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Abstract. The most significant objective of this article is the adoption
of a method with a free parameter known as “The Optimum Asymptotic
Homotopy Method” which has been utilized in order to obtain solutions
for integral differential equations of high-order non integer derivative.
The process in this method is more favorable than “Homotopy Pertur-
bation Method” as it has a more rapid convergence compared to the
mentioned method or even the similar methods. Another advantage of
this method is that the convergence rate is recognized as control area.
It is worth mentioning that Caputo derivative is adopted in this article.
A number of instances are provided to better understand the method
and its level of efficiency compared to other same methods.
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1 Introduction

The issue of fractional arithmetic and differential equations of non inte-
ger order in particular have been efficient and taken into consideration
in various sciences such as mathematical physics [13], chemistry [31, 32],
economy [35], traffic model [30], medicine [20], dynamic issues [8, 9, 29],
fluid flows (waterfall) [23], optimal control [6] and etc [7, 10, 11, 24–
26, 33]. Researchers who are interested in such spheres can investigate
and study books and articles written in terms of such fields, sources that
comprehensively discuss how to generalize a regular arithmetic.

In this work, we apply an optimum asymptotic homotopy method
(OAHM) to gain the approximate solution of SFIBVPs

Dϑy(t)− η
∫ t

0
k(t, s)G[y(s)]ds = g(t), p < ϑ ≤ p+ 1, p ∈ Z+, (1)

subject to

y(0) = γ0, y
(i)(0) = γi, y(b) = θ0, y

(i)(b) = θi, (2)

where 0 < t < b and Dϑ denotes the fractional differential operator of
order ϑ and given by

Dϑy(t) =
1

Γ(p+ 1− ϑ)

∫ t

0
(t− s)ϑ−1y(p)(s)ds, (3)

in which p < ϑ ≤ p+ 1 and p ∈ Z+.

The OAHM was presented and developed by Marinca et al. [21]
and it can be shown that HPM is a special case of OAHM. Several
authors have proved the effectiveness, generalization and reliability of
this method. The advantage of OAHM is built in convergence criteria,
which is controllable. In OAHM, the control and adjustment of the
convergence region are provided in a convenient way. In next section we
present description of OAHM.

Many mathematical models in the domain of engineering [18] and
other scientific fields of study [36, 38] can be expressed by fractional-
integral equations. From among them we can point out some issues in
the modeling of turbulent aerodynamic phenomena, issues of dynamism
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in a particular population and the issue of heat transfer in composite
material with special properties.

In spite of all investigations and theoretical numerical researches in
the field of boundary value issues related to fractional differential equa-
tions and differential-integral equations [28], it is indicated that investi-
gations in this sphere are still in their initial stages.

It should be noted that, a large number of FIDEs and IDEs find the
exact solution is difficult or not possible. This makes use of the approx-
imate or numerical solution methods to support obtaining a solution to
this problem. Using approximate or numerical solution methods in or-
der to solve the FDEs, FIDEs and SFIBVPs has been proposed by the
scholars who have recorded that including the following: homotopy anal-
ysis method and q-homotopy analysis method [1, 4], variational iteration
method [3, 27], Laplace transform method [16], Adomian’s decomposi-
tion method [3], homotopy perturbation method and optimal homotopy
perturbation method [27] and collocation method [12, 40] and so on
[19, 22, 39].

This paper is organized as follows: in Section 2, description if OAHM
is given. In Section 3, we have expressed the convergence of OHAM. In
Section 4, the application of OAHM to the Eqs. 1 and 2 are illustrated,
and some numerical examples are presented. And conclusions are drawn
in Section 5.

