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1 Introduction

The different types dual problems attributed to an optimization problem
and the existing relationships between their solutions are one of the most
important topics that are studied in optimization theory, which leads to
finding algorithms and methods for solving the optimization problem
(see [3]). In general, for a given function f : Rn → R and a set D ⊆ Rn,
the dual problem of the minimization problem minx∈D f(x) is in the
form of the maximization problem maxz∈E ϕ(z), where the set E ⊆ Rm
and the function ϕ : Rm → R are defined in terms of f and D.

The purpose of the duality theory is that if x̂ and ẑ are optimal
solutions of the the primal and dual problems, respectively, first it finds
the relationship between f(x̂) and ϕ(ẑ), introduces conditions that are
equal, and then finds the relationship between x̂ and ẑ; see, e.g., [5].

As an important case, for the classical optimization problem (OP, in
brief), the feasible set D is defined as

D := {x ∈ Rn | gj(x) ≤ 0, j = 1, . . . , r},

where the functions gj : Rn → R are given. The most famous duals for
OP are in the Lagrange type, the Fenchel type, the Wolfe type, and the
Mond-Weir type. To observe the duality theory for OP, we can refer to
[2, 12, 13, 14, 17] and their references.

A difficult category of optimization problems introduced by Kansow
in [1, 6] is mathematical programs with vanishing constraints (MPVC).
The general form of this problem is as follows:

(P ) : min f(x) s.t. x ∈ S, (1)

in which

S := {x ∈ Rn| Hi(x) ≥ 0, Gi(x)Hi(x) ≤ 0, i = 1, . . . ,m}, (2)

where, for each i ∈ {1, . . . ,m}, the functions f , Hi and Gi are defined
from Rn to R. The optimality conditions for MPVCs, as a category of
problems containing multiplicative constraints, have been considered by
many researchers; for example, one can refer to [7, 8, 9] for the continu-
ously differentiable case, to [10, 11, 16, 18] for the locally Lipschitz case,
and to [19, 20] for the convex case.
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The Wolfe type dual problem to the MPVCs with continuously data
were considered by Mishra et al in [15]. The purpose of this paper is to
investigate the Wolfe type dual in the case of that the functions f , Gi
and Hi are locally Lipschitz and non-differential. It seems natural that
a suitable subdifferential is used instead of a differential in this process,
which due to condition of being locally Lipschitz for functions, the Clarke
subdifferential seems more suitable than the other subdifferentials.

The remaining sections of this article are arranged as follows; in Sec-
tion 2, we will introduce definitions and theorems of nonsmooth analysis
that will be used in the preparation of the main provisions. The main
results of the paper are presented in Section 3. As we shall see, we
consider two kinds of Wolf type dual problems for (P ) in nonsmooth
cases.

2 Preliminaries

This section contains some material on nonsmooth analysis widely used
in what follows. We refer the reader to the books by Clarke [4] for details
and examples.

Definition 2.1. Let B ⊆ Rn. The polar cone of B is defined by

B− := {x ∈ Rn| 〈x, d〉 ≤ 0, ∀d ∈ B} .

Definition 2.2. The Bouligand tangent cone (cotingent cone) Γ(A, x̂)
of ∅ 6= A ⊆ Rn at x̂ ∈ A is defined by

Γ(A, x̂) := {v ∈ Rn | ∃tr ↓ 0, ∃vr → v such that x̂+ trvr ∈ A, ∀r ∈ N} .

Definition 2.3. The function f : Rn → R is called locally Lipschitz
if for every z ∈ Rn there exist a neighbourhood U of z and a positive
constant LU such that

|f(x)− f(y)| ≤ LU ‖x− y‖ , ∀x, y ∈ U.

Definition 2.4. For a given locally Lipschitz function f : Rn → R, the
generalized Clarke directional derivative and the Clarke subdifferential
of f at x̂ ∈ Rn are defined as

f0(x̂; d) := lim sup
y→x̂, t↓0

f(y + td)− f(y)

t
,
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∂cf(x̂) :=
{
ζ ∈ Rn | f0(x̂; d) ≥ 〈ζ, d〉 , ∀d ∈ Rn

}
.

