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Abstract. Let C(X) be the ring of real continuous functions on a
Tychonoff space X and T (X) be the set of all torsion elements of C(X).
We prove that if X and Y are two zero dimensional compact spaces,
then X ' Y if and only if the rings generated by T (X) and T (Y ) are
isomorphic.
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1. Introduction

Throughout this paper, all topological spacesX that we consider are Ty-
chonoff and C(X) (C∗(X)) stands for the ring of continuous (bounded)
real functions on a topological space X. Suppose f ∈ C(X), we denote
the set f−1{0} by Z(f), its complement by Coz(f), and the collection
of all zero-sets in X by Z(X). For undefined terms and notions, see [8].
We denote the group of units of the ring R by U(R). Suppose that G is
an abelian group, byH 6 G we mean thatH is a subgroup ofG, by T (G)
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we mean the torsion subgroup of G. For the sake of simplicity, U(C(X))
and T (U(C(X))) will be denoted by U(X) and T (X), respectively. The
set {f ∈ U(X) : f(x) > 0, ∀x ∈ X} is denoted by U+(X). Suppose
f ∈ U(X), we denote the set f−1{1} by e(f) and its complement by
Coe(f). One can easily see that {e(f) : f ∈ U(X)} = Z(X). By Max(G)
we mean the set of all maximal subgroups of G.
In Section 2, we obtain some general facts about U(X). In particular,
in the same section we observe that U(X) is direct product of its torsion
subgroup T (X) and U+(X). In Sections 3, we will focus on T (X) and
prove, as the main result, that if X and Y are compact zero dimensional
spaces, then X ' Y if and only if the rings generated by T (X) and T (Y )
are isomorphic.

2. Preliminary Results

We first discuss on cardinality of U(X). Let BC∗(0, 1) be the unit ball
with center 0. Define ϕ : C(X) −→ BC∗(0, 1) by ϕ(f) = f

1+|f | , then
clearly ϕ is one to one. Therefore, for any topological space X, we have
|C(X)| = |BC∗(0, 1)|. Now, suppose that ϕ : BC∗(0, 1) −→ U+(X) ∩
C∗(X) by ϕ(f) = f + 2. It is clear that ϕ is well defined, one-one and
thus |C(X)| = |BC∗(0, 1)| 6 |U+(X) ∩ C∗(X)| 6 |U+(X) 6 |U(X)| 6
|C(X)|. Therefore |U+(X)| = |U(X)| = |C(X)| = |C∗(X)|.

Proposition 2.1. The following statements hold.
(a) T (X) = {f ∈ U(X) : f2 = 1} and it is a subgroup of U(X).
(b) The cardinality of the set of torsion free elements is the same as the
cardinality of U(X).
(c)T (X) = {−1, 1} if and only if X is connected.

Proof. (a) and (b) are clear.
(c ⇒) Suppose that A is a clopen subset (i.e., closed open subset) of
X. Put λA = χA − χ

Ac (from now on, we use λA for χA − χ
Ac where

χA is the charactristic function on A). By hypothesis, λA = −1 or 1.
Therefore, A = Ø or A = X and consequently X is connected.
(c⇐) Assume thatX is connected and f ∈ T (X). Then f(X) ⊆ {−1, 1}
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and it follows that f is constant. Therefore f = −1 or 1. �

Let P be the set of all clopen subsets ofX. ClearlyX is zero dimensional
if and only if P is a base for open subset of X. Moreover, the map
f

e−→ e(f) makes a one-to-one correspondence between T (X) and P
and hence |T (X)| = |P|.

Proposition 2.2. Let α be the cardinality of the set of connected com-
ponent of a topological space X. Then
(a) |T (X)| 6 2α and the inequality may be strict.
(b) If α is finite, then |T (X)| = 2α.

