On Topological Spaces X Determined by the Torsion Elements of $C(X)$

A. Rezaei Aliabad*
Chamran University

M. Motamedi

Chamran University

Abstract

Let $C(X)$ be the ring of real continuous functions on a Tychonoff space X and $T(X)$ be the set of all torsion elements of $C(X)$. We prove that if X and Y are two zero dimensional compact spaces, then $X \simeq Y$ if and only if the rings generated by $T(X)$ and $T(Y)$ are isomorphic.

AMS Subject Classification: 54C40; 16U60.
Keywords and Phrases: Group of units of $C(X)$, torsion subgroup, socle of a group, maximal subgroup, Frattini subgroup, \mathcal{P}-filter, \mathcal{P} ultrafilter

1. Introduction

Throughout this paper, all topological spaces X that we consider are Tychonoff and $C(X)\left(C^{*}(X)\right)$ stands for the ring of continuous (bounded) real functions on a topological space X. Suppose $f \in C(X)$, we denote the set $f^{-1}\{0\}$ by $Z(f)$, its complement by $\operatorname{Coz}(f)$, and the collection of all zero-sets in X by $Z(X)$. For undefined terms and notions, see [8]. We denote the group of units of the $\operatorname{ring} R$ by $U(R)$. Suppose that G is an abelian group, by $H \leqslant G$ we mean that H is a subgroup of G, by $T(G)$

[^0]we mean the torsion subgroup of G. For the sake of simplicity, $U(C(X))$ and $T(U(C(X)))$ will be denoted by $U(X)$ and $T(X)$, respectively. The set $\{f \in U(X): f(x)>0, \forall x \in X\}$ is denoted by $U^{+}(X)$. Suppose $f \in U(X)$, we denote the set $f^{-1}\{1\}$ by $e(f)$ and its complement by $\operatorname{Coe}(f)$. One can easily see that $\{e(f): f \in U(X)\}=Z(X)$. By $\operatorname{Max}(G)$ we mean the set of all maximal subgroups of G.
In Section 2, we obtain some general facts about $U(X)$. In particular, in the same section we observe that $U(X)$ is direct product of its torsion subgroup $T(X)$ and $U^{+}(X)$. In Sections 3, we will focus on $T(X)$ and prove, as the main result, that if X and Y are compact zero dimensional spaces, then $X \simeq Y$ if and only if the rings generated by $T(X)$ and $T(Y)$ are isomorphic.

2. Preliminary Results

We first discuss on cardinality of $U(X)$. Let $B_{C^{*}}(0,1)$ be the unit ball with center 0 . Define $\varphi: C(X) \longrightarrow B_{C^{*}}(0,1)$ by $\varphi(f)=\frac{f}{1+|f|}$, then clearly φ is one to one. Therefore, for any topological space X, we have $|C(X)|=\left|B_{C^{*}}(0,1)\right|$. Now, suppose that $\varphi: B_{C^{*}}(0,1) \longrightarrow U^{+}(X) \cap$ $C^{*}(X)$ by $\varphi(f)=f+2$. It is clear that φ is well defined, one-one and thus $|C(X)|=\left|B_{C^{*}}(0,1)\right| \leqslant\left|U^{+}(X) \cap C^{*}(X)\right| \leqslant\left|U^{+}(X) \leqslant|U(X)| \leqslant\right.$ $|C(X)|$. Therefore $\left|U^{+}(X)\right|=|U(X)|=|C(X)|=\left|C^{*}(X)\right|$.

Proposition 2.1. The following statements hold.
(a) $T(X)=\left\{f \in U(X): f^{2}=1\right\}$ and it is a subgroup of $U(X)$.
(b) The cardinality of the set of torsion free elements is the same as the cardinality of $U(X)$.
(c) $T(X)=\{-1,1\}$ if and only if X is connected.

Proof. (a) and (b) are clear.
(c \Rightarrow) Suppose that A is a clopen subset (i.e., closed open subset) of X. Put $\lambda_{A}=\chi_{A}-\chi_{A^{c}}$ (from now on, we use λ_{A} for $\chi_{A}-\chi_{A^{c}}$ where χ_{A} is the charactristic function on A). By hypothesis, $\lambda_{A}=-1$ or 1 . Therefore, $A=\varnothing$ or $A=X$ and consequently X is connected.
$(\mathrm{c} \Leftarrow)$ Assume that X is connected and $f \in T(X)$. Then $f(X) \subseteq\{-1,1\}$
and it follows that f is constant. Therefore $f=-1$ or 1 .
Let \mathcal{P} be the set of all clopen subsets of X. Clearly X is zero dimensional if and only if \mathcal{P} is a base for open subset of X. Moreover, the map $f \xrightarrow{e} e(f)$ makes a one-to-one correspondence between $T(X)$ and \mathcal{P} and hence $|T(X)|=|\mathcal{P}|$.