Theorem 2.5. Suppose that f, g : Rn → R are locally Lipschitz func-
tions. Then, the following relations hold:

∂c(f + g)(x) ⊆ ∂cf(x) + ∂cg(x), ∀x ∈ Rn,

∂c(αf)(x) = α∂cf(x), ∀α ∈ R, ∀x ∈ Rn.

Definition 2.6. [12] For a given function η : Rn × Rn → Rn, a locally
Lipschitz function f : Rn → R is said to be

(i): η-invex at x̂ ∈ Rn if for each x ∈ Rn one has:

f(x)− f(x̂) ≥ 〈ζ, η(x, x̂)〉 , ∀ζ ∈ ∂cf(x̂).

(ii): strict η-invex at x̂ ∈ Rn if for each x ∈ Rn one has:

f(x)− f(x̂) > 〈ζ, η(x, x̂)〉 , ∀ζ ∈ ∂cf(x̂).

If f : Rn → R is η-invex or strict η-invex at x̂, then η is named the
kernel of f at x̂.

3 Main Results

In this section, we consider the problem (P ), defined in (1), with the
feasible set S 6= ∅, defined in (2), in which the emerging functions f , Hi,
and Gi are locally Lipschitz for each i = 1, . . . ,m. At starting point, for
each feasible point x ∈ S, we define the following index sets:

I+0(x) := {i ∈ {1, . . . ,m} : Hi(x) > 0, Gi(x) = 0} ,
I+−(x) := {i ∈ {1, . . . ,m} : Hi(x) > 0, Gi(x) < 0} ,
I0+(x) := {i ∈ {1, . . . ,m} : Hi(x) = 0, Gi(x) > 0} ,
I0−(x) := {i ∈ {1, . . . ,m} : Hi(x) = 0, Gi(x) < 0} ,
I00(x) := {i ∈ {1, . . . ,m} : Hi(x) = 0, Gi(x) = 0} ,
I+(x) := I+0(x) ∪ I+−(x),

I0(x) := I0+(x) ∪ I0−(x) ∪ I00(x).
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It is easy to see that for each x ∈ S we have {1, . . . ,m} = I+(x)∪ I0(x).
As mentioned in Introduction, for each feasible point x ∈ S, we

consider the following two kinds of dual problems (WDx
1 ) and (WDx

2 )
in Wolfe type for (P ):

(WDx
1 ) : max f(y) +

m∑
i=1

(
−αiHi(y) + βiGi(y)

)
,

s.t.


0 ∈ ∂c

(
f(·) +

m∑
i=1

(
−αiHi(·) + βiGi(·)

))
(y),

αi ≥ 0, i ∈ I+(x),
βi ≤ 0, i ∈ I0+(x),
βi ≥ 0, i ∈ I0−(x) ∪ I+−(x),

(WDx
2 ) : max f(y) +

m∑
i=1

(
−αiHi(y) + βiGi(y)

)
,

s.t.


0 ∈ ∂cf(y)−

m∑
i=1

αi∂cHi(y) +
m∑
i=1

βi∂cGi(y),

αi ≥ 0, i ∈ I+(x),
βi ≤ 0, i ∈ I0+(x),
βi ≥ 0, i ∈ I0−(x) ∪ I+−(x).

The feasible sets of (WDx
1 ) and (WDx

2 ) are respectively denoted
by Sx1 and Sx2 . In this paper we take α := (α1, . . . , αm) and β :=
(β1, . . . , βm).

Remark 3.1. Taking into account the well-known inclusion

∂c

(
f(·) +

m∑
i=1

(
−αiHi(·) + βiGi(·)

))
(y) ⊆ ∂cf(y)

−
m∑
i=1

αi∂cHi(y) +
m∑
i=1

βi∂cGi(y),

we obtain that Sx1 ⊆ Sx2 , and equality holds if the functions f , Gi, and
−Hi are convex or differentiable at y for all i ∈ {1, . . . ,m} (see, e.g. [4]).
Thus, (WDx

1 ) and (WDx
2 ) are both generalizations of the dual problem

VC-WD(x) that is defined in [15].
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We can state the weak duality result for (WDx
1 ) as follows.

Theorem 3.2. (First Weak Duality) Suppose that the feasible points
x ∈ S and (y, α, β) ∈ Sx1 are given for (P ) and (WDx

1 ), respectively. If

f(·) +
m∑
i=1

(
−αiHi(·) + βiGi(·)

)
is η-invex at y, then,

f(x) ≥ f(y) +
m∑
i=1

(
−αiHi(y) + βiGi(y)

)
.