Proof. (a) It is enough to show that |P| 6 2α. To see this, letting A
be the set of connected component of X, we define φ : P −→ P(A)
with φ(P ) = {C ∈ A : C ⊆ P}. We can easily see that φ is one-one
and so we are done. Now, if we put X = N∗ where N∗ is the one point
compactification of N, then the cardinality of the family of clopen subsets
of N∗ is equal to ℵ0 = |T (X))|.
(b) It is evident.

The socle S(G) of an abelian group G consists of all g ∈ G such that
the order of g is a square free integer, see [7]. S(G) is a subgroup of G;
it is equal to {1} if and only if G is torsion free and it is equal to G if
and only if G is an elementary group, in the sense that every element
has a square free order. It is clear that S(G) ⊆ T (G). Therefore, by
Proposition 2.1, we conclude that S(U(X)) = T (X). �

The following fact, although easy to prove, is a key result for the re-
mainder of the paper.

Theorem 2.3. For any topological space X, U(X) is the direct product
of U+(X) and T (X).

Proof. It is clear that f = |f |Sgn(f) for any f ∈ U(X) and U+(X) ∩
T (X) = {1}. �

Theorem 2.4. The following statements hold.
(a) If K ∈Max(U(X)), then U+(X) ⊆ K.
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(b) K ∈ Max(U(X)) if and only if there exists H ∈ Max(T (X)) such
that K = U+(X)H.
(c) If K 6 U(X), then K ∈Max(U(X)) if and only if |U(X)/K| = 2.

Proof. (a) There exists a prime number p such that |U(X)/K| = p, then
fp ∈ K for any f ∈ U(X). Now, let f ∈ U+(X), then f = (f

1
p )p ∈ K.

(b ⇒) Using the part (a) and Theorem 2.3, we get K = U+(X)H where
H = K ∩ T (X).
(b ⇐) It is clear.
(c) By assumption, |U(X)/K| is a prime number. On the other hand,
by (b), H 6 T (X) exists such that K = U+(X)H, thus U(X)/K '
T (X)/H and since every element of T (X) is of order 2, |U(X)/K| =
2. �

Recall that the Frattini subgroup of a group G is the intersection of
all maximal subgroups of G, this subgroup is denoted by Φ(G), thus
Φ(G) = ∩H∈Max(G)H.

Proposition 2.5. For any topological space X we have
(a)Φ(T (X)) = {1};
(b)Φ(U(X)) = U+(X).

Proof. (a) Let 1 6= f ∈ T (X), hence there exists x ∈ X such that
f(x) 6= 1. One can easily see that Hx = {g ∈ T (X) : x ∈ e(g)} ∈
Max(T (X)) and since f /∈ Hx, we are through.
(b) It is clear that Φ(U(X)) = U+(X)Φ(T (X)) = U+(X). �

We conclude this section by the following remark which is useful for the
next section and helps us to find an example of two zero dimensional
compact spaces X and Y such that T (X) ' T (Y ) but X 6' Y .

Remark 2.6. The subgroup T (X) is indeed the maximal torsion sub-
group of U(X) and is Z2-vector space (via (n, f) → fn). Clearly ϕ :
T (X) → T (Y ) is a group homomorphism if and only if it is a vector
space homomorphism. Let V be a vector space over a field F and S be a
base for V . If |F | and |S| are finite, then V ' F |S| and so |V | = |F ||S|.
Also, if |F | or |S| is infinite, then |V | = max{|F |, |S|}. Therefore, if V
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and W are F -vector spaces and |V | = |W |, then V ' W whenever one
of the following holds.
(a) F is finite.
(b) |F | < |V |.

3. Zero Dimensionality is a Torsion Property

To give the main result of the paper we need to introduce and study a
class of subgroups of T (X) and P-filters on X.

The next two simple facts are needed.

Proposition 3.1. The following statements are equivalent.
(a) H ∈Max(T (X)).
(b) fg ∈ H if and only if f, g ∈ H or f, g /∈ H.

Proof. Since H ∈ Max(T (X)) if and only if |T (X)/H| = 2, it is easy
to prove. �

Lemma 3.2. Let f, g ∈ T (X), then

e(fg) = (e(f) ∩ e(g)) ∪ (Coe(f) ∩ Coe(g)) .