Proposition 2.2. Let α be the cardinality of the set of connected component of a topological space X. Then
(a) $|T(X)| \leqslant 2^{\alpha}$ and the inequality may be strict.
(b) If α is finite, then $|T(X)|=2^{\alpha}$.

Proof. (a) It is enough to show that $|\mathcal{P}| \leqslant 2^{\alpha}$. To see this, letting \mathcal{A} be the set of connected component of X, we define $\phi: \mathcal{P} \longrightarrow \mathbf{P}(\mathcal{A})$ with $\phi(P)=\{C \in \mathcal{A}: C \subseteq P\}$. We can easily see that ϕ is one-one and so we are done. Now, if we put $X=\mathbb{N}^{*}$ where \mathbb{N}^{*} is the one point compactification of \mathbb{N}, then the cardinality of the family of clopen subsets of \mathbb{N}^{*} is equal to $\left.\aleph_{0}=\mid T(X)\right) \mid$.
(b) It is evident.

The socle $S(G)$ of an abelian group G consists of all $g \in G$ such that the order of g is a square free integer, see [7]. $S(G)$ is a subgroup of G; it is equal to $\{1\}$ if and only if G is torsion free and it is equal to G if and only if G is an elementary group, in the sense that every element has a square free order. It is clear that $S(G) \subseteq T(G)$. Therefore, by Proposition 2.1, we conclude that $S(U(X))=T(X)$.

The following fact, although easy to prove, is a key result for the remainder of the paper.

Theorem 2.3. For any topological space $X, U(X)$ is the direct product of $U^{+}(X)$ and $T(X)$.

Proof. It is clear that $f=|f| \operatorname{Sgn}(f)$ for any $f \in U(X)$ and $U^{+}(X) \cap$ $T(X)=\{1\}$.

Theorem 2.4. The following statements hold.
(a) If $K \in \operatorname{Max}(U(X))$, then $U^{+}(X) \subseteq K$.
(b) $K \in \operatorname{Max}(U(X))$ if and only if there exists $H \in \operatorname{Max}(T(X))$ such that $K=U^{+}(X) H$.
(c) If $K \leqslant U(X)$, then $K \in \operatorname{Max}(U(X))$ if and only if $|U(X) / K|=2$.

Proof. (a) There exists a prime number p such that $|U(X) / K|=p$, then $f^{p} \in K$ for any $f \in U(X)$. Now, let $f \in U^{+}(X)$, then $f=\left(f^{\frac{1}{p}}\right)^{p} \in K$.
($\mathrm{b} \Rightarrow$) Using the part (a) and Theorem 2.3, we get $K=U^{+}(X) H$ where $H=K \cap T(X)$.
($\mathrm{b} \Leftarrow$) It is clear.
(c) By assumption, $|U(X) / K|$ is a prime number. On the other hand, by (b), $H \leqslant T(X)$ exists such that $K=U^{+}(X) H$, thus $U(X) / K \simeq$ $T(X) / H$ and since every element of $T(X)$ is of order $2,|U(X) / K|=$ 2.

Recall that the Frattini subgroup of a group G is the intersection of all maximal subgroups of G, this subgroup is denoted by $\Phi(G)$, thus $\Phi(G)=\cap_{H \in M a x(G)} H$.

Proposition 2.5. For any topological space X we have
(a) $\Phi(T(X))=\{1\} ;$
(b) $\Phi(U(X))=U^{+}(X)$.

Proof. (a) Let $1 \neq f \in T(X)$, hence there exists $x \in X$ such that $f(x) \neq 1$. One can easily see that $H_{x}=\{g \in T(X): x \in e(g)\} \in$ $\operatorname{Max}(T(X))$ and since $f \notin H_{x}$, we are through.
(b) It is clear that $\Phi(U(X))=U^{+}(X) \Phi(T(X))=U^{+}(X)$.