Proof. Assume on the contrary that

f(x) < f(y) +
m∑
i=1

(
−αiHi(y) + βiGi(y)

)
. (3)

Owing to x ∈ S and (y, α, β) ∈ Sx1 , we can obtain that,
−Hi(x) < 0, αi ≥ 0, ∀i ∈ I+(x),
−Hi(x) = 0, αi ∈ R, ∀i ∈ I0(x),
Gi(x) > 0, βi ≤ 0, ∀i ∈ I0+(x),
Gi(x) = 0, βi ∈ R, ∀i ∈ I00(x) ∪ I+0(x),
Gi(x) < 0, βi ≥ 0, ∀i ∈ I0−(x) ∪ I+−(x),

and hence,
m∑
i=1

(
−αiHi(x) + βiGi(x)

)
≤ 0. (4)

Adding both sides of (3) and (4), we conclude that:

f(x) +
m∑
i=1

(
−αiHi(x) + βiGi(x)

)
< f(y) +

m∑
i=1

(
−αiHi(y) + βiGi(y)

)
.

By the above inequality and the η-invexity of f(·)+
m∑
i=1

(
−αiHi(·) + βiGi(·)

)
at y, for each ζ ∈ ∂c

(
f(·) +

m∑
i=1

(
−αiHi(·) + βiGi(·)

))
(y) one has:

〈ζ, η(x, y)〉 ≤

(
f(x) +

m∑
i=1

(
−αiHi(x) + βiGi(x)

))
−
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(
f(y) +

m∑
i=1

(
−αiHi(y) + βiGi(y)

))
< 0. (5)

Now, since 0 ∈ ∂c
(
f(·) +

m∑
i=1

(
−αiHi(·) + βiGi(·)

))
(y) by feasibility of

(y, α, β), owing to (5), we get,

0 = 〈0, η(x, y)〉 < 0.

This contradiction proves the result. �
In order to analyze the (WDx

2 ), we will need the following index sets
in the future. Giving (y, α, β) ∈ Sx2 , put:

I++ (x) := {i ∈ I+(x) : αi > 0} ,
I+0 (x) := {i ∈ I0(x) : αi > 0} ,
I−0 (x) := {i ∈ I0(x) : αi < 0} ,
I−0+(x) := {i ∈ I0+(x) : βi < 0} ,
I−00(x) := {i ∈ I00(x) : βi < 0} ,
I−+0(x) := {i ∈ I+0(x) : βi < 0} ,
I+00(x) := {i ∈ I00(x) : βi > 0} ,
I++0(x) := {i ∈ I+0(x) : βi > 0} ,
I+0−(x) := {i ∈ I0−(x) : βi > 0} ,
I++−(x) := {i ∈ I+−(x) : βi > 0} .

For simplicity, consider the following set, which includes the objective
function f and a number of constraint functions:

Ω(x) :=
{
f, Hi for i ∈ I−0 (x), Gi for i ∈ I+00(x) ∪ I+0−(x) ∪ I++0(x) ∪ I++−(x),

R −Hi for i ∈ I++ (x) ∪ I+0 (x), −Gi for i ∈ I−0+(x) ∪ I−00(x) ∪ I−+0(x)
}
.

Following theorem presents the weak duality result for (WDx
2 ).

Theorem 3.3. (Second Weak Duality) Suppose that x ∈ S and
(y, α, β) ∈ Sx2 are feasible points for the problems (P ) and (WDx

2 ), re-
spectively. If all the functions in Ω(x) are η-invex at y by a common
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kernel η, then

f(x) ≥ f(y) +

m∑
i=1

(
−αiHi(y) + βiGi(y)

)
.

