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Abstract. Classification, boundedness, and existence of solutions of a
second order nonlinear difference equation are investigated. First, it is
proved that all solutions are eventually monotone. Then, the necessary
and sufficient conditions for the boundedness of all solutions are estab-
lished. Finally, the existence of different types of monotonic solutions
are presented. The obtained results have extended and improved some
existing ones.
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1 Introduction

The aim of the paper is to consider the second order nonlinear difference
equation

∆(anf(∆xn)) = bng(xn+1), n ≥ 1, (1)
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where ∆ is the forward difference operator ∆xn = xn+1 − xn, {an} and
{bn} are positive real sequences for n ≥ 1, f , g : R→ R are continuous
functions satisfying rf(r) > 0 and rg(r) > 0 for r 6= 0, and f is strictly
increasing on R.

Some special cases of equation (1) are widely studied in the literature,
for example, the discrete half-linear equation

∆(an|∆xn|αsgn ∆xn) + bn|xn+1|αsgnxn+1 = 0,

the discrete Emden-Fowler equation

∆(an|∆xn|αsgn ∆xn) + bn|xn+1|βsgnxn+1 = 0,

and nonlinear difference equation with p-Laplacian

∆(anΦp(∆xn)) = bng(xn+1), (2)

where Φp(u) = |u|p−2u with p > 1 is called p-Laplacian; see [1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11] and the references therein for details.

The discussion of two-dimensional difference systems can be found
in the literature as well; see [12, 13, 14] and other publications.

As usual, by a solution of (1), we mean a real sequence {xn} that
satisfies (1) and is not trivial. If {xn} is a monotone sequence, we say
that {xn} is a monotone solution. If {xn} is an eventually monotone
sequence, we say that {xn} is an eventually monotone solution.

The following assumptions are imposed for later discussions:

(H1) There exists a real number M > 0 such that

|f−1(uv)| ≤M |f−1(u)||f−1(v)|, ∀u, v ∈ R.

(H2) Function g is increasing on R.

(H3) There exists a real number r0 > 0 such that∫ ±∞
±r0

dr

f−1(g(r))
=∞.
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Remark 1.1. Laplacian f(r) = Φp(r) satisfies (H1), but (H1) is more
general than p-Laplacian. For example, for any odd natural number q,
the function

f(r) =

{
r, |r| ≤ 1
q
√
r, |r| > 1.

satisfies (H1), but f is not p-Laplacian.

By Remark 1.1, the results in this paper have extended and improved
many existing results when f(r) = Φp(r).

We will show that the bounded and asymptotic properties of so-
lutions can be characterized by the convergence or divergence of two
series:

S1 :=

∞∑
k=2

f−1
( 1

ak

k−1∑
j=1

bj

)
,

S2 :=

∞∑
k=1

f−1
( 1

ak

∞∑
j=k

bj

)
.

The paper is organized in the follows: Section 1 is the introduction
that briefs the background and the motivation of the paper. Monotonic-
ity and classification of solutions are discussed in Section 2. In Section
3, necessary and sufficient conditions for boundedness of all solutions
are established. After that, the existence of solutions in different classes
are provided in the last two sections.

2 Monotonicity and Classification of Solutions

In this section, we prove that all solutions of (1) are eventually monotone
and can be classified into two classes:

A = {{xn} solutions of (1) : ∃n0 ≥ 1 : xn∆xn > 0,∀n ≥ n0},
B = {{xn} solutions of (1) : xn∆xn < 0, ∀n ≥ 1}.

Further classification of solutions is addressed at the end of this section.

Theorem 2.1. Any solution {xn} of (1) is eventually strongly mono-
tone and belongs to either class A or class B.
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Proof. The proof is similar to Lemma 1 in [2] with minor adjustment.
Let {xn} be a solution of (1) and consider the sequence {Fn} defined as

Fn = anf(∆xn)xn.

By the product rule of difference we have

∆Fn = ∆(anf(∆xn))xn+1 + anf(∆xn)∆xn

= bng(xn+1)xn+1 + anf(∆xn)∆xn ≥ 0.