2 Dissection Of OAHM

The general dimension of the proposed approach [2] in this part is given
below and represented in the following differential equation

(L + N)(ζ(τ)) + g(τ) = 0, τ ∈ Ω, (4)

containing

B(ζ,
∂ζ

∂τ
) = 0, τ ∈ Γ,

as boundary conditions.
In which L and N are linear and nonlinear operators respectively,

ζ(τ) is an undefined function, ζ is an independent variable representation
and ultimately g(τ) is a defined function.
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Now the approach is described:
First, based on the above-mentioned approach, the following homotopic
structure is considered

~ (v(τ ; %), %) : Ω× [0, 1]→ R,

Now the following zero-order equation will be considered:

(1− %)
(
L(v(x; %)) + g(x)

)
= H(p)

(
A(v(x; %)) + g(x)

)
, (5)

Here % ∈ [0, 1] is an embedded parameter and τ ∈ R, for % 6= 0, H(%)
is auxiliary function and H(0) = 0. Assuming the conditions % = 0 and
% = 1, respectively, the following relations are established
v(τ ; 0) = ζ0(τ), v(τ ; 1) = ζ(τ).

Therefore, when % grow from zero to one, v(τ ; %) changes from the
initial conjecture ζ0(τ) to the solution ζ(τ). It should be noted that the
initial conjecture ζ0(τ) is accurate in the initial condition and

L
(
ζ0(τ)

)
+ g(τ) = 0. (6)

It is assumed that the ratio to % has the following Taylor series
expansion:

H(%) = %c1 + %2c2 + %3c3 + . . . , (7)

where c1, c2, c3, . . . are defined the convergence control parameters
that are unknown and their calculation approaches will be clarified in
the examples that are provided in the continuation of the work.

In order to calculate the approximate solution of the problem, the
expansion of the Taylor series around the point p for v(τ ; %, ck), will be
written:

v(τ ; %, ck) = ζ1(x) +
∞∑
r=1

ζk(τ ; cr) %
r, r = 1, 2, . . . . (8)

Defining the vectors
~cl = {c1, c2, . . . , cl} , (9)

and
~ζs =

{
ζ0(τ), ζ1(τ ;~c1), . . . , ζs(τ ;~cs)

}
.
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the first and second order equations will be considered as (Equation (6),
is characterized as the zero order.):

L
(
ζ1(τ)

)
= c1 N0(~ζ0) + g(τ) (10)

and second-order equation by

L
(
ζ2(τ)

)
− L

(
ζ1(τ)

)
= c2 N0(~ζ0) + c1

(
L (ζ1(τ)) + N1

(
~ζ1

))
. (11)

In general, the equations for the script k, ie uk, are as follows:

L
(
ζι(τ)

)
−L
(
ζι−1(τ)

)
= (12)

cιN0

(
ζ0(τ)

)
+

ι−1∑
m=1

cm

(
L (ζι−m(τ)) + Nι−m

(
~ζι−1

))
,

in which ι = 2, 3, . . . and Nm

(
ζ0(τ), ζ1(τ), . . . , ζm(τ)

)
is the coefficient

of ”%m”, in the extension of N
(
v(ζ; %)

)
, about the index parameter ”%”

and we have

N
(
v(ζ; %, cι)

)
= N0

(
ζ0(τ)

)
+

∞∑
m=1

Nm

(
~ζm

)
%m. (13)

It is easy to realize that the convergence of the series (8), pertain the
coefficients c1, c2, . . ..

ṽ(τ ; %; ci) = ζ0(τ) +
m∑
k=1

ζι(τ ; ci)%
ι, i = 1, 2, . . . . (14)

The below residual is a result of embedded (14) in (4):

R(τ ; ci) = L
(
ṽ(τ ; %, ci)

)
+ g(τ) + N

(
ṽ(τ ; %, ci)

)
, i = 1, 2, . . . . (15)

If R = 0, then ṽ will be the accurate solution 4.
By the use of the minimum squares methodology and recognition of

the accurate solution to the problem, the the L2-norm of the error

E vm(c1, c2, c3, . . . , cm).

can be minimized,
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The L2-norm of the eror is signified as

‖E ṽm(c1, . . . , cm)‖2 =

(∫
Ω

∫
Γ
ṽ2
m(τ, t) dt dτ

) 1
2

,

in which E ṽm(τ, t) = |ṽaccurate(τ, t)− ṽm(τ, t; c1, . . . , cm)|.

