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Abstract. In this paper, we first characterize quasi-multipliers of
(M(G)∗0)∗ and show that the Banach algebra of all quasi-multipliers
of (M(G)∗0)∗ is isometrically isomorphic to (M(G)∗0)∗. We also es-
tablish that quasi-multipliers of (M(G)∗0)∗ are separately continuous.
Then, we investigate the existence of weakly compact quasi-multipliers
of (M(G)∗0)∗. Finally, we prove that the Banach algebra of quasi-
multipliers of (M(G)∗0)∗ is commutative if and only if G is abelian and
discrete.
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1 Introduction

Throughout this paper, G denotes a locally compact group with a fixed
left Haar measure m and the identity element e. Let L1(G) be the space
of all integrable functions on G and L∞(G) be the Banach algebra as
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defined in [4]. We denote by L∞0 (G) the space of all functions f ∈ L∞(G)
that vanish at infinity; i. e, for each ε > 0 there exists a compact subset
K of G such that

|
∫
G
f(x)φ(x) d m(x)| < ε

for all φ ∈ L1(G) with ‖φ‖1 = 1 and |φ| |K= 0. It is well-known from [8]
that the dual space of L∞0 (G) is a Banach algebra with the first Arens
product.

Let M(G) be the Banach space of all complex regular Borel measures
on G with the total variation norm. Note that M(G) is the dual space
of C0(G), the Banach space of all complex-valued continuous functions
on G vanishing at infinity. By the convolution multiplication

µ ∗ ν(f) =

∫
G

∫
G
f(xy) dµ(x) dν(y) (f ∈ C0(G), µ, ν ∈M(G)),

M(G) becomes a Banach algebra with the identity element δe, the Dirac
measure at e.

Let us recall from [9] that a functional λ ∈M(G)∗ vanishes at infinity
if for every ε > 0, there exists a compact subset K of G, for which
|〈λ, µ〉| < ε, where µ ∈ M(G) with |µ|(K) = 0 and ‖µ‖ = 1. This space
is denoted by M(G)∗0 and is proved that it is a left introverted subspace
of M(G)∗. Hence if F ∈ (M(G)∗0)∗ and λ ∈ M(G)∗0, we may define the
functional Fλ in M(G, ω)∗ by

〈Fλ, µ〉 = 〈F, λµ〉, in which 〈λµ, ν〉 = 〈λ, µ ∗ ν〉 (µ, ν ∈M(G)).

This fact let us to define the first Arens product “·” by

〈F ·H,λ〉 := 〈F,Hλ〉

for all F,H ∈ (M(G)∗0)∗, λ ∈M(G)∗0. Then, with this product (M(G)∗0)∗

becomes a unital Banach algebra with the identity element δe [9]. One
can prove that L∞0 (G)∗ and L1(G) are ideals in (M(G)∗0)∗. Also, when G
is discrete, we have

(M(G)∗0)∗ = L∞0 (G)∗ = L1(G).
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For a Banach algebra A, a bilinear mapping m : A×A→ A is called
a quasi-multiplier if

m(ab, cd) = am(b, c)d,

for all a, b, c, d ∈ A. We write QM(A) for the set of all quasi-multipliers
from A × A into A. It is easy to see that QM((A) is a normed space
with the following norm.

‖m‖ = sup{‖m(a, b)‖ : a, b ∈ B1},

where B1 = {a ∈ A : ‖a‖ = 1}.
Quasi-multipliers have been studied by several authors. For example,

McKennon [10] studied quasi-multipliers of Banach algebra with mini-
mal approximate identities and proved that QM(L1(G)) is isometrically
isomorphic to M(G). Vasudevan and Goel [13] studied the question
of embedding QM(A) in the second dual A∗∗ of A. They constructed
a Banach algebra B0 and gave conditions under which QM(A) can be
embedded isometrically isomorphic into B∗0 ; see also [2, 3, 5, 6, 7, 14, 15].

In this paper, we investigate quasi-multipliers of (M(G)∗0)∗ and char-
acterize them. We prove that the elements of QM((M(G)∗0)∗) are sep-
arately continuous and QM((M(G)∗0)∗) is isometrically isomorphic to
(M(G)∗0)∗ and so it is isometrically isomorphic to QM(L1(G)) if and
only if G is discrete. Under certain condition, we also show that if
QM((M(G)∗0)∗) has a nonzero weakly compact element, then G is com-
pact. Finally, we prove that QM((M(G)∗0)∗) is commutative if and only
if G is abelian and discrete.

2 Quasi-Multipliers of (M(G)∗0)∗

We commence this section with the following result.