Then {Fn} is an increasing sequence. Since {xn} is not eventually
constant, we have either Fn > 0 for all n ≥ n0 with a natural num-
ber n0 > 1 or Fn < 0 for all n ≥ 1. Obviously, {xn} is eventually
strongly monotone and {xn} ∈ A in the first case. We will show that
{xn} is strongly monotone and {xn} ∈ B in the second case. Indeed,
assume x1 > 0, then Fn < 0 implies ∆x1 < 0, that is x2 < x1.
We claim that x2 > 0. Otherwise, we have ∆x2 > 0, but from (1),
a2f(∆x2) = a1f(∆x1) + b1g(x2) < 0. This is a contradiction. Following
the same arguments we can show that {xn} is a positive strongly de-
creasing sequence for all n ≥ 1. Similarly, we can prove that {xn} is a
negative strongly increasing sequence for all n ≥ 1 if x1 < 0. Therefore,
{xn} ∈ B. �

Note that a class A solution could be bounded or unbounded, and
a class B solution could converge to 0 or a nonzero limit. It makes
sense to further classify the solutions of (1) into four mutually disjoint
subclasses:

Ab :=
{
{xn} ∈ A : lim

n→∞
|xn| = l <∞

}
,

A∞ :=
{
{xn} ∈ A : lim

n→∞
|xn| =∞

}
,

Bb :=
{
{xn} ∈ B : lim

n→∞
xn = l 6= 0

}
,

B0 :=
{
{xn} ∈ B : lim

n→∞
xn = 0

}
.

We will discuss the existence of these four subclass solutions in the last
two sections.
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3 Boundedness of Solutions

We now explore the boundedness of all solutions of equation (1).

Theorem 3.1. Let (H1), (H2), and (H3) hold. Then all solutions of
(1) are bounded if and only if S1 <∞.

Proof. Necessity. Since all class B solutions are bounded, we focus
on class A solutions. Let {xn} be a bounded class A solution of (1).
Without loss of generality, assume xn > 0 and ∆xn > 0 for n ≥ n0 ≥ 1
and limn→∞ xn = l <∞. Then

∆(anf(∆xn)) ≥ Lbn,

where

L = min
xn0≤r≤l

g(r) > 0.

Summarizing both sides of the inequality from n0 to n− 1, we have

anf(∆xn) ≥ an0f(∆xn0) + L

n−1∑
j=n0

bj ≥ L
n−1∑
j=n0

bj .

Then

1

an

n−1∑
j=n0

bj ≤
1

L
f(∆xn).

It follows from (H1) that

f−1
( 1

an

n−1∑
j=n0

bj

)
≤Mf−1

( 1

L

)
∆xn.

Hence
∞∑

k=n0+1

f−1
( 1

ak

k−1∑
j=n0

bj

)
≤Mf−1

( 1

L

)
(l − xn0+1)

and S1 <∞ follows.
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Sufficiency. Let {xn} be an unbounded class A solution. Without
loss of generality, we assume xn > 0 and ∆xn > 0 for n ≥ n0 ≥ 1. By
(H2) we have

anf(∆xn) = an0f(∆xn0) +
n−1∑
j=n0

bjg(xj+1)

≤ an0f(∆xn0) + g(xn)
n−1∑
j=n0

bj

= g(xn)
(an0f(∆xn0)

g(xn)
+

n−1∑
j=n0

bj

)

≤ g(xn)
(an0f(∆xn0)

g(xn0)
+

n−1∑
j=n0

bj

)
.

Selecting a constant Q > 1 such that

an0f(∆xn0)

g(xn0)
+

n−1∑
j=n0

bj ≤ Q
n−1∑
j=n0

bj ,

we obtain

f(∆xn) ≤ Qg(xn)
1

an

n−1∑
j=n0

bj .

(H1) implies that

∆xn ≤Mf−1(Qg(xn))f−1
( 1

an

n−1∑
j=n0

bj

)

≤M2f−1(Q)f−1(g(xn))f−1
( 1

an

n−1∑
j=n0

bj

)
.

Then

∆xn
f−1(g(xn))

≤M2f−1(Q)f−1
( 1

an

n−1∑
j=n0

bj

)
.
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Note that the sequence f−1(g(xn)) is increasing

∫ xn+1

xn

dr

f−1(g(r))
≤ ∆xn
f−1(g(xn))

≤M2f−1(Q)f−1
( 1

an

n−1∑
j=n0

bj

)
.

Summarizing both sides of the inequality from n0 + 1 to ∞ and noting
that limn→∞ xn =∞ we have

∫ ∞
xn0+1

dr

f−1(g(r))
≤M2f−1(Q)

∞∑
n=n0+1

f−1
( 1

an

n−1∑
j=n0

bj

)
.

