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Abstract. The aim of this research is to establish the analytic solu-
tion of partial differential equations with homogenous initial boundary
conditions. Having hybrid fractional order derivative allows us to have
classical boundary and initial conditions. The solution of the problem is
obtained in terms of bivariate Mittag-Leffler function as a Fourier series
by utilizing separation of variables method (SVM) and the inner prod-
uct defined on L? [0,1]. The presented examples illustrate the accuracy
and effectiveness of the SVM for the fractional diffusion problems. The
accuracy of the obtained solution can also be seen from the observation
that as the fractional order « tends to 1, the solution of the fractional
diffusion problem tends to the solution of the diffusion problem.
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1 Introduction

Since mathematical models including fractional derivatives play a vi-
tal role, fractional derivatives have drawn increasing attention from
many researchers in various branches of science. Therefore, there are
many different fractional derivatives such as Caputo, Riemann-Liouville,
Atangana-Baleanu defined as follows [17]:

The Caputo fractional derivative of order ¢ is defined as

1 t
D%y (t :/ t— )" Iy (8)ds, t € [to, to + T
(t) T =) to( ) (s) [to, to + T
where u(™ (t) = 4

dZ}j,n—1<q<n.

The Riemann-Liouville fractional derivative of order ¢ is defined as

1 dr t
DIy (t) = ———— [ (t—s)"" T u(s)ds, t € [to,to+ T
W)= ppm gy ], (T s o+ 7]

where n — 1 < g < n.

However these fractional derivatives do not satisfy the most impor-

tant properties of the ordinary derivative, which leads to many difficul-
ties in analyzing or obtaining the solution of fractional mathematical
models.
As a result, many scientists focus on defining new fractional deriva-
tives to cover the setbacks of the defined ones. Moreover, the success
of mathematical modelling of systems or processes depends on the frac-
tional derivative it involves, since the correct choice of the fractional
derivative allows us to model the real data of systems or processes accu-
rately. In order to the define new fractional derivatives, various methods
exist, and these are classified based on their features and formation such
as non-local fractional derivatives and local fractional derivatives. The
constant proportional Caputo hybrid operator is a newly defined frac-
tional derivative that is a combination of the Caputo derivative and the
proportional derivative and is defined as:

SPEDYF () = iy Jy (Ku (@) £ (1) + Ko (o) £/ (7)) (t— 1) dr
= Ky () F" 1,7 f (1) + Ko (@) § D f (t)
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where the functions Ky and K satisfy certain properties in terms of
limit [4]. The domain of this operator contains functions f on pos-
itive reals such that f and its derivative f’ are locally L' functions.
Moreover, éﬂj— ? and OCD? represent the Riemann-Liouville integral and
Caputo derivative, respectively.Note that this hybrid fractional opera-
tor can be enounced as a linear combination of the Caputo fractional
derivative and the Riemann—Liouville fractional integral. Notice that the
constant proportional Caputo hybrid operator is obtained by adding a
non-locality property to a proportional derivative operator, which al-
lows us to model processes with non-local behaviour more efficiently
which is the most important advantage of it. The non-locality property
of the constant proportional Caputo hybrid operator is a result of the
Riemann-Liouville integral which is defined as:

The Riemann-Liouville time-fractional integral of a real valued function
u(x,t) is defined as

1

u(z,t) = F<Oé)/0 (t — ) tu(z, s)ds

where a > 0 denotes the order of the integral.

This new fractional derivative have been drawing the attention of many
researchers in various branches of science. As a result, there is a substan-
tial amount of study in the literature such as on the hybrid fractional

derivative [14, 23, 24, 15, 3], heat and mass transportation [2], dynam-
ics of processes [1], fractional Schrodinger and Bogoyavlenskii equations
[20], Modified Zakharov-Kuznetsov equation [16, 22] and Konopelchenko-

Dubrovsky and Kadomtsev-Petviashvili equations [21].