Theorem 2.1. Let G be a locally compact group and m ∈ QM((M(G)∗0)∗).
Then there is an η ∈ (M(G)∗0)∗ such that m(F,H) = F · η · H, for all
F,H ∈ (M(G)∗0)∗. Moreover, ‖m‖ = ‖η‖.
Proof. Let m ∈ QM((M(G)∗0)∗) and F,H ∈ (M(G)∗0)∗. Then

m(F,H) = m(F · δe, δe ·H)

= F ·m(δe, δe) ·H
= F · η ·H,
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where η = m(δe, δe). Now we have

‖m‖ = sup{‖m(F,H)‖ : F,H ∈ B1}
= sup{‖F · η ·H‖ : F,H ∈ B1}
≤ ‖η‖ = ‖m(δe, δe)‖
≤ ‖m‖.

Therefore ‖m‖ = ‖η‖. �

A bounded linear operator T : A → A is called a left (right) multi-
plier if for every a, b ∈ A

T (ab) = T (a)b (T (ab) = aT (b)).

The following result which is an immediate consequence of Theorem
(2.1) shows that quasi-multipliers of (M(G)∗0)∗ are an extension of left
and right multipliers on (M(G)∗0)∗.

Corollary 2.2. Let G be a locally compact group and m ∈ QM((M(G)∗0)∗).
Then m is separately continuous and

m(F1 · F2, F3) = F1 ·m(F2, F3) and m(F1, F2 · F3) = m(F1, F2) · F3

for all F1, F2, F3 ∈ (M(G)∗0)∗.

For m1,m2 ∈ QM((M(G)∗0)∗), the quasi-multiplier m1�m2 ∈ QM((M(G)∗0)∗)
is defined by

(m1 �m2)(F,H) = F · η1 · η2 ·H,

where ηi = mi(δe, δe) for i = 1, 2.

Proposition 2.3. Let G be a locally compact group. Then (QM((M(G)∗0)∗),�, ‖.‖)
is a unital Banach algebra.

Proof. Let (mi)i∈N be a Cauchy sequence in QM((M(G)∗0)∗) and ηi =
mi(δe, δe) for i ∈ N. Then

‖ηi − ηj‖ = ‖mi −mj‖ → 0.
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This shows that (ηi)i∈N is a Cauchy sequence in (M(G)∗0)∗ and hence
converges to an element η ∈ (M(G)∗0)∗. Now we define m : (M(G)∗0)∗ ×
(M(G)∗0)∗ → (M(G)∗0)∗ by m(F,H) = F · η ·H. Then

‖mi −m‖ = ‖ηi − η‖ → 0.

Therefore, QM((M(G)∗0)∗) is complete. From this and

‖m1 �m2‖ = ‖(m1 �m2)(δe, δe)‖
= ‖δe · η1 · η2 · δe‖
= ‖η1 · η2‖
≤ ‖η1‖‖η2‖
= ‖m1‖‖m2‖

we infer that QM((M(G)∗0)∗) is a Banach algebra. Note that the quasi-
multiplier m : (M(G)∗0)∗ × (M(G)∗0)∗ → (M(G)∗0)∗ defined by m(F,H) =
F ·H is the identity of QM((M(G)∗0)∗). �

Let LM((M(G)∗0)∗) be the space of left multipliers on (M(G)∗0)∗.

Lemma 2.4. The Banach algebra QM((M(G)∗0)∗) is isometrically iso-
morphic to LM((M(G)∗0)∗).

Proof. Define the mapping Θ : QM((M(G)∗0)∗)→ LM((M(G)∗0)∗) by

(Θ(m))(H) = η ·H,

where η = m(δe, δe) and H ∈ (M(G)∗0)∗. It is easy to see that Θ is linear.
Now, let m1,m2 ∈ QM((M(G)∗0)∗) and ηi = mi(δe, δe), for i = 1, 2. Then
for every H ∈ (M(G)∗0)∗

Θ(m1 �m2)(H) = (η1 · η2) ·H
= η1 · (η2 ·H)

= Θ(m1)(η2 ·H)

= Θ(m1)(Θ(m2)(H))

= Θ(m1) ◦Θ(m2)(H).
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So Θ is an algebra homomorphism. If m ∈ QM((M(G)∗0)∗), then

‖Θ(m)‖ = sup{‖Θ(m)(H)‖ : H ∈ B1}
= sup{‖η ·H‖ : H ∈ B1}
= ‖η‖ = ‖m‖.