S1 <∞ yields ∫ ∞
xn0+1

dr

f−1(g(r))
<∞,

which contradicts to (H3). So, all solutions are bounded. �

Remark 3.2. Define a function g as

g(r) =

{
Φp(r ln |r|), |r| > e,

ep−2r, |r| ≤ e,

where p > 1. It is easy to check that g is continuous and increasing on
(−∞,∞). Moreover, the major condition (3) of Theorem 1 [3] and the
condition (14) of Theorem 4 [2] are not satisfied since

lim sup
|r|→∞

g(r)

Φp(r)
=∞.

However, (H3) is valid because∫ ±∞
±e

1

f−1(g(r))
dr =

∫ ±∞
±e

dr

r ln r
=∞.

Therefore, Theorem 4 [2] Theorem 1 [3] are not applicable to these types
of difference equations, but Theorem 3.1 works.
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Remark 3.3. If (H3) is not satisfied, then Theorem 3.1 may fail. Con-
sider the following difference equation

∆((n− 1)∆xn) =
4

n(n+ 1)2
g(xn+1), n > 2, (3)

where g(r) = r2sgnr. Clearly, {xn} with xn = (n−1)n is an unbounded
solution of (3), but (H3) is invalid since∫ ±∞

±1

1

f−1(g(r))
dr =

∫ ±∞
±1

dr

r2
<∞.

If we drop conditions (H2) and (H3) but require the boundedness of
g(r), we still have the boundedness result.

Theorem 3.4. Let (H1) hold. Assume that there exists a constant K >
0 such that |g(r)| ≤ K for all r ∈ R. Then all solutions of (1) are
bounded if and only if S1 <∞.

Proof. The proof of necessity is similar to Theorem 3.1.

Sufficiency. Let {xn} be a unbounded class A solution. Without loss
of generality, we assume xn > 0 and ∆xn > 0 for n ≥ n0 ≥ 1. Note that

anf(∆xn) = an0f(∆xn0) +
n−1∑
j=n0

bjg(xj+1)

≤ an0f(∆xn0) +K

n−1∑
j=n0

bj .

Select a constant Q > 1 such that

an0f(∆xn0) +K
n−1∑
j=n0

bj ≤ Q
n−1∑
j=n0

bj ,

then

f(∆xn) ≤ Q 1

an

n−1∑
j=n0

bj .
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By (H1),

∆xn ≤Mf−1(Q)f−1
( 1

an

n−1∑
j=n0

bj

)
.

Summarizing both sides from n0 + 1 to n we have

xn+1 − xn0+1 ≤Mf−1(Q)

n∑
i=n0+1

f−1
( 1

ai

i−1∑
j=n0

bj

)
.

The limit limn→∞ xn = ∞ implies that S1 = ∞, which contradicts to
the assumption. So, all solutions of (1) are bounded. �

4 Class A Solutions

In this section, we focus on class A solutions of (1) and provide the
existence of different class A solutions.

Theorem 4.1. Equation (1) has solutions in class A.

Proof. Let {xn} be a solution of (1) with initial conditions x1 > 0,
x2 > x1. By Theorem 2.1, we have Fn = anf(∆xn)xn > 0 for all n ≥ 1.
Hence, xn∆xn > 0 for all n ≥ 1 and {xn} is a positive class A solution.
Similarly, Let {xn} be a solution of (1) with initial conditions x1 < 0,
x2 < x1. Then xn∆xn > 0 for all n ≥ 1 and {xn} is a negative class A
solution. �

The following corollaries are directly from Theorem 3.1 and Theo-
rem 3.4.

Corollary 4.2. Let (H1), (H2), and (H3) hold. If (1) has a bounded
class A solution, then all class A solutions are bounded. On the other
hand, if (1) has a unbounded class A solution, then all class A solutions
are unbounded.

Corollary 4.3. Let (H1) hold and the function g be bounded in R. If (1)
has a bounded class A solution, then all class A solutions are bounded.
On the other hand, if (1) has a unbounded class A solution, then all
class A solutions are unbounded.



10 L. WANG AND A. C. WILLETT

Next, we deal with the existence of different types of class A solu-
tions. The first one is the existence of subclass Ab solutions.