3 Convergence Of OAHM

Topics in this part are prepared for analysis and expression of conver-
gence for the OAHM.

Theorem 3.1. [14] Let the solution components ζ0, ζ1, ζ2, . . ., be defined

as given in Eqs.(11)-(12). The series solution
m−1∑
ι=0

ζι(τ, t) defined in 14

converges, if ∃ 0 < κ < 1 such that ‖ζι+1‖ ≤ κ‖ζι‖ ∀ι ≥ ι0 for some
ι0 ∈ N.

Proof. Under consideration

T0 = ζ0

T1 = ζ0+ζ1

T2 = ζ0+ζ1+ζ2

. . .

Tn = ζ0+ζ1+ζ2+. . .+ζn,

as the sequence {Tn}∞n=0. Evidence is sufficient to show that the se-
quence {Tn}∞n=0 in the Hilbert space R is a Cauchy sequence. To achieve
this, consider

‖Tn+1 − Tn‖ = ‖ζn+1‖
≤ κ‖ζn‖
≤ κ2‖ζn−1‖
...

≤ κn−ι0+1‖ζι0‖.
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Assuming that n ≥ m > ι0 and for every n,m ∈ N, we have

‖Tn − Tm‖ = ‖(Tn − Tn−1) + (Tn−1 − Tn−2) + . . .+ (Tm − Tm−1)‖
≤ ‖(Tn − Tn−1)‖+ ‖(Tn−1 − Tn−2)‖+ . . .+ ‖(Tm − Tm−1)‖
≤ κn−ι0‖ζι0‖+ κn−ι0−1‖ζι0‖+ . . .+ κm−ι0+1‖ζι0‖

=
(1− κn−m

1− κ
)
κm−ι0+1‖ζι0‖.

According to the 0 < κ < 1, it results that lim
n→∞
m→∞

‖Tn−Tm‖ = 0. There-

upon, in the Hilbert space R, sequence {Tn}∞n=0 is a Cauchy sequence

and this implies that series solution converges to series
∞∑
ι=0

ζι(τ, t).

4 Test Example

In all these examples in this section, mathematical softwareMathematica
is used for calculations and graphs. Also, approximate solutions are ob-
tained compared with methods VHPIM [30] and Oq.HAM.

Example 4.1. We offer the Volterra integro-differential equation [28]:

Dϑζ(ς) +

∫ ς

0
ζ(ς)dς = 1, 0 ≤ ς ≤ 1, 0 ≤ ϑ ≤ 1, (16)

with the precise solution ζ(ς) = sin(ς) for ϑ = 1 and the primary con-
dition:

ζ(0) = 0. (17)

Following the OAHM, according to what was formulated and presented
in section 2 for Eqs.(16-17), we get:

ζ0(ς) =
ςϑ

Γ(ϑ+ 1)
,

ζ1(ς) =
c1ς

2ϑ+1

Γ(2ϑ+ 2)
,

ζ2(ς) =
c2

1ς
2ϑ+1

Γ(2ϑ+ 2)
+

c1ς
2ϑ+1

Γ(2ϑ+ 2)
+

c2ς
2ϑ+1

Γ(2ϑ+ 2)
+

c2
1ς

3ϑ+2

Γ(3ϑ+ 3)

. . . .
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In the below, estimates of solution for Eq.(16) with the first three sen-
tences is given:

ζ(ς) ≈ c2
1ς

2ϑ+1

Γ(2ϑ+ 2)
+

2c1ς
2ϑ+1

Γ(2ϑ+ 2)
+

c2ς
2ϑ+1

Γ(2ϑ+ 2)
+

c2
1ς

3ϑ+2

Γ(3ϑ+ 3)
+

ςϑ

Γ(ϑ+ 1)
.