We conclude this section by the following remark which is useful for the next section and helps us to find an example of two zero dimensional compact spaces X and Y such that $T(X) \simeq T(Y)$ but $X \nsimeq Y$.

Remark 2.6. The subgroup $T(X)$ is indeed the maximal torsion subgroup of $U(X)$ and is \mathbb{Z}_{2}-vector space (via $\left.(n, f) \rightarrow f^{n}\right)$. Clearly φ : $T(X) \rightarrow T(Y)$ is a group homomorphism if and only if it is a vector space homomorphism. Let V be a vector space over a field F and S be a base for V. If $|F|$ and $|S|$ are finite, then $V \simeq F^{|S|}$ and so $|V|=|F|^{|S|}$. Also, if $|F|$ or $|S|$ is infinite, then $|V|=\max \{|F|,|S|\}$. Therefore, if V
and W are F-vector spaces and $|V|=|W|$, then $V \simeq W$ whenever one of the following holds.
(a) F is finite.
(b) $|F|<|V|$.

3. Zero Dimensionality is a Torsion Property

To give the main result of the paper we need to introduce and study a class of subgroups of $T(X)$ and \mathcal{P}-filters on X.

The next two simple facts are needed.
Proposition 3.1. The following statements are equivalent.
(a) $H \in \operatorname{Max}(T(X))$.
(b) $f g \in H$ if and only if $f, g \in H$ or $f, g \notin H$.

Proof. Since $H \in \operatorname{Max}(T(X))$ if and only if $|T(X) / H|=2$, it is easy to prove.

Lemma 3.2. Let $f, g \in T(X)$, then

$$
e(f g)=(e(f) \cap e(g)) \cup(\operatorname{Coe}(f) \cap \operatorname{Coe}(g)) .
$$

Proof. It is evident.
Proposition 3.3. Let X be a topological space and $p \in \beta X$, then $H^{p}=$ $\left\{f \in T(X): p \in c_{\beta X} e(f)\right\}$ is a maximal subgroup of $T(X)$.

Proof. Suppose that $f g \in H^{p}$, by Lemma 3.2

$$
\begin{gathered}
p \in c l_{\beta X} e(f g)=c l_{\beta X}[(e(f) \cap e(g)) \cup(\operatorname{Coe}(f) \cap \operatorname{Coe}(g))] \\
=\left(c l_{\beta X} e(f) \cap c l_{\beta X} e(g)\right) \cup\left(c l_{\beta X} \operatorname{Coe}(f) \cap c l_{\beta X} \operatorname{Coe}(g)\right) .
\end{gathered}
$$

Thus, $p \in\left(c l_{\beta X} e(f) \cap c l_{\beta X} e(g)\right)$ or $p \in\left(c l_{\beta X} \operatorname{Coe}(f) \cap c l_{\beta X} \operatorname{Coe}(g)\right)$ and by Proposition 3.1, $H^{p} \in \operatorname{Max}(T(X))$.

In this section, as we mentioned earlier, $\mathcal{P}(X)$ (briefly \mathcal{P}) stands for the set of all clopen subsets of X and by \mathcal{P}-filter we mean a filter whose
elements are clopen subsets, see ([11] 12E). It is easy to see that if \mathcal{F} is a \mathcal{P}-filter, then

$$
e^{-1}(\mathcal{F})=\{f: e(f) \in \mathcal{F}\}
$$

is a subgroup of $T(X)$. On the other hand $e e^{-1}(\mathcal{F})=\mathcal{F}$ for every \mathcal{P} filter \mathcal{F} on X and since $e(f)=e(g)$ implies $f=g$ for every $f, g \in T(X)$, $H=e^{-1} e(H)$ for every $H \leqslant T(X)$. But if H is a subgroup of $T(X)$, then $e(H)=\{e(f): f \in H\}$ is not necessarily a \mathcal{P}-filter. As an example, $H=\{-1,1\}$ is a subgroup of $T(X)$ while $e(H)$ has not even finite intersection property.

Proposition 3.4. Let X be a topological space and $H \leqslant T(X)$, then the following statements are equivalent.
(a) There exists $p \in \beta X$ such that $H=H^{p}$.
(b) $e(H)$ is a \mathcal{P}-ultrafilter.
(c) The family $e(H)$ has the finite intersection property and is maximal with respect to this property.