The choice of functions Ky and K; included in the definition of the
constant proportional Caputo hybrid operator motivates us to analyze
the solution of fractional diffusion equations with initial and boundary
conditions for various functions Ky and K7 and compare them. In this
study, we focus on obtaining the solution of the following fractional dif-
fusion equation with various the constant proportional Caputo hybrid
operator by making use of the SVM:

S f() = (L—a) BEL7F(8) +al DI f (1),
SPCD2f(t) = (1—0a®) 80,7 °F (1) +o®SD5 f (1)
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where 0 < a < 1,0<z <1, 0 <t <T. Here we use the following forms
of the proportional derivatives: We especially consider the following
ones:

SPCD f() = (1—a) BELTF () +al D0 f (1),
SPCD2f() = (1—a®) B F(6)+a2SD0 ().

The novelty of this study is the application of the SVM to a time frac-
tional diffusion equation including the constant proportional Caputo hy-
brid derivative operator. As a result, the implementation of this method
and its effectiveness and accuracy are presented explicitly.

From a physical aspect, the intrinsic nature of the physical system can
be reflected to the mathematical model of the system by using fractional
derivatives. Therefore, the solution of the fractional mathematical model
is in excellent agreement with the predictions and experimental measure-
ment of it. The systems whose behaviour is non-local can be modelled
better by fractional mathematical models, and the degree of its non-
locality can be arranged by the order of fractional derivative. In order
to analyze the diffusion in a non-homogenous medium that has memory
effects, it is better to analyze the solution of the fractional mathematical
model for this diffusion. As a result, in order to model a process, the
correct choice of fractional derivative and its order must be determined.
In the mathematical modelling of a diffusion problem for different mat-
ters such as liquid, gas and temperature, the suitable fractional order
« is chosen, since the diffusion coefficient depends on the order a of
fractional derivative [5]. This mathematical modelling describes the be-
haviour of matter in a phase. There is a vast amount of published work
on the diffusion of various matters in science, especially in fluid mechan-
ics and gas dynamics [0, 7, 8, 9, 10, 11, 12, 18, 13]. From this aspect, the
analysis of this problem plays an important role in its application. More-
over, sub-diffusion cases for which 0 < a < 1 are under consideration.
The solution of the fractional mathematical model of sub-diffusion cases
behaves much slower than the solution of the integer-order mathemati-
cal model unlike the fractional mathematical model for super-diffusion

[19].

The focus of the current work is to establish the solutions of the following
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problem:
SPODMu (x,t) = 7Pugs (z,1), (1)
w(0,t) = wu(l,t)=0, (2)
u(z,0) = f(x) (3)

where 0 < a<1,0< 2 <[,0<t<T,veR

2 Main Results

The analytic form of the solution for the problem (1)-(3) is established
by employing the well known method SVM.

u(z,t;a) = X(z) T'(t; o) (4)

where 0 <z <[,0<t<T.
Utilizing (4) in (1) and arranging leads to the following:

67D (T (o) X" (2)

T (t; ) T (x) = -\ (5)

Taking the right hand side of equation (5) and related boundary condi-
tions (2) into account the following problem is obtained:

X" (x) 4+ M\X (z) =0, (6)
X0)=X(0)=0 (7)

which has the solution X (z) = €"®. As a result, the following charac-
teristic equation is reached 72 + A% = 0.

Case 1. We have coincident roots r; = r2 which happens when A = 0.
Therefore, the solution of the problem (6)-(7) becomes X (z) = kjx+ko.
The first boundary condition yields X (0) = k2 = 0 which indicates
that X (z) = kiz. In a similar manner, utilizing last condition yields
X () = kil =0= k1 =0, leading to X () = 0. Therefore, there is no
solution for A = 0.