(18)

According to least square method(LSM) for the calculations of the con-
stants c1 and c2, we can gain

c1 = −0.978948, c2 = 0.000501513.

Table 1: The estimated solutions to ϑ = 1 and different values of ζ 4.1.

x uV HPIM uOq.HAM uOAHM Exact

0.0 0.0 0.0 0.0 0.0
0.2 0.198669 0.198669 0.19867 0.198669
0.4 0.389418 0.389419 0.389425 0.389418
0.6 0.564642 0.564648 0.564655 0.564642
0.8 0.717356 0.717397 0.717364 0.717356
1.0 0.841470 0.841667 0.841477 0.841471

Example 4.2. We propound the Volterra integro-differential equation
[28]:

Dϑζ(ς)−
∫ ς

0
(ς − τ)ζ(τ)dτ = 1, 0 ≤ ς ≤ 1, 1 ≤ ϑ ≤ 2, (19)

given that the primary condition

ζ(0) = 1, ζ ′(0) = 0. (20)

From the OAHM, like to what was introduced in section 2 for Eqs.
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(19-20), we get:

ζ0(x) =1 +
ςϑ

Γ(ϑ+ 1)
,

ζ1(x) =
c1ς

ϑ+2

Γ(ϑ+ 3)
− c1ς

2ϑ+2

Γ(2ϑ+ 3)
,

ζ2(x) =
c2

1ς
ϑ+2

Γ(ϑ+ 3)
− c1ς

ϑ+2

Γ(ϑ+ 3)
− c2ς

ϑ+2

Γ(ϑ+ 3)
+

c2
1ς

3ϑ+4

Γ(3ϑ+ 5)
+

c2
1ς

2ϑ+2 − c2ς
2ϑ+2 +

c21ς
2ϑ+4

2(ϑ+2)(2ϑ+3) − c1ς
2ϑ+2

Γ(2ϑ+ 3)
,

. . . .

Then, the first three terms as assessment of solution for Eq.(19) is as

ζ(ς) ≈ 1 +
c2

1ς
3ϑ+4

Γ(3ϑ+ 5)
+
ςϑ
(
(ϑ+ 1)(ϑ+ 2) + ((c1 − 2) c1 − c2) ς2

)
Γ(ϑ+ 3)

+

ς2ϑ+2 (−4(ϑ+ 2)(2ϑ+ 3)c1 − 2(ϑ+ 2)(2ϑ+ 3)c2)

Γ(2ϑ+ 5)
+

ς2ϑ+2
(
c2

1

(
2(ϑ+ 2)(2ϑ+ 3) + ς2

))
Γ(2ϑ+ 5)

. (21)

We gain the constants c1, c2 using the LSM, as folows

c1 = −0.999895, c2 = 3.99958.

In Table 2, we can view the accurate and assessment solutions featuring
ϑ = 2 through applying OAHM.

With ϑ = 2, the assessment solution gained by the mentioned method
corresponds to the accurate solution ζ(ς) = cosh(ς).

Example 4.3. For the fourth instance, consider the Volterra integro-
differential equation [28]:

Dϑζ(ς) +

∫ ς

0
(ς − τ)ζ(τ)dτ = −1, 0 ≤ ς ≤ 1, 3 ≤ ϑ ≤ 4, (22)

although the primary condition

ζ(0) = −1, ζ ′(0) = 1, ζ ′′(0) = −1, ζ ′′′(0) = 1. (23)
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Table 2: assessment result of test example 4.2.

x uV HPIM uOq.HAM uOAHM Exact

0.0 1.0 1.0 1.0 1.0
0.2 1.020066941 1.02007 1.01993 1.02007
0.4 1.081085602 1.08107 1.07893 1.08107
0.6 1.185642306 1.18547 1.17454 1.18547
0.8 1.338637450 1.33743 1.30257 1.33743
1.0 1.548685515 1.54308 1.45697 1.54308