Proof. (a) \Rightarrow (b) Let $f_{1}, \cdots, f_{n} \in H$. By definition, $p \in \cap_{i=1}^{n} c l_{\beta X} e\left(f_{i}\right)=$ $c l_{\beta X}\left(\cap_{i=1}^{n} e\left(f_{i}\right)\right)$ and this implies $\cap_{i=1}^{n} e\left(f_{i}\right) \neq \varnothing$, thus $e(H)$ has the finite intersection property, and there exists a \mathcal{P}-ultrafilter \mathcal{F} containing $e(H)$. Therefore, $H=e^{-1} e(H) \subseteq e^{-1}(\mathcal{F})$. Now, since H is maximal, $H=$ $e^{-1}(\mathcal{F})$ and hence $e(H)=e e^{-1}(\mathcal{F})=\mathcal{F}$.
$(\mathrm{b}) \Rightarrow(\mathrm{c})$ It is clear.
(c) \Rightarrow (a) Suppose that H satisfies the condition (c). Since βX is compact, there exists $p \in \beta X$ such that $p \in \cap_{f \in H} c_{\beta X} e(f)$. Clearly H^{p} has the finite intersection property and contains H. Therefore, $H=H^{p}$.

Proposition 3.5. Let X be a topological space and \mathcal{F} be a \mathcal{P}-filter on X, then $e^{-1}(\mathcal{F})$ is a maximal subgroup of $T(X)$ if and only if \mathcal{F} is a \mathcal{P}-ultrafilter on X.

Proof. $\Rightarrow)$ Let $e^{-1}(\mathcal{F})$ be a maximal subgroup of $T(X)$, we have to show that \mathcal{F} is a \mathcal{P}-ultrafilter. Let $\mathcal{F} \subseteq \mathcal{G}$, then $e^{-1}(\mathcal{F}) \subseteq e^{-1}(\mathcal{G})$ and $e^{-1}(\mathcal{F})=e^{-1}(\mathcal{G})$. We infer that $\mathcal{F}=e e^{-1}(\mathcal{F})=e e^{-1}(\mathcal{G})=\mathcal{G}$ and hence \mathcal{F} is a \mathcal{P}-ultrafilter.
$\Leftarrow)$ Since $e e^{-1}(\mathcal{F})=\mathcal{F}$ is a \mathcal{P}-ultrafilter, by Proposition 3.4, it follows that $e^{-1}(\mathcal{F})$ is a maximal subgroup of $T(X)$.

Let X be a topological space, we will denote by \mathcal{M}^{*} the set of all maximal subgroups of $T(X)$ which are of the form H^{p}. Given $f \in T(X)$, we define $\mathcal{M}^{*}(f)=\left\{M \in \mathcal{M}^{*}: f \in M\right\}$ and $\mathbf{M}_{f}^{*}=\bigcap \mathcal{M}^{*}(f)$.

Proposition 3.6. Let X be a topological space, then the following statements are equivalent.
(a) $e(f) \subseteq e(g)$.
(b) $g \in \bigcap \mathcal{M}^{*}(f)$.
(c) $\mathcal{M}^{*}(f) \subseteq \mathcal{M}^{*}(g)$.
(d) $\mathbf{M}_{g}^{*} \subseteq \mathbf{M}_{f}^{*}$.

Proof. $(\mathrm{a} \Rightarrow \mathrm{b})$ Let $f \in H^{p} \in \mathcal{M}^{*}(f)$, then $p \in \operatorname{cl}_{\beta X} e(f) \subseteq c l_{\beta X} e(g)$ and so $g \in H^{p}$. Hence $g \in \bigcap \mathcal{M}^{*}(f)$.
$(\mathrm{b} \Rightarrow \mathrm{c})$ and $(\mathrm{c} \Rightarrow \mathrm{d})$ are trivial.
$\left(\mathrm{d} \Rightarrow\right.$ a) Let $x \in e(f)$, then $f \in H^{x}$ and so $g \in \mathbf{M}_{g}^{*} \subseteq \mathbf{M}_{f}^{*} \subseteq H^{x}$. Therefore $x \in e(g)$.

Recall that a topological space X is called strongly zero dimensional if every two completely separated closed set can be separated by two disjoint clopen subsets of X, see ([4] 6.2).