Proof. It is evident. �

Proposition 3.3. Let X be a topological space and p ∈ βX, then Hp =
{f ∈ T (X) : p ∈ clβXe(f)} is a maximal subgroup of T (X).

Proof. Suppose that fg ∈ Hp, by Lemma 3.2

p ∈ clβXe(fg) = clβX [(e(f) ∩ e(g)) ∪ (Coe(f) ∩ Coe(g))]

= (clβXe(f) ∩ clβXe(g)) ∪ (clβXCoe(f) ∩ clβXCoe(g)) .

Thus, p ∈ (clβXe(f) ∩ clβXe(g)) or p ∈ (clβXCoe(f) ∩ clβXCoe(g)) and
by Proposition 3.1, Hp ∈Max(T (X)). �

In this section, as we mentioned earlier, P(X) (briefly P) stands for the
set of all clopen subsets of X and by P-filter we mean a filter whose
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elements are clopen subsets, see ([11] 12E). It is easy to see that if F is
a P-filter, then

e−1(F) = {f : e(f) ∈ F}

is a subgroup of T (X). On the other hand ee−1(F) = F for every P-
filter F on X and since e(f) = e(g) implies f = g for every f, g ∈ T (X),
H = e−1e(H) for every H 6 T (X). But if H is a subgroup of T (X),
then e(H) = {e(f) : f ∈ H} is not necessarily a P-filter. As an
example, H = {−1, 1} is a subgroup of T (X) while e(H) has not even
finite intersection property.

Proposition 3.4. Let X be a topological space and H 6 T (X), then the
following statements are equivalent.
(a) There exists p ∈ βX such that H = Hp.
(b) e(H) is a P-ultrafilter.
(c) The family e(H) has the finite intersection property and is maximal
with respect to this property.

Proof. (a)⇒(b) Let f1, · · · , fn ∈ H. By definition, p ∈ ∩ni=1clβXe(fi) =
clβX(∩ni=1e(fi)) and this implies ∩ni=1e(fi) 6= ø, thus e(H) has the finite
intersection property, and there exists a P-ultrafilter F containing e(H).
Therefore, H = e−1e(H) ⊆ e−1(F). Now, since H is maximal, H =
e−1(F) and hence e(H) = ee−1(F) = F .
(b)⇒(c) It is clear.
(c)⇒(a) Suppose thatH satisfies the condition (c). Since βX is compact,
there exists p ∈ βX such that p ∈ ∩f∈HclβXe(f). Clearly Hp has the
finite intersection property and contains H. Therefore, H = Hp. �

Proposition 3.5. Let X be a topological space and F be a P-filter on
X, then e−1(F) is a maximal subgroup of T (X) if and only if F is a
P-ultrafilter on X.

Proof. ⇒) Let e−1(F) be a maximal subgroup of T (X), we have to
show that F is a P-ultrafilter. Let F ⊆ G, then e−1(F) ⊆ e−1(G) and
e−1(F) = e−1(G). We infer that F = ee−1(F) = ee−1(G) = G and hence
F is a P-ultrafilter.
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⇐) Since ee−1(F) = F is a P-ultrafilter, by Proposition 3.4, it follows
that e−1(F) is a maximal subgroup of T (X). �

LetX be a topological space, we will denote byM∗ the set of all maximal
subgroups of T (X) which are of the formHp. Given f ∈ T (X), we define
M∗(f) = {M ∈M∗ : f ∈M} and M∗

f =
⋂
M∗(f).

Proposition 3.6. Let X be a topological space, then the following state-
ments are equivalent.
(a) e(f) ⊆ e(g).
(b) g ∈

⋂
M∗(f).

(c) M∗(f) ⊆M∗(g).
(d) M∗

g ⊆ M∗
f .

Proof. (a ⇒ b) Let f ∈ Hp ∈ M∗(f), then p ∈ clβXe(f) ⊆ clβXe(g)
and so g ∈ Hp. Hence g ∈

⋂
M∗(f).

