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Abstract. In this paper, we give an algorithm for solving a class of
nonconvex quadratic fractional problems that may arise during a cor-
rection of inconsistent set of linear inequalities. First, we show that
for rank deficient matrices, an optimal solution for a nonconvex frac-
tional minimization problem can be obtained via convex optimization
approach. Then an iterative algorithm is designed to solve the prob-
lem in the full rank case. Finally, an illustrative numerical example is
presented.
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1. Introduction

Inconsistent set of linear inequalities might frequently arise in real world
problems [11] by various reasons such as error in data, wrong formula-
tion, and many others. It might be the case that starting the model from
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the beginning might be expensive and time consuming, thus correcting
an inconsistent set of linear inequalities does make sense and is studied
in [2, 10]. Correcting such systems to consistent systems with minimal
changes in problem data, requires to solve the following nonconvex frac-
tional problem [10]:

min
x∈Rn

||(Ax− b)+||2

1 + ||x||2
. (1)

However, it might be the case that the solution norm of (1) is too large
and meaningless from practical point of view, thus it should be con-
trolled. There are two popular approaches to do this. The first one is
the so called Tikhonov regularization of (1) as follows:

min
x∈Rn

||(Ax− b)+||2

1 + ||x||2
+ ρ||x||2, (2)

where ρ is a positive constant and called the regularization parameter.
The second one requires prior information on solution norm, namely a
bound on it. If this information is available, then we can consider the
following problem instead of (1)

min
x∈Rn

||(Ax− b)+||2

1 + ||x||2

||x||2 6 γ. (3)

In this paper, our focus is on the problem (3). We show that for rank
deficient matrices A, instead of (3) it is sufficient to solve two convex
optimization problems to get an optimal solution of it. Then, we discus
the case where A is full rank.

2. Residual Vector

Let us first focus on the following problem:

min
x∈Rn

‖(Ax− b)+‖2 . (4)
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Obviously, this is a convex optimization problem and let us denotes its
solution set by X∗. The dual of (4) is given by

max− 2bTu− ||u||2

s.t.ATu = 0, (5)

u  0.

Lemma 2.1. Let x∗ be an optimal solution of problem (4). Then u∗ =
(Ax∗ − b)+ is an optimal solution of (5).

Proof. See [10]. 

The following theorem is crucial for the rest of the paper.

Theorem 2.2. Let x∗1 and x∗2 be two different solutions of (4), then
(Ax∗1 − b)+ = (Ax∗2 − b)+.

Proof. Since the dual of (4) is a strictly convex minimization problem,
then its solution is unique. However, as stated in the previous lemma,
if x∗ is a solution of (4), then u∗ = (Ax∗ − b)+ is optimal for (5). Since
the solution of (5) is unique, then we have proved the theorem. 

Lemma 2.3. Let x∗ be an optimal solution of (4). If there is a nonzero
vector d ∈ Rn for which

A1d  0,

A2d = 0, (6)

where A1 and A2 are submatrices of A with

(A1x
∗ − b1)+ = 0, (A2x

∗ − b)+ = A2x
∗ − b2,

then X∗ is unbounded.

Proof. Since x∗ is an optimal solution of (4), then for any nonzero vector
d that satisfies (6) and any α  0 we have

(A1x∗−b1)+ = (A1(x∗+αd)−b) = 0, (A2x∗−b)+ = (A2(x∗+αd)−b)+ = A2x
∗−b.
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Corollary 2.4. For rank deficient matrices A, X∗ is unbounded.

Example 2.5. Consider the following inequalities

x1 > 1,
x1 6 −1,
x2 > 0.

Obviously, the coefficient matrix is full rank and any point on the nonnegative
part of the x2 axis is an optimal solution. This shows that even the coefficient
matrix is full rank, but the solution set of (4) is unbounded.

Example 2.6. Consider the following inequalities

x1 > 1,
x1 6 −1,
x2 > 0,
x2 6 1.

Here, again the coefficient matrix is full rank while X∗ is bounded.
Now to solve (3), let us focus on the following minimization problem

min ‖(Ax− b)+‖2

s.t. ‖x‖2 6 β. (7)

Obviously, this is a convex optimization problem and can be solved using ex-
isting efficient algorithms [4]. If for the optimal solution of (7) ‖x∗‖2 = β, then
it is optimal for (3) as well. In the following lemma we discuss the case where
‖x∗‖2 < β.

Lemma 2.7. Suppose x∗ is an optimal solution for (7) with ‖x∗‖2 < β and
d ∈ Rn be a nonzero vector satisfies (6). Then there exists an α ∈ R, for which
‖x∗ + αd‖2 = β, and x∗ + αd is an optimal solution for (3).