In the following proposition, only the part (d) may not be well-known.
Proposition 3.7. Let X be a Tychonoff space. Then the following statements are equivalent.
(a) X is strongly zero dimensional.
(b) Every two disjoint $Z_{1}, Z_{2} \in Z(X)$ separate with two disjoint openclosed subset of X.
(c) If $Z \in Z(X), V \in \operatorname{Coz}(X)$ and $Z \subseteq V$, then there exists an openclosed subset U of X such that $Z \subseteq U \subseteq V$.
(d) The set $\left\{c_{\beta X} e(f): f \in T(X)\right\}$ is an open base for βX.
(e) βX is a zero dimensional space.
(f) βX is a strongly zero dimensional space.

Proof. We only prove (c) \Rightarrow (d), for the reminder of the proof, see ([4]
6.2). Suppose that W is an open subset of βX and $p \in W$. Clearly there exist a zero set A and a cozero set V in βX such that

$$
\begin{equation*}
p \in \operatorname{int}_{\beta X} A \subseteq A \subseteq V \subseteq \operatorname{cl}_{\beta X} V \subseteq W \tag{1}
\end{equation*}
$$

By (c), there exists a clopen subset U of X such that

$$
\begin{equation*}
A \cap X \subseteq U \subseteq V \cap X \tag{2}
\end{equation*}
$$

Both (1) and (2) implies that
$p \in \operatorname{cl}_{\beta X} \operatorname{int}_{\beta X} A=\operatorname{cl}_{\beta X}\left(X \cap \operatorname{int}_{\beta X} A\right) \subseteq \operatorname{cl}_{\beta X}(X \cap A) \subseteq \mathrm{cl}_{\beta X} U \subseteq \mathrm{cl}_{\beta X} V \subseteq W$.
Clearly $U=e(f)$ for some $f \in T(X)$ and so we are through.
Proposition 3.8. Let X be a topological space, then
(a) The set $\left\{\mathcal{M}^{*}(f): f \in T(X)\right\}$ is a base for the closed sets of a topology on \mathcal{M}^{*}, which we call it the Zariski-like topology;
(b) \mathcal{M}^{*} with Zariski-like topology is compact;
(c) If X is strongly zero dimensional, then \mathcal{M}^{*} with this topology is Hausdorff.

Proof. (a) It is clear that for every $f, g \in T(X), e(f) \cup e(g)$ is both open and closed in X and hence there exists $h \in T(X)$ such that $e(h)=$ $e(f) \cup e(g)$. It is enough to show that $\mathcal{M}^{*}(f) \cup \mathcal{M}^{*}(g)=\mathcal{M}^{*}(h)$. To prove this

$$
\begin{aligned}
H^{p} \in \mathcal{M}^{*}(f) \bigcup \mathcal{M}^{*}(g) & \Leftrightarrow p \in c l_{\beta X} e(f) \cup c l_{\beta X} e(g)=c l_{\beta X} e(h) \\
& \Leftrightarrow H^{p} \in \mathcal{M}^{*}(h) .
\end{aligned}
$$

(b) Suppose $\left\{\mathcal{M}^{*}\left(f_{\alpha}\right)\right\}_{\alpha \in A}$ is a family of basic closed subset of \mathcal{M}^{*} with the finite intersection property. We can easily see that $\left\{c l_{\beta X} e\left(f_{\alpha}\right)\right\}_{\alpha \in A}$ has the finite intersection property and consequently there exists $p \in \beta X$ such that $p \in \cap_{\alpha \in A} c l_{\beta X} e\left(f_{\alpha}\right)$. Therefore

$$
\begin{gathered}
\forall \alpha \in A, \quad f_{\alpha} \in H^{p} \Leftrightarrow \forall \alpha \in A, H^{p} \in \mathcal{M}^{*}\left(f_{\alpha}\right) \Leftrightarrow H^{p} \in \bigcap_{\alpha \in A} \mathcal{M}^{*}\left(f_{\alpha}\right) \\
\therefore \bigcap_{\alpha \in A} \mathcal{M}^{*}\left(f_{\alpha}\right) \neq \varnothing
\end{gathered}
$$

(c) Let $H^{p}, H^{q} \in \mathcal{M}^{*}$ where $p \neq q$. Since X is strongly zero dimensional, by Proposition 3.7, there exists $f \in T(X)$ such that $p \in$ $c l_{\beta X} e(f), q \notin c l_{\beta X} e(f)$ and so $p \notin c l_{\beta X} e(-f), q \notin c l_{\beta X} e(f)$. Therefore, $H^{p} \notin \mathcal{M}^{*}(-f), H^{q} \notin \mathcal{M}^{*}(f)$ and $\mathcal{M}^{*}(f) \bigcup \mathcal{M}^{*}(-f)=\mathcal{M}^{*}$.