(b ⇒ c) and (c ⇒ d) are trivial.
(d ⇒ a) Let x ∈ e(f), then f ∈ Hx and so g ∈ M∗

g ⊆ M∗
f ⊆ Hx.

Therefore x ∈ e(g). �

Recall that a topological space X is called strongly zero dimensional
if every two completely separated closed set can be separated by two
disjoint clopen subsets of X, see ([4] 6.2).

In the following proposition, only the part (d) may not be well-known.

Proposition 3.7. Let X be a Tychonoff space. Then the following state-
ments are equivalent.
(a) X is strongly zero dimensional.
(b) Every two disjoint Z1, Z2 ∈ Z(X) separate with two disjoint open-
closed subset of X.
(c) If Z ∈ Z(X), V ∈ Coz(X) and Z ⊆ V , then there exists an open-
closed subset U of X such that Z ⊆ U ⊆ V .
(d) The set {clβXe(f) : f ∈ T (X)} is an open base for βX.
(e) βX is a zero dimensional space.
(f) βX is a strongly zero dimensional space.

Proof. We only prove (c) ⇒ (d), for the reminder of the proof, see ([4]
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6.2). Suppose that W is an open subset of βX and p ∈W . Clearly there
exist a zero set A and a cozero set V in βX such that

p ∈ intβXA ⊆ A ⊆ V ⊆ clβXV ⊆W. (1)

By (c), there exists a clopen subset U of X such that

A ∩X ⊆ U ⊆ V ∩X. (2)

Both (1) and (2) implies that

p ∈ clβX intβXA = clβX(X∩intβXA) ⊆ clβX(X∩A) ⊆ clβXU ⊆ clβXV ⊆W.

Clearly U = e(f) for some f ∈ T (X) and so we are through. �

Proposition 3.8. Let X be a topological space, then
(a) The set {M∗(f) : f ∈ T (X)} is a base for the closed sets of a
topology on M∗, which we call it the Zariski-like topology;
(b) M∗ with Zariski-like topology is compact;
(c) If X is strongly zero dimensional, then M∗ with this topology is
Hausdorff.

Proof. (a) It is clear that for every f, g ∈ T (X), e(f) ∪ e(g) is both
open and closed in X and hence there exists h ∈ T (X) such that e(h) =
e(f) ∪ e(g). It is enough to show that M∗(f)

⋃
M∗(g) = M∗(h). To

prove this

Hp ∈M∗(f)
⋃
M∗(g) ⇔ p ∈ clβXe(f) ∪ clβXe(g) = clβXe(h)

⇔ Hp ∈M∗(h).

(b) Suppose {M∗(fα)}α∈A is a family of basic closed subset of M∗ with
the finite intersection property. We can easily see that {clβXe(fα)}α∈A
has the finite intersection property and consequently there exists p ∈ βX
such that p ∈ ∩α∈AclβXe(fα). Therefore

∀α ∈ A, fα ∈ Hp ⇔ ∀α ∈ A, Hp ∈M∗(fα) ⇔ Hp ∈
⋂
α∈A

M∗(fα)

∴
⋂
α∈A

M∗(fα) 6= ø.
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(c) Let Hp,Hq ∈ M∗ where p 6= q. Since X is strongly zero di-
mensional, by Proposition 3.7, there exists f ∈ T (X) such that p ∈
clβXe(f), q /∈ clβXe(f) and so p /∈ clβXe(−f), q /∈ clβXe(f). Therefore,
Hp /∈M∗(−f),Hq /∈M∗(f) and M∗(f)

⋃
M∗(−f) = M∗. �

Proposition 3.9. Let X be a zero dimensional compact topological
space, then ϕ : X −→ M∗ defined by ϕ(p) = Hp induces a homeo-
morphism between X and M∗.