Theorem 4.4. Let (H1) hold. Then equation (1) has solutions in the
subclass Ab if and only if S1 <∞.

Proof. Necessity. Suppose that {xn} is a solution of (1) in the subclass
Ab. Assume xn > 0 and ∆xn > 0 for n ≥ n0 ≥ 1 without loss of
generality. Let limn→∞ xn = l and define

L = min
xn0≤r≤l

g(r) > 0.

Note that

anf(∆xn) = an0f(∆xn0) +

n−1∑
j=n0

bjg(xj+1) ≥ L
n−1∑
j=n0

bj .

Then
1

an

n−1∑
j=n0

bj ≤
1

L
f(∆xn).

Applying (H1) we have

f−1
( 1

an

n−1∑
j=n0

bj

)
≤Mf−1

( 1

L

)
∆xn.

Summarizing both sides from n0 + 1 to ∞ implies

∞∑
k=n0+1

f−1
( 1

ak

k−1∑
j=n0

bj

)
≤Mf−1

( 1

L

)
(l − xn0+1) <∞.

Hence, we have S1 <∞.
Sufficiency. Let M1 = max1≤r≤2 g(r). From S1 < ∞ we can choose

n1 > 2 such that

∞∑
k=n1

f−1
( 1

ak

k−1∑
j=n1−1

bj

)
≤ 1

Mf−1(M1)
(4)
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Let X be the Banach space of all bounded sequences {xn} defined
for all n ≥ n1 with supremum norm supn≥n1

|xn|. Consider the subset
Ω of X defined by

Ω =
{
x = {xn} ∈ X : 1 ≤ xn ≤ 2, n ≥ n1

}
.

Obviously, Ω is a bounded, convex, and closed subset of X. Define an
operator T : Ω→ X by

(Tx)n =

{
xn1 , n = n1,

1 +
∑n−1

k=n1
f−1

(
1
ak

∑k−1
j=n1−1 bjg(xj+1)

)
, n > n1.

(5)

T has several desirable properties for applying Schauder’s fixed-point
theorem as we will show in the following.

First of all, T maps Ω into Ω. Indeed, if x = {xn} ∈ Ω, then by (4),
(5), and (H1),

1 ≤ (Tx)n ≤ 1 +Mf−1(M1)

∞∑
k=n1

f−1
( 1

ak

k−1∑
j=n1−1

bj

)
≤ 2.

Secondly, T is continuous. Let xm = {xmn } ∈ Ω and

lim
m→∞

‖xm − x‖ = 0.

Then x ∈ Ω because Ω is closed. We claim ‖Txm−Tx‖ → 0 as m→∞.
Indeed, note that

‖Txm − Tx‖ = sup
n≥n1

|(Txm)n − (Tx)n|

= sup
n≥n1

∣∣∣ n−1∑
k=n1

[
f−1

( 1

ak

k−1∑
j=n1−1

bjg(xmj+1)
)
− f−1

( 1

ak

k−1∑
j=n1−1

bjg(xj+1)
)]∣∣∣

≤
∞∑

k=n1

∣∣∣f−1( 1

ak

k−1∑
j=n1−1

bjg(xmj+1)
)
− f−1

( 1

ak

k−1∑
j=n1−1

bjg(xj+1)
)∣∣∣.

For each fixed k, as m→∞, we have

f−1
( 1

ak

k−1∑
j=n1−1

bjg(xmj+1)
)
− f−1

( 1

ak

k−1∑
j=n1−1

bjg(xj+1)
)
→ 0.
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Observe that

∞∑
k=n1

∣∣∣f−1( 1

ak

k−1∑
j=n1−1

bjg(xmj+1)
)
− f−1

( 1

ak

k−1∑
j=n1−1

bjg(xj+1)
)∣∣∣

≤ 2Mf−1(M1)
∞∑

k=n1

f−1
( 1

ak

k−1∑
j=n1−1

bj

)
<∞.

By Lebesgue’s Dominate Convergence theorem, ‖Txm − Tx‖ → 0 as
m→∞.

Finally, TΩ is precompact. Clearly, TΩ is uniformly bounded. For
any ε > 0, there exists n∗ > n1 such that for any x ∈ Ω and m ≥ n∗ we
have

2Mf−1(M1)

∞∑
k=m

f−1
( 1

ak

k−1∑
j=n1−1

bj

)
< ε.