This shows that Θ is an isometry. To complete the proof, let T ∈
LM((M(G)∗0)∗). Then

T (H) = T (δe ·H) = T (δe) ·H

for all H ∈ (M(G)∗0)∗. Define

m : (M(G)∗0)∗ × (M(G)∗0)∗ → (M(G)∗0)∗

by m(F,H) = F · T (δe) ·H. Then

Θ(m)(H) = m(δe, δe) ·H
= (δe · T (δe) · δe) ·H
= T (δe) ·H
= T (H).

Thus Θ(m) = T and so Θ is onto. Therefore, QM((M(G)∗0)∗) is isomet-
rically isomorphic to LM((M(G)∗0)∗). �

Corollary 2.5. The Banach algebra QM((M(G)∗0)∗) is isometrically
isomorphic to (M(G)∗0)∗.

Proof. This follows from Lemma (2.4) and the fact that LM((M(G)∗0)∗)
is isometrically isomorphic to (M(G)∗0)∗. �

Let Λ(L∞0 (G)∗) be the set of all weak∗-cluster points of an approxi-
mate identity in L1(G) bounded by one. Then n · u = n and u · φ = φ
for all n ∈ L∞0 (G)∗, φ ∈ L1(G) and u ∈ Λ(L∞0 (G)∗), for more details see
[8].

Proposition 2.6. Let R : QM((M(G)∗0)∗) → QM(L1(G)) be the re-
striction map. Then the following statements hold.

(i) R is an epimorphism.
(ii) R is a monomorphism if and only if G is discrete.
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Proof. First we note that if m ∈ QM((M(G)∗0)∗), thenR(m) ∈ QM(L1(G)),
because for every φ, ψ ∈ L1(G)

R(m)(φ, ψ) = m(φ, ψ)

= φ ·m(δe, δe) · ψ ∈ L1(G).

(i) Let m̃ ∈ QM(L1(G)). Then there is a µ ∈M(G) such that

m̃(φ, ψ) = φ ∗ µ ∗ ψ

for all φ, ψ ∈ L1(G). We define

m(F,H) = F · µ ·H.

It is obvious that m ∈ QM((M(G)∗0)∗) and R(m) = m̃. Therefore, R is
an epimorphism.

(ii) Assume that R is a monomorphism. So QM((M(G)∗0)∗) is iso-
morphic to QM(L1(G)). Hence (M(G)∗0)∗ is isomorphic to M(G) and so
L∞0 (G)∗ is contained in M(G). From this and the fact that M(G) is iso-
metrically isomorphic to u ·L∞0 (G)∗ we infer that L∞0 (G)∗ = u ·L∞0 (G)∗,
where u ∈ Λ(L∞0 (G)∗); see [8]. Therefore

L1(G) = ∩u∈Λ(L∞0 (G)∗)u · L∞0 (G)∗ = L∞0 (G)∗.

It follows from Proposition 3.1 of [11] that G is discrete. The converse
is clear. �

In the following, let C0(G)⊥ be the space of all F ∈ (M(G)∗0)∗ such
that F |C0(G) = 0. Let also η be m(δe, δe), where m ∈ QM((M(G)∗0)∗).

Proposition 2.7. Let G be a locally compact group. If there exists a
weakly compact element m ∈ QM((M(G)∗0)∗) with η 6∈ C0(G)⊥, then G
is compact.

Proof. Let m be a weakly compact element in QM((M(G)∗0)∗) with
η 6∈ C0(G)⊥. Define the bounded linear operator T : L1(G)→ L1(G) by

T (φ) = m(δe, φ).
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It is clear that T is weakly compact left multiplier on (M(G)∗0)∗. Note
that δe is the identity element of (M(G)∗0)∗. Since η 6∈ C0(G)⊥ and

L1(G)M(G)∗0 = C0(G),

there exist φ ∈ L1(G) and λ ∈ M(G)∗0 such that 〈η, φλ〉 6= 0. On the
hand,

〈η, φλ〉 = 〈m(δe, δe), φλ〉
= 〈m(δe, δe)φ, λ〉
= 〈m(δe, δeφ), λ〉
= 〈T (φ), λ〉.

Therefore, T is nonzero. By [12], G is compact. �

At this point in the paper the reader will be expect to see the converse
of Proposition (2.7). This principle reason why it dose not appear is that
we have been unable to prove it.

Now, we characterize weakly compact elements QM((M(G)∗0)∗).

Corollary 2.8. Let G be a locally compact group and m be a weakly
compact element of QM((M(G)∗0)∗). Then there exists φ ∈ L1(G) and
Γ ∈ C0(G)⊥ such that η = φ+ Γ.