Proof. It is clear that ϕ is bijection. It is sufficient to show that this
function maps a base for X to a base for M∗. To this end we write

ϕ(e(f)) = {ϕ(p) ∈ X : p ∈ e(f)}

= {Hp ∈M∗ : p ∈ e(f)} = {Hp ∈M∗ : f ∈ Hp} = M∗(f)

which completes the proof. �

Definition 3.10. Let X and Y be topological spaces. T (X) and T (Y )
are said to be strongly isomorphic if there exists an isomorphism from
T (X) to T (Y ) such that it maps M∗(T (X)) onto M∗(T (Y )).

Proposition 3.11. If X and Y are zero dimensional compact topological
spaces, then X and Y are homeomorphic if only if T (X) and T (Y ) are
strongly isomorphic.

Proof. ⇒) Let ψ : X −→ Y be a homeomorphism. We define ϕ :
T (Y ) −→ T (X) by ϕ(g) = g ◦ ψ. It can be easily shown that ϕ is an
isomorphism. We show that ϕ is onto. Supposing f ∈ T (X), we put
g = f ◦ ψ−1. It is easy to show that g ∈ T (Y ) and ϕ(g) = f . Now, let
p ∈ X and q = ψ(p), then

g ∈ Hq(Y ) ⇔ g(q) = 1 ⇔ gψψ−1(q) = 1 ⇔ gψ(p) = 1

⇔ g ◦ ψ ∈ Hp(X) ⇔ ϕ(g) ∈ Hp(X).

⇐) By Proposition 3.9 and the hypothesis, it is clear that

X 'M∗(T (X)) 'M∗(T (Y )) ' Y. �
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Proposition 3.12. If X and Y are topological spaces, then the following
statements are equivalent.
(a) T (X) ' T (Y ).
(b) |T (X)| = |T (Y )|.
(c) |P(X)| = |P(Y )|.

Proof. (a)⇔ (b) is clear, by Remark 2.6. Recall that |T (X)| = |P(X)|
for any topological space X, so (b) ⇔ (c) is also clear. �

Example 3.13. Let Q∗ be the one point compactification of the Q, ω1

be the smallest uncountable ordinal and W ∗ = {α : α is an ordinal and
α 6 ω1}. One can easily see that |T (Q∗)| = c = |T (W ∗)| and by Propo-
sition 3.12, T (Q∗) ' T (W ∗) while |Q∗| 6= |W ∗|. Now, suppose |A| = c,
X = ∪α∈AXα is the disjoint union of copies of Q, andX∗ is the one point
compactification of X. Then clearly |X∗| = |W ∗| and one can similarly
show that T (X∗) ' T (W ∗) while X∗ 6'W ∗. These examples show that
T (X) and T (Y ) can be isomorphic but not strongly isomorphic (even if
|X| = |Y |). Note that if T (X) and T (Y ) are strongly isomorphic, then
it may there exists an isomorphism between them which is not strong;
it is sufficient to define an isomorphism such that sends f 6= −1 to −1

Definition 3.14. We say that a subgroup H of T (X) is saturated if f ∈
H and e(f) ⊆ e(g) imply that g ∈ H.

Lemma 3.15. Let H 6 T (X) be saturated. Then e(H) is closed under
finite intersection.

Proof. Let f, g ∈ H; it is enough to show that e(f) ∩ e(g) ∈ e(H). For
simplicity we let A = e(f) and B = e(g), then by assumption

D = e(fg) ∪ (A \B) = (B \A)c ∈ e(H).

Therefore, λD ∈ H and hence gλD ∈ H. Thus, A ∩ B = e(gλD) ∈
e(H). �

Corollary 3.16. Let H 6 T (X), then e(H) is a P-filter if and only if
H is saturated and −1 /∈ H.
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Corollary 3.17. A subgroup H of T (X) is saturated if and only if h ∈
H and 1 + h+ f ∈ T (X) imply −f ∈ H.

