t→0

L(tv) + r(tv)

t
= lim

t→0
L(v) +

r(tv)

t
≤ 0 ⇒ L(v) ≤ 0.

Since L is linear transformation then with the displacement v to −v,
we have L(v) ≥ 0. Therefore L(v) = 0. Since v is arbitrary then
L(v) = Dα(t)f(a)(v) = 0. When f have a local minimum, the proof is
similar. □
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3 The n-ary variable-order partial α(t)-derivatives
( (n,α(t))− V OP )

In this section we introduce the definition of (n,α(t))−V OP of a multi-
variable real-valued functions with n variables.

Definition 3.1. Let f : Rn+ → Rm be a multi-variable vector-valued
function of n variables. Suppose that a ∈ Rn+

. If the limit

lim
h→0

f(a1, ..., ai + ha
1−αi(t)
i , ..., an)− f(a1, ..., ai, ..., an)

h
,

there existed, such that αi(t) ∈ T, then denoted by
∂αi(t)f

∂xi
(a) and called

the ith partial α(t)-derivative of f of order αi(t) at a.

Theorem 3.2. Suppose f be multi-variable vector-valued function of n
variables. If f is α(t)-differentiable at a ∈ Rn+

where α(t) ∈ Tn, then

∂αj(t)fi
∂xj

(a) exists for i = 1, ...,m ; j = 1, ..., n and the α(t)-derivative

fractional Jacobian of f at a is the m× n matrix

(
∂αj(t)fi
∂xj

(a)

)
m×n

.

Proof. Define f(x1, ..., xn) = (f1(x1, ..., xn), ..., fm(x1, ..., xn)). We first
give the proof only for the case m = 1, so f(x1, ..., xn) ∈ R. Define
P : R −→ Rn by

P (y) = (P1(y), ..., Pn(y)) = (a1, ..., aj−1, y, aj+1, ..., an).

Then
∂αj(t)fi
∂xj

(aj) = Dγ(t)(f ◦ P )(aj), where γ(t) is obtained from

equation (7). Thus, by Corollary 2.12 the matrix J
γ(t)
f◦P (aj) becomes

J
α(t)
f (P (aj))×
(P1(aj))

α1(t)−1 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · (Pj(aj))
αj(t)−1 · · · 0

...
. . .

...
. . .

...

0 · · · 0 · · · (Pn(a))
αn(t)−1

 J
αj(t)
P (aj),
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which is equal to J
α(t)
f (a)×

(a1)
α1(t)−1 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · (aj)
αj(t)−1 · · · 0

...
. . .

...
. . .

...

0 · · · 0 · · · (an)
αn(t)−1




0
...

(aj)
1−αj(t)

...
0

 ,

finally equal to

J
α(t)
f (a)


0
...
1
...
0

 .

Since J
γ(t)
f◦P (aj) has the single entry

∂αj(t)fi
∂xj

(a). This shows that
∂αj(t)fi
∂xj

(a)

exists and is the jth entry of the 1 × n matrix J
α(t)
f (a). The theorem

now follows for arbitrary m since, according to Theorem 2.13 each fi is
α(t)-differentiable. □

Proposition 3.3. Let f : Rn+ → Rm be a multi-variable vector-valued
function. If f is α(t)-differentiable at a ∈ Rn+

where α(t) ∈ Tn, then

∂αj(t)fi
∂xj

(a) = aαj(t)−1 ∂fi
∂xj

(a).

Proof. Let ε = ha1−αi(t) in above definition and then h = aαi(t)−1ε.
Therefore, we can obtain

∂αi(t)f

∂xi
(a) = lim

h→0

f(a1, ..., ai + ha
1−αi(t)
i , ..., an)− f(a1, ..., ai, ..., an)

h
,

= lim
ε→0

f(a1, ..., ai + ε, ..., an)− f(a1, ..., ai, ..., an)

εaαj(t)−1

= a1−αj(t) lim
ε→0

f(a1, ..., ai + ε, ..., an)− f(a1, ..., ai, ..., an)

ε
= aαj(t)−1 ∂fi

∂xj
(a).

□
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4 Conclusions

The FC generalizes the concept of derivative Dα(t)[f(x)] to non-integer
orders and the physical applications of FC to describe complex media
and processes are considered by many mathematicians, physicists, and
engineers in recent decades. The VO-FDE’s with time t and space x has
been successfully applied to investigate time, space-dependent dynamics.
The purpose of this article is to make the basic premise of generalizing
this theory for application in science.
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