Proof. For a nonzero vector d satisfying (6), the nominator of (3) is the same
for both x∗ and x∗ + αd, where α ∈ R. Moreover since ‖x∗‖2 < β, then there
exist an α ∈ R, for which ‖x∗ + αd‖2 = β, which completes the proof. It can
be found the formula of calculationg α in [8]. �

Remark 2.8. For rank deficient matrix A, there always exists a nonzero vector
d ∈ Rn, such that satisfies (6).
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Remark 2.9. Let us denote by f(x) the objective function of (3) and x∗ be an
optimal solution of (7) with ‖x∗‖2 < β. Then if there exists a nonzero vector
d ∈ Rn satisfying (6), we may get it by solving the following linear programming
problem:

min ∇f(x∗)T d
A1d 6 0
A2d = 0 (8)
∇f(x∗)T d > −t

where t is a positive constant.

Lemma 2.10. Let x∗ be an optimal solution of (7) with ‖x∗‖2 < β. Then the
optimal objective value of (8) is negative.

Proof. It follows from our previous discussion that we can decrease f in any
nonzero direction d satisfying (6). �

3. Full Rank Case

In this section, we assume that the coefficient matrix A is full rank. In [7],
we used a parametric approach to reduce the quadratic fractional problem into
finding a zero of a univariate equation. Here, we use similar method to reduce
our problem. However, the method leads us to a minimization of a single
variable function over a closed interval. In other word, we rewrite the problem
(3) as

min
16α61+γ

min
‖x‖2=α−1

‖(Ax− b)+‖2

α
, (9)

or

min
16α61+γ

G(α), (10)

where

G(α) = min
‖x‖2=α−1

‖(Ax− b)+‖2

α
. (11)

The main difficulty in solving (9) is to solve the following subproblem efficiently

min ‖(Ax− b)+‖2

s.t. ‖x‖2 = β. (12)
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The KKT conditions for (12) are given by

AT (Ax∗ − b)+ + λ∗x∗ = 0,

x∗2 − β = 0.

In what follows, we give necessary and sufficient conditions of optimality for
this problem.

Theorem 3.1. The following are necessary and sufficient conditions for x∗ to
be an optimal solution for (12):

AT (Ax∗ − b)+ + λ∗x∗ = 0,

x∗2 = β, (13)

H(x∗) + λ∗I  0.

Proof. Suppose that x∗ is a solution of (12). Obviously the first two conditions
of (13) hold, thus it suffices to prove the last one. To do so, we know that

f(x) = f(x∗)+∇f(x∗)T (x−x∗)+1
2

(x−x∗)TH(x∗)(x−x∗)+x− x∗2 α(x∗, x−x∗),

where limx→x∗ α(x∗, x − x∗) = 0 and H(x∗) = ATD(x∗)A is the generalized
Hessian. Assume that x2 = β. Now, since x∗ is a solution of (12), then
f(x)  f(x∗) and since f is convex, then

f(x)− f(x∗)  ∇f(x∗)T (x− x∗)  0.

This further implies that

∇f(x∗)T (x− x∗) +
1
2

(x− x∗)TH(x∗)(x− x∗) + x− x∗2 α(x∗, x− x∗)  0.

Also, since λ∗

2 x− x∗2  0, we add λ∗

2 x− x∗2 to the previous inequality.
Then, we have

1
2

(x− x∗)T (H(x∗) + λ∗I)(x− x∗) + x− x∗2 α(x∗, x− x∗)  0,

which result to
(x− x∗)T (H(x∗) + λ∗I)(x− x∗)  0.

Now suppose (13) holds for x∗, then we show that it is optimal for (12). Let
for x we have x2 = β and

1
2
(Ax− b)+2 + λ∗ x2 < 1

2
(Ax∗ − b)+2 + λ∗ x∗2 .
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Consider the following function

g(x) =
1
2
(Ax− b)+2 + λ∗ x2 .

We have
(Ax− b)+2 < (Ax∗ − b)+2

and let z = αx∗ + (1− α)x. Since g is convex, then for α ∈ (0, 1) we have

f(z) < f(x∗)

and
f(z) + λ∗ z2 < f(x∗) + λ∗ x∗2 .

This contradicts with x∗ being a local minimum. Thus it is the global solution
for (12). 

In the following theorem, we discuss some properties of G(α).

Theorem 3.2. Function G(α) has the following properties:

• G(α) is continuous in [1, 1 + γ].

• for α > 1, G

(α) = −λ(α)

α − (Ax(α)−b)+2
α2 .

where x(α) and λ(α) are a solution of (11) and its Lagrange multiplier
respectively.

Proof.
• First, we show the continuity from left at 1. For α  1 we have

|G(α)−G(1)| =


(Ax(α)− b)+2

α
− (−b)+2



=


(Ax(α)− b)+2 − (−b)+2 + (1− α) (−b)+2

α





(Ax(α)− b)+2 − (−b)+2

α

 +


(1− α) (−b)+2

α



 (Ax(α)− b)+ − (−b)+ ((Ax(α)− b)++ (−b)+)
α

+


(1− α) (−b)+2

α



 Ax(α) ((Ax(α)− b)++ (−b)+)
α

+


(1− α) (−b)+2

α
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 A
√
α− 1 ((Ax(α)− b)++ (−b)+)

α
+


(1− α) (−b)+2

α

 . (14)

Obviously as α→ 1+, the right hand side of (14) approaches to zero, which im-
plies the continuity of G(.) at 1 from right. Analogously we have the continuity
at the interval [1, 1 + γ].
For the second part of the theorem suppose

G(α) =
(Ax(α)− b)+2

α
.