Proof. ⇒) Suppose h ∈ H and 1 + h + f ∈ T (X). It is clear that
e(h) ∩ e(f) = ø and hence e(h) ⊆ e(−f). Thus −f ∈ H.
⇐) Let h ∈ H and e(h) ⊆ e(f), thus e(h) ∩ e(−f) = ø. It is easy to see
that 1 + h− f ∈ T (X) and hence f ∈ H. �

Corollary 3.18. e(H) is a P-filter if and only if −1 /∈ H and if h ∈ H
and 1 + h+ f ∈ T (X), then −f ∈ H.

Proof. By Corollaries 3.16 and 3.17, it is clear. �

Definition 3.19. Let X be a topological space. We will denote by RT (X)
the ring generated by T (X).

Proposition 3.20. If

R = {f ∈ C(X), f(X) is finite, and f(X) ⊆ 2Z or f(X) ⊆ 2Z + 1},

then RT (X) = R.

Proof. One can easily see that R is indeed a ring that contains T (X)
and consequently RT (X) ⊆ R. Now, let f ∈ R i.e., f ∈ C(X) and
f(X) = {m1, · · · ,mk} is a subset of 2Z or 2Z + 1. We have to show
f ∈ RT (X). It is clear that Ai = f−1{mi} is a clopen subset of X.
Thus it is enough to prove that the equation f = x1 +

∑k
i=2 xiλAi has a

solution for x1, · · · , xk in Z. If we take ai ∈ Ai (i = 1, · · · , k), then we
get the following equations

x1 − x2 − x3 − · · · − xk = m1

x1 + x2 − x3 − · · · − xk = m2
...

x1 − x2 − x3 − · · ·+ xk = mk

and we simply obtain the equivalent system of equations below.
x1 − x2 − x3 − · · · − xk = m1

x2 = m2−m1
2

...
xk = mk−m1

2
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Now, since all the elements of the set {m1, · · · ,mk} are even or all are
odd, the above system has a solution in Z. �

In [5] and [6] it is defined that CC(X) = {f ∈ C(X) : f(X) is countable}
and CF (X) = {f ∈ C(X) : |f(X)| < ∞}. Clearly the ring R in
Proposition 3.20, is a subring of CF (X). The following result is proved
in [6].

Theorem 3.21. Let X be a topological space. Then there exists a zero
dimensional space Y such that CC(X) ' CC(Y ) ( CF (X) ' CF (Y ) ).

The above theorem shows that, without loss of generality one may as-
sume that X is a zero dimensional space. Therefore, considering this
comment, the following fact which is our main result is in order.

Theorem 3.22. Let X and Y be compact zero dimensional spaces. Then
RT (X) ' RT (Y ) if and only if X ' Y .

Proof. ⇒) Suppose ϕ : RT (X) −→ RT (Y ) is an isomorphism. It is
sufficient to show that ϕ(T (X)) = T (Y ) and ϕ maps the set M∗(X)
onto M∗(Y ). It is clear that ϕ(T (X)) ⊆ T (Y ). Now, let g ∈ T (Y ), then
f ∈ RT (X) exists such that ϕ(f) = g. Therefore, since ϕ is one-one, we
can write ϕ(f2) = (ϕ(f))2 = g2 = 1 which implies f2 = 1 and therefore
f ∈ T (X). Now, we have to prove that ϕ(M∗(X)) = M∗(Y ). To this
end it is sufficient to show that e(Hp(X)) is a P-filter if and only if
e(ϕ(Hp(X))) is such. It is clear that

−1 /∈ Hp ⇔ − 1 = ϕ(−1) /∈ ϕ(Hp).

On the other hand

f ∈ Hp, 1 + f + g ∈ T (X) ⇔

ϕ(f) ∈ ϕ(Hp), ϕ(1 + f + g) = 1 + ϕ(f) + ϕ(g) ∈ T (Y ).

It is also clear that −g ∈ Hp if and only if −ϕ(g) ∈ ϕ(Hp). Hence, by
Corollary 3.18, we are through.
⇐) It is obvious. �
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Corollary 3.23. T (X) and T (Y ) are strongly isomorphic if and only
if RT (X) ' RT (Y ).
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