Note that n > m

|(Tx)n − (Tx)m|

=
∣∣∣ n−1∑
k=n1

f−1
( 1

ak

k−1∑
j=n1−1

bjg(xj+1)
)
−

m−1∑
k=n1

f−1
( 1

ak

k−1∑
j=n1−1

bjg(xj+1)
)∣∣∣

=
n−1∑
k=m

∣∣∣f−1( 1

ak

k−1∑
j=n1−1

bjg(xj+1)
)∣∣∣

≤ 2Mf−1(M1)
∞∑
k=m

f−1
( 1

ak

k−1∑
j=n1−1

bj

)
< ε.

This shows that TΩ is equicontinuous and hence TΩ is precompact by
Ascoli-Arzela Theorem.

Since all the conditions of Schauder’s fixed-point theorem are sat-
isfied, we conclude that there exists x̄ = {x̄n} ∈ Ω such that x̄ = T x̄,
or

x̄n = 1 +

n−1∑
k=n1

f−1
( 1

ak

k−1∑
j=n1−1

bjg(x̄j+1)
)
.

It is easy to verify that x̄ ∈ Ab. �
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Remark 4.5. Theorem 4.4 generalizes Proposition 1 and Theorem 2
[3].

The following results follow from Corollary 4.2, Corollary 4.3, and
Theorem 4.4.

Corollary 4.6. Let (H1),(H2) and (H3) hold. Then

1. A = Ab if and only if S1 <∞.

2. A = A∞ if and only if S1 =∞.

Corollary 4.7. Let (H1) hold. Assume that the function g is bounded
in R. Then

1. A = Ab if and only if S1 <∞.

2. A = A∞ if and only if S1 =∞.

5 Class B Solutions

In this section, we discuss the existence of different types of class B
solutions.

Theorem 5.1. Let (H1) hold. Then (1) has class B solutions.

Proof. The proof is similar to Theorem 1 in [2] with minor changes.
For real numbers µ > 0 and α, let x = {xn} be the solution of (1) with
x1 = µ and ∆x1 = α. Consider the set Γ given by

Γ = {α < 0 : ∃n1 ≥ 1 such that xn1xn1+1 ≤ 0}.

Then Γ 6= ∅. Indeed, if x1 = µ and ∆x1 = α1 < −µ, then α1 ∈ Γ by
noting that x1x2 = µ(µ+ α1) < 0. Define

ᾱ = sup Γ. (6)

Then ᾱ ≤ 0. We claim that the solution x̄ = {x̄n} of (1) such that
x̄1 = µ and ∆x̄1 = ᾱ is a class B solution. Indeed, assume, instead,
that x̄ ∈ A. Then either there exists an integer n1 > 1 such that x̄n < 0
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and ∆x̄n < 0 for all n > n1, or there exists an integer n1 ≥ 1 such that
∆x̄n > 0 and x̄n > 0 for all n > n1.

In the first case, take β > ᾱ such that β − ᾱ is sufficiently small.
Consider the solution {yn} of (1) given by the initial conditions y1 = µ
and ∆y1 = β. We know that there is some 1 ≤ n∗ ≤ n1 such that
x̄n∗ > 0 while x̄n∗+1 ≤ 0. If x̄n∗+1 < 0, then x̄n∗ x̄n∗+1 < 0. It follows
from the continuous dependence on initial conditions we also have that
yn∗yn∗+1 < 0. If x̄n∗+1 = 0, then x̄n∗+2 < 0. Again, by the continuous
dependence on initial conditions, we have yn∗ > 0 and yn∗+2 < 0. Note
that the sign of yn∗+1 could be greater than, less than, or equal to 0.
For any case, we either have yn∗yn∗+1 ≤ 0 or yn∗+1yn∗+2 ≤ 0. Therefore,
we have β ∈ Γ which is a contradiction to (6)

In the second case, take β < ᾱ such that ᾱ− β is sufficiently small.
Again, we consider a solution {yn} of (1) given by the initial conditions
y1 = µ and ∆y1 = β. Since ∆x̄n > 0 and x̄n > 0 for all n > n1, the
continuous dependence on initial conditions implies that yn is positive
for all n ≥ 1. Thus, β /∈ Γ for all β < ᾱ that is sufficiently close to ᾱ
which is a contradiction to (6). �

Remark 5.2. Theorem 5.1 generalizes Theorem 1 [2].