From the OAHM, like to what was introduced in section 2 for Eqs.(22-
23), we get:

ζ0(ς) =− 1 + ς − ς2

2

ς3

6
− ςϑ

Γ(ϑ+ 1)
,

ζ1(ς) =− c1ς
2ϑ+1

Γ(2ϑ+ 2)
+

c1ς
ϑ+1

Γ(ϑ+ 5)

(
−ϑ3 − 9ϑ2 − 26ϑ+ ς3 − ϑς2 − 4ς2 + ϑ2ς + 7ϑς + 12ς − 24

)
. . . .

Then, the first three terms as assessment of solution for Eq.(22) is as:

ζ(ς) ≈− 1 + ς − ς2

2

ς3

6
− ςϑ

Γ(ϑ+ 1)
− c1ς

2ϑ+1

Γ(2ϑ+ 2)
+

c1ς
ϑ+1

Γ(ϑ+ 5)

(
−ϑ3 − 9ϑ2 − 26ϑ+ ς3 − ϑς2 − 4ς2 + ϑ2ς + 7ϑς + 12ς − 24

)
.

(24)

We gain the constants c1 and c2 using the LSM, as folows

c1 = 0, c2 = 0.999393.

With ϑ = 4, the assessment solution gained by the mentioned method
corresponds to the accurate solution ζ(ς) = sinh(ς)− cosh(ς)
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Table 3: Approximate result of test example 4.3.

ς ζV HPIM ζOAHM accurate Absolute error

0.0 -1.0 -1.0 -1.0 0.0
0.2 -0.817731 -0.818731 -0.818731 1.56698× 10−9

0.4 -0.67022 -0.67032 -0.67032 1.56698× 10−8

0.6 -0.548612 -0.548812 -0.548812 3.55738× 10−7

0.8 -0.44922 -0.44933 -0.449329 1.43263× 10−6

1.0 -0.367669 -0.367884 -0.367879 4.07205× 10−6

5 Conclusion

We have successfully applied OAHM to obtain approximate solution of
the fractional We have successfully applied OAHM to obtain approxi-
mate solution of the fractional integro-differential equations. The result
indicate that a few iteration of OAHM will result in some useful solu-
tions.

Finally, it should be added that the suggested technique has the
potentials to be practical in solving other similar nonlinear and linear
problems in partial differential equations featuring fractional derivative.
Appendix A: Illustration Of OAHM With Details
Consider test example (4.1):

Dϑζ(ς) + µ

∫ ς

0
K(ς)G(ζ(τ)) dτ = g(ς), 0 ≤ ς ≤ 1, L ≤ ϑ ≤ L+ 1, (25)

With considering

φ(ς; %, c1, c2, · · · ) = ζ0 +
∞∑
i=1

ζi%
i, (26)

and

H(%) = % c1 + %2c2 + · · · , (27)
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and using of OAHM featuring equations (25), (26) and (27)(
Dϑζ0+ %Dϑζ1+ %2Dϑζ2 + · · · − g(ς)

)
−(

%Dϑζ0 + %2Dϑζ1 + %3Dϑζ2 + · · · − % g(ς)
)
−

c1%
(
Dϑζ0+ %Dϑζ1 + %2Dϑζ2 + · · ·

)
−

c1%µ

(∫ ς

0
K(ς)G(ζ0 + % ζ1 + %2ζ2 + · · · ) dτ

)
−

− c1% g(ς)c2%
2
(
Dϑu0+ %Dϑζ1 + %2Dϑζ2 + · · ·

)
−

c2%
2 µ

(∫ ς

0
K(ς)G(ζ0 + % ζ1 + %2ζ2 + · · · ) dτ

)
−

c2%
2 g(ς) + · · · = 0.

Zero th order problem can be obtained with equating the coefficients of
different power in ”%”.
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