Proof. According to 0 ∈ ∂cf(y) −
m∑
i=1

αi∂cHi(y) +
m∑
i=1

βi∂cGi(y), we

can find some ζf ∈ ∂cf(y), ζHi ∈ ∂cHi(y), and ζGi ∈ ∂cGi(y), for i =
1, . . . ,m, satisfying

ζf −
m∑
i=1

αiζ
H
i +

m∑
i=1

βiζ
G
i = 0. (6)

Let i ∈ I+(x). If i ∈ I++ (x), the η-invexity of −Hi, the inequality αi > 0,
and the fact that −ζHi ∈ −∂cHi(y) = ∂c

(
−Hi

)
(y) imply

− αiHi(x)−
(
− αiHi(y)

)
≥
〈
− αiζHi , η(x, y)

〉
. (7)

If i ∈ I+ \I++ (x), by (y, α, β) ∈ Sx2 and definition of I++ (x) we get αi = 0,
and so, (7) is automatically correct. Thus, we have:

∑
i∈I+

−αiHi(x)−
∑
i∈I+

−αiHi(y) ≥
〈∑
i∈I+

−αiζHi , η(x, y)
〉
.

Similarly, by the η-invexity of f , −Hi for i ∈ I++ (x) ∪ I+0 (x), Hi for
i ∈ I−0 (x), −Gi for i ∈ I−0+(x) ∪ I−00(x) ∪ I−+0(x), and Gi for i ∈ I+00(x) ∪
I+0−(x) ∪ I++0(x) ∪ I++−(x) at y, we conclude that:

f(x)− f(y) ≥
〈
ζf , η(x, y)

〉
,

−
m∑
i=1

αiHi(x) +
m∑
i=1

αiHi(y) ≥
〈 m∑
i=1
−αiζHi , η(x, y)

〉
,

m∑
i=1

βiGi(x)−
m∑
i=1

βiGi(y) ≥
〈 m∑
i=1

βiζ
G
i , η(x, y)

〉
.

(8)
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Adding the above three inequalities, and owing to (6), we obtain that

f(x)− f(y)−
m∑
i=1

αiHi(x) +
m∑
i=1

αiHi(y) +
m∑
i=1

βiGi(x)−
m∑
i=1

βiGi(y)

≥
〈
ζf −

m∑
i=1

αiζ
H
i +

m∑
i=1

βiζ
G
i , η(x, y)

〉
= 0.

Therefore,

f(y)+
m∑
i=1

(
−αiHi(y)+βiGi(y)

)
≤ f(x)+

m∑
i=1

(
−αiHi(x)+βiGi(x)

)
≤ f(x),

where the last inequality satisfies by (4). �
To compare two weak duality Theorems 3.2 and 3.3, we must note

that condition

0 ∈ ∂c

(
f(·) +

m∑
i=1

(
−αiHi(·) + βiGi(·)

))
(x̂),

in Theorem 3.2 is stronger than condition

0 ∈ ∂cf(x̂) +
m∑
i=1

(−αiHi(x̂) + βiGi(x̂)),

in Theorem 3.3, but, the condition of η-invexity for functions within
Ω(x̂) in Theorem 3.3 is stronger than the condition of η-invexity for

f(·) +

m∑
i=1

(
−αiHi(·) + βiGi(·)

)
.

So, none of these two theorems is stronger than another one, and each
of them is used in cases where the other is not used.

It should be noted that Theorems 3.2 and 3.3 are generalizations of
[15, Theorem 3] to nonsmooth MPVCs. Moreover, their results state
that:

min
x∈S

f(x) ≥ max
(y,α,β)∈Sx

1

f(y) +
m∑
i=1

(
−αiHi(y) + βiGi(y)

)
, (9)

min
x∈S

f(x) ≥ max
(y,α,β)∈Sx

2

f(y) +
m∑
i=1

(
−αiHi(y) + βiGi(y)

)
. (10)
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We say that the strong duality holds if the inequality increases to equal-
ity in (9) and\or (10). As we know from the classical optimization
theory, the Karush-Kahn-Tucker (KKT) necessary condition is required
for satisfying the strong duality equalities. Since all presented KKT
conditions for MPVCs are in the form of

0 ∈ ∂cf(x̂) +

m∑
i=1

(
−αi∂cHi(x̂) + βi∂cGi(x̂)

)
,

in the following we will prove the strong duality theorem only for (WDx
2 ).

It is clear that to prove the strong duality theorem for (WDx
1 ), we need

to prove some new forms of necessary KKT conditions as

0 ∈ ∂c

(
f(·) +

m∑
i=1

(
−αiHi(·) + βiGi(·)

))
(x̂),

which are more precise than the existed ones, and require a separate
research.

For stating the strong duality result for (WDx
2 ), the following defi-

nition and theorem are required from [16].