Theorem 5.3. Let (H1) hold. Then (1) has solutions in the subclass
Bb if and only if S2 <∞.

Proof. Necessity. Let {xn} be a solution of (1) in the subclass Bb.
Without loss of generality we assume xn > 0 and ∆xn < 0 for n ≥ 1.
Let limn→∞ xn = l. Then 0 < l <∞.

Note that anf(∆xn) < 0 and ∆(anf(∆xn)) = bng(xn+1) > 0. The
sequence {anf(∆xn)} is increasing and bounded above, so

lim
n→∞

anf(∆xn) = H ∈ (−∞, 0].

Let L = minl≤r≤x1 g(r). Then L > 0. Summarizing (1) from k to
infinity

H − akf(∆xk) =

∞∑
j=k

bjg(xj+1) ≥ L
∞∑
j=k

bj .
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Thus
1

ak

∞∑
j=k

bj ≤ −
1

L
f(∆xk).

By (H1) we have

f−1
( 1

ak

∞∑
j=k

bj

)
≤Mf−1

(
− 1

L

)
∆xk.

Then
∞∑
k=1

f−1
( 1

ak

∞∑
j=k

bj

)
≤Mf−1

(
− 1

L

)
(l − x1)

and S2 <∞.
Sufficiency. Let M1 = max1≤r≤2 g(r) > 0. Since S2 < ∞, we can

choose n1 > 1 such that

∞∑
k=n1

f−1
( 1

ak

∞∑
j=k

bj

)
≤ 1

−M2f−1(−1)f−1(M1)
.

Consider the same Banach space X and subset Ω of X as in Theorem 4.4.
Define an operator T : Ω→ X by

(Tx)n = 2 +

∞∑
k=n

f−1
(
− 1

ak

∞∑
j=k

bjg(xj+1)
)
, n ≥ n1.

Obviously, (Tx)n ≤ 2 for all n ≥ n1. By (H1) we have

f−1
( 1

ak

∞∑
j=k

bjg(xj+1)
)

≤ f−1
( 1

ak

∞∑
j=k

M1bj

)
≤Mf−1(M1)f

−1
( 1

ak

∞∑
j=k

bj

)
.
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By (H1) again

f−1
(
− 1

ak

∞∑
j=k

bjg(xj+1)
)

≥Mf−1(−1)f−1
( 1

ak

∞∑
j=k

bjg(xj+1)
)

≥M2f−1(−1)f−1(M1)f
−1
( 1

ak

∞∑
j=k

bj

)
.

Then

(Tx)n ≥ 2 +M2f−1(−1)f−1(M1)
∞∑

n=n1

f−1
( 1

ak

∞∑
j=k

bj

)
≥ 1.

Therefore, T maps Ω into Ω. Following the same discussions as Theo-
rem 4.4, we can show that T is continuous and TΩ is precompact. So, all
conditions of Schauder’s fixed-point theorem are satisfied, we conclude
that there exists x̄ = {x̄n} ∈ Ω such that x̄ = T x̄, or

x̄n = 2 +

∞∑
k=n

f−1
(
− 1

ak

∞∑
j=k

bjg(x̄j+1)
)
.

It is easy to verify that x̄ ∈ Bb. �

Remark 5.4. Theorem 5.3 improves Theorem 2 [2] by providing nec-
essary and sufficient conditions.

From Theorem 5.3 we have the result that the subclass Bb is empty.

Corollary 5.5. Let (H1) hold. Then B = B0 if and only if S2 =∞.

6 Conclusion

The classification, existence, boundedness, and monotony of solutions
of a second order nonlinear difference equation (1) are studied in this
paper. It is proved that all the solutions are eventually monotonous in
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Chapter 2. The necessary and sufficient conditions for the boundedness
of all solutions are established in Chapter 3. As it is pointed out in
Remark 3.2, the major conditions (3) of Theorem 1 [3] and (14) of The-
orem 4 [2] are not satisfied for some types of difference equations, but
our assumption (H3) is valid. Therefore, Theorem 3.1 improves Theo-
rem 4 [2] and Theorem 1 [3]. The existence results of different types
of monotonous solutions are presented in Chapters 4 and 5. In partic-
ular, Theorem 4.4 generalizes Theorem 2 [3], Theorem 5.1 generalizes
Theorem 1 [2], and Theorem 5.3 improves Theorem 2 [2] by providing
necessary and sufficient conditions.
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