Proposition 3.9. Let X be a zero dimensional compact topological space, then $\varphi: X \longrightarrow \mathcal{M}^{*}$ defined by $\varphi(p)=H^{p}$ induces a homeomorphism between X and \mathcal{M}^{*}.

Proof. It is clear that φ is bijection. It is sufficient to show that this function maps a base for X to a base for \mathcal{M}^{*}. To this end we write

$$
\begin{gathered}
\varphi(e(f))=\{\varphi(p) \in X: p \in e(f)\} \\
=\left\{H^{p} \in \mathcal{M}^{*}: p \in e(f)\right\}=\left\{H^{p} \in \mathcal{M}^{*}: f \in H^{p}\right\}=\mathcal{M}^{*}(f)
\end{gathered}
$$

which completes the proof.
Definition 3.10. Let X and Y be topological spaces. $T(X)$ and $T(Y)$ are said to be strongly isomorphic if there exists an isomorphism from $T(X)$ to $T(Y)$ such that it maps $\mathcal{M}^{*}(T(X))$ onto $\mathcal{M}^{*}(T(Y))$.

Proposition 3.11. If X and Y are zero dimensional compact topological spaces, then X and Y are homeomorphic if only if $T(X)$ and $T(Y)$ are strongly isomorphic.

Proof. $\Rightarrow)$ Let $\psi: X \longrightarrow Y$ be a homeomorphism. We define φ : $T(Y) \longrightarrow T(X)$ by $\varphi(g)=g \circ \psi$. It can be easily shown that φ is an isomorphism. We show that φ is onto. Supposing $f \in T(X)$, we put $g=f \circ \psi^{-1}$. It is easy to show that $g \in T(Y)$ and $\varphi(g)=f$. Now, let $p \in X$ and $q=\psi(p)$, then

$$
\begin{aligned}
g \in H^{q}(Y) & \Leftrightarrow g(q)=1 \Leftrightarrow g \psi \psi^{-1}(q)=1 \Leftrightarrow g \psi(p)=1 \\
& \Leftrightarrow g \circ \psi \in H^{p}(X) \Leftrightarrow \varphi(g) \in H^{p}(X) .
\end{aligned}
$$

$\Leftarrow)$ By Proposition 3.9 and the hypothesis, it is clear that

$$
X \simeq \mathcal{M}^{*}(T(X)) \simeq \mathcal{M}^{*}(T(Y)) \simeq Y
$$

Proposition 3.12. If X and Y are topological spaces, then the following statements are equivalent.
(a) $T(X) \simeq T(Y)$.
(b) $|T(X)|=|T(Y)|$.
(c) $|\mathcal{P}(X)|=|\mathcal{P}(Y)|$.

Proof. $(\mathrm{a}) \Leftrightarrow(b)$ is clear, by Remark 2.6. Recall that $|T(X)|=|\mathcal{P}(X)|$ for any topological space X, so $(\mathrm{b}) \Leftrightarrow(\mathrm{c})$ is also clear.

Example 3.13. Let \mathbb{Q}^{*} be the one point compactification of the \mathbb{Q}, ω_{1} be the smallest uncountable ordinal and $W^{*}=\{\alpha: \alpha$ is an ordinal and $\left.\alpha \leqslant \omega_{1}\right\}$. One can easily see that $\left|T\left(\mathbb{Q}^{*}\right)\right|=c=\left|T\left(W^{*}\right)\right|$ and by Proposition $3.12, T\left(\mathbb{Q}^{*}\right) \simeq T\left(W^{*}\right)$ while $\left|\mathbb{Q}^{*}\right| \neq\left|W^{*}\right|$. Now, suppose $|A|=c$, $X=\cup_{\alpha \in A} X_{\alpha}$ is the disjoint union of copies of \mathbb{Q}, and X^{*} is the one point compactification of X. Then clearly $\left|X^{*}\right|=\left|W^{*}\right|$ and one can similarly show that $T\left(X^{*}\right) \simeq T\left(W^{*}\right)$ while $X^{*} \not 千 W^{*}$. These examples show that $T(X)$ and $T(Y)$ can be isomorphic but not strongly isomorphic (even if $|X|=|Y|)$. Note that if $T(X)$ and $T(Y)$ are strongly isomorphic, then it may there exists an isomorphism between them which is not strong; it is sufficient to define an isomorphism such that sends $f \neq-1$ to -1

Definition 3.14. We say that a subgroup H of $T(X)$ is saturated if $f \in$ H and $e(f) \subseteq e(g)$ imply that $g \in H$.