Proof. Let T be as defined in the proof of Theorem (2.7). Then there
is φ ∈ L1(G) such that T (ψ) = φ ∗ ψ for all ψ ∈ L1(G); see [1]. Hence

φ · ψ = m(δe, ψ) = δe · η · ψ = η · ψ

for all ψ ∈ L1(G). So
(φ− η) · ψ = 0

for all ψ ∈ L1(G). This implies that φ − η ∈ C0(G)⊥. Therefore,
η = φ+ Γ, for some Γ ∈ C0(G)⊥. �

Theorem 2.9. Let G be a locally compact group. Then the following
assertions are equivalent.

(a) QM((M(G)∗0)∗) is commutative;
(b) (M(G)∗0)∗ is commutative;
(c) G is abelian and discrete;
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Proof. Let F1, F2 ∈ (M(G)∗0)∗. We define the quasi-multiplier

mi : (M(G)∗0)∗ × (M(G)∗0)∗ → (M(G)∗0)∗

by

mi(H1, H2) = H1 · Fi ·H2 (i = 1, 2).

If (a) holds, then

m1 �m2 = m2 �m1.

Hence

(m1 �m2)(δe, δe) = (m2 �m1)(δe, δe)

and so

δe · F1 · F2 · δe = δe · F2 · F1 · δe.

Consequently, F1 · F2 = F2 · F1. That is, (M(G)∗0)∗ is commutative.
Thus (b) holds. The implication (b)⇒(a) is clear. Let’s show that
(b)⇔(c). Let (M(G)∗0)∗ be commutative. Then L1(G) is commutative.
It follows that G is abelian. Now, if G is not discrete, the by Hahn-
Banach theorem, there exists a nonzero functional n ∈ L∞0 (G)∗ such
that n|C0(G) = 0. Choose u ∈ Λ(L∞0 (G)∗). Then for every f ∈ L∞0 (G),

we have 1
∆ ẽα ∗ f ∈ C0(G), where ∆ is the modular function of G and

(eα)α is a net in L1(G) with eα → u in the weak∗ topology of L∞0 (G)∗

and ẽα(x) = eα(x−1). It follows that

〈n, f〉 = 〈n · u, f〉
= 〈u · n, f〉

= lim
α
〈n, 1

∆
ẽα ∗ f〉 = 0

for all f ∈ L∞0 (G). Thus n = 0, a contradiction. So (c) holds. Con-
versely, assume that G is abelian and discrete. Since G is abelian, L1(G)
is commutative. On the other hand, G is discrete. Thus

(M(G)∗0)∗ = L∞0 (G)∗ = L1(G).

This implies that (M(G)∗0)∗ is commutative. �
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The right annihilator L∞0 (G)∗ is denoted by Annr(L
∞
0 (G)∗) and is

defined by

Annr(L
∞
0 (G)∗) = {r ∈ L∞0 (G)∗ : L∞0 (G)∗ · r = {0}}.

It is easy to see that the following remark are true and we mention them
only for the readers attention.

Remark 2.10. Let m ∈ QM((M(G)∗0)∗). Then the following statements
hold.

(i) m(L1(G)× L1(G)) ⊆ L1(G).
(ii) m(L∞0 (G)∗ × L∞0 (G)∗) ⊆ L∞0 (G)∗.
(iii) m(Annr(L

∞
0 (G)∗)×Annr(L∞0 (G)∗) ⊆ Annr(L∞0 (G)∗).

Let B be a Banach algebra and A be a closed subalgebra of B. Then
A is called a quasi-ideal in B if ABA ⊆ A. Furthermore, if the linear
mapping Φ : B → QM(A) defined by

Φ(b)(x, y) = xby (b ∈ B, x, y ∈ A),

is an isometry, then B is called an intermediate algebra for A.
If H ∈ (M(G)∗0)∗. Then we have

‖Φ(H)‖ = sup{‖F1 ·H · F2‖ : F1, F2 ∈ B1} = ‖H‖.

Therefore, Φ is an isometry. Now, if we note that every ideal is a quasi-
ideal and L1(G) and L∞0 (G)∗ are quasi-ideals of (M(G)∗0)∗, we have the
following remark.

Remark 2.11. The following statements hold.
(i) (M(G)∗0)∗ is an intermediate algebra for ideals and quasi-ideals of

(M(G)∗0)∗.
(ii) (M(G)∗0)∗ is an intermediate algebra for (M(G)∗0)∗.
(iii) (M(G)∗0)∗ is an intermediate algebra for L1(G) and L∞0 (G)∗.
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