Definition 3.4. We say that (P ) satisfies the “generalized V C4-Abadie
constraint qualification” (GV C4 − ACQ, in short) at x̂ ∈ S, if A4

− ⊆
Γ(S, x̂) and cone

(
A4

)
is a closed subset of Rn, where A4 is defined as:

A4 :=
( ⋃
i∈I0

∂cHi(x̂)
)
∪
( ⋃
i∈I0+

−∂cHi(x̂)
)
∪
( ⋃
i∈I+0∪I00

∂cGi(x̂)
)
,

and cone
(
A4

)
denotes the convex cone of A4.

Theorem 3.5. [16, Theorem 4(iii)] Suppose that x̂ is a local solution
of (P ) and GV C4 −ACQ holds at x̂. Then, there exist real coefficients
αi and βi (for each i ∈ {1, . . . ,m}) such that

0 ∈ ∂cf(x̂) +
m∑
i=1

(
− αi∂cHi(x̂) + βi∂cGi(x̂)

)
,

αi = 0 for i ∈ I+; αi free for i ∈ I0+; αi ≥ 0 for i ∈ I0− ∪ I00,

βi = 0 for i ∈ I+− ∪ I0+ ∪ I0−; βi ≥ 0 for i ∈ I+0 ∪ I00.

(11)
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For study the properties of GV C4 − ACQ and its relationship with
other constraint qualifications, we can refer to [16].

Theorem 3.6. (Strong Duality) Assume that x̂ ∈ S is a local so-
lution for (P ) and GV C4 − ACQ holds at x̂. Then, there exist some
vectors α̂ ∈ Rm and β̂ ∈ Rm such that (x̂, α̂, β̂) ∈ Sx̂2 .

Furthermore, if all the functions in Ω(x̂) are η-invex by a common
kernel η, then (x̂, α̂, β̂) is a global solution of the problem (WDx

2 ), and

f(x̂) = f(x̂) +
m∑
i=1

(
−α̂iHi(x̂) + β̂iGi(x̂)

)
.

Proof. Employing Theorem 3.5, there exist some multipliers α̂i and
β̂i, for i ∈ {1, . . . ,m}, such that (11) holds. Clearly, (x̂, α̂, β̂) satisfies
in constraints of problem (WDx

2 ), i.e., (x̂, α̂, β̂) ∈ Sx̂2 . Suppose that an
index î ∈ {1, . . . ,m} is given. If î ∈ I+, then α̂îHî(x̂) = 0 by (11); and

if î ∈ I0, then α̂îHî(x̂) = 0 by the definition of index set I0. Similarly,

we can see β̂îGî(x̂) = 0, and so

m∑
i=1

(
− α̂iHi(x̂) + β̂iGi(x̂)

)
= 0. (12)

Now, if (y, α, β) ∈ Sx̂2 is given, by the second weak duality Theorem 3.3
we have

f(x̂) ≥ f(y) +
m∑
i=1

(
−αiHi(y) + βiGi(y)

)
.

The above inequality and (12) imply that

f(x̂) +

m∑
i=1

(
− α̂iHi(x̂) + β̂iGi(x̂)

)
≥ f(y) +

m∑
i=1

(
−αiHi(y) + βiGi(y)

)
,

for all (y, α, β) ∈ Sx̂2 , that is, (x̂, α̂, β̂) is a global maximum of the (WDx
2 ),

as required. Finally, (12) concludes

f(x̂) = f(x̂) +

m∑
i=1

(
−α̂iHi(x̂) + β̂iGi(x̂)

)
,

and the proof is completed. �
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Remark 3.7. The following points are noteworthy about strong duality
Theorem 3.6.

i) We can replace GV C4−ACQ with each stronger constraint quali-
fications; see a complete list of the various constraint qualifications
for nonsmooth MPVCs in [10, 11, 16, 18]. It should be noted that,
as shown in [10], GV C4−ACQ cannot be replaced by some weaker
constraint qualifcations, which are called Guignard-type constraint
qualifications.

ii) Since the coefficients of functions Hi for i ∈ I+ and Gi for i ∈
I+−∪I0+∪I0− are zero in (11), the assumption of η-invexity of the
functions within Ω(x̂) can be changed to the weaker assumption
of η-invexity of functions within Ω1(x̂), in which

Ω1(x̂) = Ω(x̂) \
{
−Hi

(
i ∈ I++ (x̂)