Case 2. We have two distinct real roots r1, ro which happens when A > 0.
As a result, the solution of the problem (6)-(7) becomes X () = ¢1e™*+
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coe™®. By utilizing the first condition, we have X (0) = ¢ +c2 =0 =
¢1 = —co which leads to the solution X (z) = ¢; (¢"* — €"2%). In a simi-
lar manner, second boundary condition yields X (I) = ¢1 (e"! — e"?!) =
0. Since e™! # €', the equation X (I) = ¢; (€' — e"2!) = 0 is satisfied
if and only if ¢; = 0 which indicates X (z) = 0. Therefore, there is no
solution for A > 0.

Case 3. We have two complex roots which happens when A < 0.
Consequently, the solution of the problem (6)-(7) becomes X (x) =
c1 cos (Az) + cosin (Az). Utilization of the first condition allows us to
obtain X (0) = ¢; = 0 which leads to the solution X (z) = ¢ sin (Ax).
In a similar manner, utilization of the last condition yields X (I) =
cosin (Al) = 0, indicating that sin (Al) = 0. Therefore, the following
eigenvalues are obtained:

)\n:%,)\1<)\2<>\3<...

where w,, = nm satisfy the equation sin (wy) = 0.
Therefore, the following solution is established:

X, (z) = cgsin (wn (%)),n: 1,2,3,...

The other equation in (5) with A, leads to the following fractional dif-
ferential equation:
67D} (T ()
T (t; )

=A%

which yields the following solution [4]

— 2)\2 —K1 (Oé)
T, (t;a) = E: ( T g t),n:O,1,2,3,...
( ) 1,1 KO (a) KO (Oé)

where a bivariate Mittag-Lefler function E((J) 8 K (, ) proposed by Ozarslan

and Kiirt [11], is represented in double power series as follows:

PR I W
@B, w2 = D(ar+ Bs+k) 1l sl
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where «, 3,7 € C,Re (o), Re(B),Re(x) > 0. The solution for every
eigenvalue )\, is constructed as

un(wﬂf;a) = Xn(x)T (t Oé)

2 —
El., (Kvo(x)ta’ ;ﬁ(()u) sin (wy, (2)),n =0,1,2,3,...

which yields general solution as

(x,t; @) ZA sin (wn (—)) Ey1 1 <I_(ZQ(§;7504’ _Igl(gj)‘)t) (8)

The convergence of the series in (8) is given in [4].

Notice that this solution fulfills fractional differential equation and bound-
ary conditions.

Making use of initial condition yields the following;:

)= 10 = 3 i (o ()

By taking the inner product in L?[0, [] into account, A, forn =0,1,2,3,...

are acquired: l
A, = ?/0 f(z)sin (wn (%))

The advantage of this method comparing with the homotopy method or
other numerical methods is that exact solutions of the fractional differ-
ential equations are established by the SVM, while their approximate
solutions are acquired by homotopy and other numerical methods. Al-
though the SVM is a very common method to construct the solution of
partial differential equations, applying it to fractional differential equa-
tions is not included in a vast number of studies in literature.

3 Illustrative Example

Let the following mathematical problem be considered:
u(x,t) = ugs(x,t),
u(0,t) = wu(l,t),
u(z,0) = sin(7zx) 9)
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whose solution is

u (z,t) = sin (mc)e_”%

where 0 <x <1,0<t < T.
Let us consider the following fractional diffusion problem:

OCPCD?U (337 t) = Ugg (1:7 t) s (10)
u(0,t) = wu(l,t), (11)
u(z,0) = sin(mx) (12)

where 0 < a<1,0<2 <1, 0<t<T.
The method SVM yields the following equations:
SPCDY (T () _ X" (2)

T (t; ) X (x)

= -\ (13)

Taking the right hand side of equation (13) and related boundary con-
ditions (11) into account yields:

X" (x) 4+ NX (z) =0, (14)
X (0)=X (1) =0,

(
The solution of the problem (14)-(15) is obtained as
Xp (x) =sin(nmz),n=1,2,3,...
The other equation (13) for each eigenvalue ), leads to the following:

67Dy (T (t;a))
T (t; @)