Then

G

(α) =

2(x

(α))TAT (Ax(α)− b)+α− (Ax(α)− b)+2

α2
.

Moreover since x(α)2 = α− 1, then 2x(α)Tx

(α) = 1 and AT (Ax(α)− b)+ +

λ(α)x(α) = 0, then we have

G

(α) = −λ(α)

α
− (Ax(α)− b)+2

α2
.  (15)

Theorem 3.3. The function G(α) is unimodal for every α > 1.

Proof. Now, in order to prove the unimodality of G, it is sufficient to prove if
G


(α) =, then G


(α)  0.

First, we rewrite (15) as

G

(α) = −λ(α)

α
− G(α)

α
. (16)

By differentiating both sides of (16), we obtain

G

(α) = −λ


(α)α− λ(α)

α2
− G


(α)α−G(α)

α2
(17)

= − 1
α2


λ

(α)α− 2λ(α)− 2G(α)


,

where the last equality is followed by (16). From the assomption G

(α) = 0,

we have

λ(α)
α

= −(Ax(α)− b)+2

α2
.

Therefore,

G

(α) = −λ


(α)
α

. (18)
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Notice that AT (Ax(α) − b)+ + λ(α)x(α) = 0. Now, if we represent matrix A

and vector b as the form A =

A1
A2


, b =


b1
b2


, such that A1x(α) > b1

and A2x(α)  b2; we conclude that AT1 (A1x(α) − b1) + λ(α)x(α) = 0. By
dierentiating both of sides, we have

(AT1 A1 + λ(α)I)x

(α) + λ


(α)x(α) = 0.

Multiplying x
T

(α) to both sides, it is obtained

x
T

(α)(AT1 A1 + λ(α)I)x

(α) + λ


(α)x

T
(α)x(α) = 0.

Finally, since 2x(α)Tx

(α) = 1

λ

(α) = −1

2
x
T

(α)(AT1 A1 + λ(α)I)x

(α)  0.

The last inequality is a consequence of the nonnegative definiteness ofH(x(α))+
λ(α)∗I. We know that H(x(α)) = ATD(x(α))A is a generalized Hesian matrix
where D(x(α)) is an n × n diagonal matrix whose ith diagonal entry is equal
1 if (Ax − b)i > 0 and to 0 if (Ax − b)i  0. Therefore H(x(α)) + λ(α)I =
AT1 A1 + λ(α)I. We conclude that, when G


(α) = 0, then G


(α)  0.

Now we outline our algorithm to solve (9). 

Algorithm 1

inputs
A ∈ Rm×n,m  n, b ∈ Rm, γ > 0;

Set αmin = 1 and αmax = 1 + γ.

|αmax − αmin|  

Set α = αmax+αmin
2 ;

Solve the following problem

min
x2=α−1

(Ax− b)+2

α
.

If −λ(α)
α − (Ax(α)−b)+2

α2 > 0, then αmax = α, else αmin = α.
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4. Numerical Results

In this section we present a numerical example used in [1] to show the per-
formance of our algorithm compared to the approach of Amaral et al., [1].
Let

A =


−0.10433318 −0.3349605
−2.31759372 −2.0354161
−0.67781831 0.6546597
1.05241872 −0.4327864
0.01449416 −1.93122220
0.24375548 0.5536801

 , b =


−2.24440190
0.7579334
0.4302541
2.5746725
−2.6003448
0.4284550

 ,

where A is full rank and Ax 6 b is inconsistent. The solution obtained by our
algorithm in 16 seconds is (x1, x2) = (3.921407, 2.544738) and the correspond-
ing objective function is 0.2152437 while the solution obtained in [2] after 37
seconds is (x1, x2) = (3.923086, 2.548969) with the objective function equal to
0.2152440.

5. Conclusions

In this paper a new algorithm is introduced to solve a nonconvex fractional
quadratic minimization problem. Then, we considered two possible cases. First,
if the coefficient matrix A is rank deficient, the method corresponds to any
nonzero direction d satisfying (6). Second, if the coefficient matrix A is full
rank, we meet an iterative algorithm. In this case, we reduce the problem
to minimization of a single variable function on a closed interval while the
computation of value of this function consists of solving a minimization of
quadratic function with a quadratic constraint. To solve the inner minimization
problem, we use the method of Moré, D.C. Sorensen (see [6]). A numerical
example is given to show that the proposed method is efficient in practice as
well.
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