)
, Gi

(
i ∈ I+0−(x̂) ∪ I++−(x̂)

)}
.

iii) As seen in the proof of Theorem 3.6, GV C4 − ACQ leads to (11)
which is stronger than the required inclusion (x̂, α̂, β̂) ∈ Sx̂2 . So,
it seems possible to define a weaker constraint qualification that
leads to (x̂, α̂, β̂) ∈ Sx̂2 that is exactly equivalent to (x̂, α̂, β̂) ∈ Sx̂2 .
Of course, fiding such a constraint qualification can be proposed
as topic of a independent and difficult research for interested re-
searchers.

Theorem 3.8. (Strict Converse Duality) Suppose that x̂ ∈ S is a
local minimum for the (P ), and GV C4−ACQ holds at x̂. Furthermore,
assume that (ŷ, ᾱ, β̄) ∈ Sx̂2 is a global maximum for the (WDx̂

2 ), all the
functions in Ω(x̂) \ {f} are η-invex at ŷ, and f is strict η-invex, with a
common kernel η, then

x̂ = ŷ.

Proof. Considering the assumption that (ŷ, ᾱ, β̄) ∈ Sx̂2 , we can find
some ζf ∈ ∂cf(ŷ), ζHi ∈ ∂cHi(ŷ), and ζGi ∈ ∂cGi(ŷ) such that

ζf +
m∑
i=1

−ᾱiζiH +

m∑
i=1

β̄iζi
G = 0. (13)



WOLFE TYPYE DUALITY FOR NONSMOOT OPTIMIZA ... 13

On the contrary, suppose that x̂ 6= ŷ. According to the strict η-invexity
of f at ŷ, we have

f(x̂)− f(ŷ) >
〈
ζf , η(x̂, ŷ)

〉
. (14)

By the η-invexity of functions in Ω(x̂)\{f} at ŷ, following (8), we obtain
that 

−
m∑
i=1

ᾱiHi(x̂) +
m∑
i=1

ᾱiHi(ŷ) ≥
〈 m∑
i=1
−ᾱiζHi , η(x̂, ŷ)

〉
,

m∑
i=1

β̄iGi(x̂)−
m∑
i=1

β̄iGi(ŷ) ≥
〈 m∑
i=1

β̄iζ
G
i , η(x̂, ŷ)

〉
.

Adding the both sides of (14) and above two inequalities, and considering
(13), we conclude that

f(x̂) +

m∑
i=1

−ᾱiHi(x̂) +

m∑
i=1

β̄iGi(x̂) >

f(ŷ) +

m∑
i=1

−ᾱiHi(ŷ) +

m∑
i=1

β̄iGi(ŷ)

+

〈 =0︷ ︸︸ ︷
ζf +

m∑
i=1

−ᾱiζiH +
m∑
i=1

β̄iζi
G, η(x̂, ŷ)

〉
. (15)

Owing to the x̂ ∈ S and (ŷ, ᾱ, β̄) ∈ Sx̂2 , following (4), we can obtain
that,

0 ≥
m∑
i=1

−ᾱiHi(x̂) +
m∑
i=1

β̄iGi(x̂).

Combining the last inequality and (15), we get

f(x̂) > f(ŷ) +
m∑
i=1

−ᾱiHi(ŷ) +
m∑
i=1

β̄iGi(ŷ). (16)

On the other hand, employing the strong duality Theorem 3.6, there
exist some vectors α̃ ∈ Rm and β̃ ∈ Rm such that (x̂, α̃, β̃) ∈ Sx̂2 is a
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global solution of the problem (WDx̂
2 ), and

f(x̂) = f(x̂) +
m∑
i=1

(
−α̃iHi(x̂) + β̃iGi(x̂)

)
.

The last relation and (16) imply that

f(x̂) +
m∑
i=1

(
−α̃iHi(x̂) + β̃iGi(x̂)

)
> f(ŷ) +

m∑
i=1

−ᾱiHi(ŷ) +
m∑
i=1

β̄iGi(ŷ),

which is a contradiction, since it states that the objective function of
(WDx̂

2 ) has two different values at its two global solutions (x̂, α̃, β̃) ∈ Sx̂2
and (ŷ, ᾱ, β̄) ∈ Sx̂2 . The proof is complete. �
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