— _)\?2

which yields the following solution

—n?r? K («
Tn (t’ Oé) = Eé,l, 1 (KO (a) tav Kol(;))t> y V= Oa 1a 2a 37 s

Corresponding to \,, the following solution is obtained

2.2 K
Up (x,t; ) = Ecly’L 1 (KZ(Z)ta’ Kol(g;)t> sin (nmzx),n =0,1,2,3,...
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Hence Superposition Principle leads to the following sum:

00 2,2
N . 1 —-n‘m* , —Ki (o)
u(z,ta) = nZOAn sin (nm) Ba,y, 1 <K0 @' Ko(a) t)'

Utilizing initial condition (12) yields the following:

u(z,0) = Z Ay sin (nmz).
n=0

Taking the inner product into account allows us to determine A, for
n=0,1,2,3,... in the following form:

1
A, = 2/ sin (7x) sin (nz)dz.
0
Forn #1, A, =0. For n =1, we get
1
Al = 2/ sin? (rz)dx = 1.
0

Thus

o) — 1 - o —Ki(a)
u(r,t;a) = sin (7x)E, 1 4 (Ko (a)t o (@) t) : (16)
The accuracy of the obtained solution is checked by substituting o = 1
into (16) which yields the solution of (9).
Particularly, the problem (10)-(12) have the following solution for the
specific functions Ky and K7:
Case 1: For Ky (a) = a, K1 () = 1 — @, the solution becomes

2
- —1
u(x,t;0) = sin (rz)EL | <7Tta, a t> .
=y a a

Case 2: For Ky (a) = a2, K; () = 1 — a2, the solution becomes

2 2
. -7 a-—1
u(z,t; ) = sin (TI'LU)E&,L 1 <a2toz’ — t) .

The graphics of solutions for Case 1, Case 2 and Problem (9) in 2D are
given in Fig.1-4 for various values of a.
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Figure 1: The graphics of solutions for Example for different functions
Ky () and K (o) in 2D at = 0.1 and for a = 0.9.
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Figure 2: The graphics of solutions for Example for different functions
Ky (a) and K (@) in 2D at z = 0.1 and for @ = 0.95.
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Figure 3: The graphics of solutions for Example for different functions
Ky () and K (o) in 2D at = 0.1 and for o = 0.98.
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Figure 4: The graphics of solutions for Example for different functions
Ko () and K (o) in 2D at = 0.1 and for o = 1.

Note that by truncated solution, we mean the approximate solution.
It is clear from figures 1-4 that the solution of time fractional diffusion
equation including the constant proportional Caputo hybrid derivative
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operator {F¢D al f (t) converges the solution of the integer order dif-
fusion equation as « tends to 1 faster than its solution including the
constant proportional Caputo hybrid derivative operator OCP ¢D a2 ).
As a result, we conclude that the choice of the functions Ky () and
K (a) in gPCDal f (t) are better than those in gPCDaz f(t). More-
over, the graphs of the solutions move away from the solution of the
corresponding integer order differential equation, as the fractional order
« decreases away from 1.

4 Conclusion

The solution of the mathematical problem with the hybrid time frac-
tional derivative is constructed by the SVM in terms of the bivariate
Mittag-Leffler function. Besides, the accuracy of the solution is tested
by taking o = 1 in the solution which yields the solution of the math-
ematical problem with ordinary derivative. As a result, the illustrative
example indicates that the SVM plays an influential role in the construc-
tion of mathematical problems including fractional derivatives.

Based on the analytic solution, we reach the conclusion that diffusion
processes decay over time until an initial condition is reached when « is
less than a certain value of o for Case 1 but diffusion processes decay
with time for all values of o between 0 and 1 for Case 2. As « tends to
0, the rate of decaying increases. This implies that in the mathematical
model for diffusion of the matter which has a small diffusion rate, the
value of a must be close to 0. This model can account for various diffu-
sion processes of diverse methods.
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