Lemma 3.15. Let $H \leqslant T(X)$ be saturated. Then $e(H)$ is closed under finite intersection.

Proof. Let $f, g \in H$; it is enough to show that $e(f) \cap e(g) \in e(H)$. For simplicity we let $A=e(f)$ and $B=e(g)$, then by assumption

$$
D=e(f g) \cup(A \backslash B)=(B \backslash A)^{c} \in e(H)
$$

Therefore, $\lambda_{D} \in H$ and hence $g \lambda_{D} \in H$. Thus, $A \cap B=e\left(g \lambda_{D}\right) \in$ $e(H)$.

Corollary 3.16. Let $H \leqslant T(X)$, then $e(H)$ is a \mathcal{P}-filter if and only if H is saturated and $-1 \notin H$.

Corollary 3.17. A subgroup H of $T(X)$ is saturated if and only if $h \in$ H and $1+h+f \in T(X)$ imply $-f \in H$.

Proof. \Rightarrow) Suppose $h \in H$ and $1+h+f \in T(X)$. It is clear that $e(h) \cap e(f)=\varnothing$ and hence $e(h) \subseteq e(-f)$. Thus $-f \in H$.
$\Leftarrow)$ Let $h \in H$ and $e(h) \subseteq e(f)$, thus $e(h) \cap e(-f)=\varnothing$. It is easy to see that $1+h-f \in T(X)$ and hence $f \in H$.

Corollary 3.18. $e(H)$ is a \mathcal{P}-filter if and only if $-1 \notin H$ and if $h \in H$ and $1+h+f \in T(X)$, then $-f \in H$.

Proof. By Corollaries 3.16 and 3.17, it is clear.
Definition 3.19. Let X be a topological space. We will denote by $R T(X)$ the ring generated by $T(X)$.

Proposition 3.20. If

$$
R=\{f \in C(X), f(X) \text { is finite, and } f(X) \subseteq 2 \mathbb{Z} \text { or } f(X) \subseteq 2 \mathbb{Z}+1\}
$$

then $R T(X)=R$.
Proof. One can easily see that R is indeed a ring that contains $T(X)$ and consequently $R T(X) \subseteq R$. Now, let $f \in R$ i.e., $f \in C(X)$ and $f(X)=\left\{m_{1}, \cdots, m_{k}\right\}$ is a subset of $2 \mathbb{Z}$ or $2 \mathbb{Z}+1$. We have to show $f \in R T(X)$. It is clear that $A_{i}=f^{-1}\left\{m_{i}\right\}$ is a clopen subset of X. Thus it is enough to prove that the equation $f=x_{1}+\sum_{i=2}^{k} x_{i} \lambda_{A_{i}}$ has a solution for x_{1}, \cdots, x_{k} in \mathbb{Z}. If we take $a_{i} \in A_{i}(i=1, \cdots, k)$, then we get the following equations

$$
\left\{\begin{array}{c}
x_{1}-x_{2}-x_{3}-\cdots-x_{k}=m_{1} \\
x_{1}+x_{2}-x_{3}-\cdots-x_{k}=m_{2} \\
\vdots \\
x_{1}-x_{2}-x_{3}-\cdots+x_{k}=m_{k}
\end{array}\right.
$$

and we simply obtain the equivalent system of equations below.

$$
\left\{\begin{array}{c}
x_{1}-x_{2}-x_{3}-\cdots-x_{k}=m_{1} \\
x_{2}=\frac{m_{2}-m_{1}}{2} \\
\vdots \\
x_{k}=\frac{m_{k}-m_{1}}{2}
\end{array}\right.
$$

Now, since all the elements of the set $\left\{m_{1}, \cdots, m_{k}\right\}$ are even or all are odd, the above system has a solution in \mathbb{Z}.

In [5] and [6] it is defined that $C_{C}(X)=\{f \in C(X): f(X)$ is countable $\}$ and $C^{F}(X)=\{f \in C(X):|f(X)|<\infty\}$. Clearly the ring R in Proposition 3.20, is a subring of $C^{F}(X)$. The following result is proved in [6].

Theorem 3.21. Let X be a topological space. Then there exists a zero dimensional space Y such that $C_{C}(X) \simeq C_{C}(Y)\left(C^{F}(X) \simeq C^{F}(Y)\right)$.

The above theorem shows that, without loss of generality one may assume that X is a zero dimensional space. Therefore, considering this comment, the following fact which is our main result is in order.

Theorem 3.22. Let X and Y be compact zero dimensional spaces. Then $R T(X) \simeq R T(Y)$ if and only if $X \simeq Y$.

Proof. $\Rightarrow)$ Suppose $\varphi: R T(X) \longrightarrow R T(Y)$ is an isomorphism. It is sufficient to show that $\varphi(T(X))=T(Y)$ and φ maps the set $\mathcal{M}^{*}(X)$ onto $\mathcal{M}^{*}(Y)$. It is clear that $\varphi(T(X)) \subseteq T(Y)$. Now, let $g \in T(Y)$, then $f \in R T(X)$ exists such that $\varphi(f)=g$. Therefore, since φ is one-one, we can write $\varphi\left(f^{2}\right)=(\varphi(f))^{2}=g^{2}=1$ which implies $f^{2}=1$ and therefore $f \in T(X)$. Now, we have to prove that $\varphi\left(\mathcal{M}^{*}(X)\right)=\mathcal{M}^{*}(Y)$. To this end it is sufficient to show that $e\left(H^{p}(X)\right)$ is a \mathcal{P}-filter if and only if $e\left(\varphi\left(H^{p}(X)\right)\right)$ is such. It is clear that

$$
-1 \notin H^{p} \quad \Leftrightarrow \quad-1=\varphi(-1) \notin \varphi\left(H^{p}\right)
$$

On the other hand

$$
\begin{gathered}
f \in H^{p}, \quad 1+f+g \in T(X) \Leftrightarrow \\
\varphi(f) \in \varphi\left(H^{p}\right), \quad \varphi(1+f+g)=1+\varphi(f)+\varphi(g) \in T(Y) .
\end{gathered}
$$

It is also clear that $-g \in H^{p}$ if and only if $-\varphi(g) \in \varphi\left(H^{p}\right)$. Hence, by Corollary 3.18, we are through.
$\Leftrightarrow)$ It is obvious.

Corollary 3.23. $T(X)$ and $T(Y)$ are strongly isomorphic if and only if $R T(X) \simeq R T(Y)$.

References

[1] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addision-wesley, Reading Mass, 1969.
[2] F. Azarpanah, Essential ideals in $C(X)$, Period. Math. Hungar., 12 (1995), 105-112.
[3] F. Azarpanah and M. Motamedi, Zero divisor graph of $C(X)$, Acta Math. Hungar., 108 (1-2) (2005), 25-36.
[4] R. Engelking, General Topology, PWN-Polishc Scientific Publishing, 1977.
[5] M. Ghademazi, On Scattered Spaces via $C(X)$, Ph.D. Thesis, 2009.
[6] M. Ghademazi, O. R. S. Karamzadeh, and M. Namdari, On functionally countable subalgebra of $C(X)$, Rend. Sem. Mat. Univ. Padova, 129 (2013), 47-69.
[7] L. Fuchs, Infinite Abelian Groups, Acadecic Press N. Y., 1970.
[8] L. Gillman and M. Jerison, Rings of Continuous Functions, Van. Nostrand Reinhold, New York, 1960.
[9] D. J. S. Robinson, A Course in the Theory of Groups, Springer Verlag, 1982.
[10] R. Raphael, Rings which are generated by their units, Journal of Algebra, 28 (1994), 199-205.
[11] S. Willard, General Topology, Addison Wesly, Reading, Mass., 1970.

Ali Rezaei Aliabad
Department of Mathematics
Associate Professor of Mathematics
Chamran University
Ahvaz, Iran
E-mail: aliabady_r@scu.ac.ir

Mansoor Motamedi
Department of Mathematics
Professor of Mathematics
Chamran University
Ahvaz, Iran
E-mail: motamedi_m@scu.ac.ir

[^0]: Received: December 2012; Accepted: May 2013

 * Corresponding author

