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Abstract. The notion of Rcl-supercontinuity, a strong variant of con-
tinuity, is considered. The ring Rcl(X) consists of all real-valued Rcl-
supercontinuous functions on a topological space X is studied. It is
shown that Rcl(X) ∼= C(Y), where Y is an ultra-Hausdorff rcl-quotient
of X and it turns out that whenever X is rcl-compact, then Y is zero-
dimensional. The maximal ideals of Rcl(X) are specified. The spaces
X are determined for which every maximal ideal in Rcl(X) is fixed. Fi-
nally, Prcl -spaces and almost Prcl -spaces are defined and characterized
both algebraically and topologically.
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1 Introduction

In 2007, Singh introduced the concept of a cl-open set in the study of
clopen continuous maps. A set A in a topological space X is called cl-
open if A is a union of clopen sets. The complement of a cl-open set
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is called cl-closed. In 2013, Tyagi et al. introduced the concept of an
rcl-open set as follows. An open set U in a topological space X is said
to be rcl-open if U is a union of cl-closed sets. The complement of an
rcl-open set is called an rcl-closed set. For a set A in a topological space
X, the set of all x ∈ A such that A contains an rcl-open set containing x
is called rcl-interior of A and it is denoted by intrclA. Clearly, a subset
B of X is rcl-open if and only if B = intrclB. The rcl-closure of a set A
in a topological space X, denoted by clrclA, is the set of all x ∈ X such
that each rcl-open set containing x intersects A nontrivially. Clearly, a
subset B of X is rcl-closed if and only if B = clrclB. According to [13],
a topological space X is called an Rcl-space if each open set in X is
rcl-open. If X and Y are topological spaces, then a function f : X → Y
is said to be Rcl-supercontinuous if for each x ∈ X and each open set
V in Y containing f(x), there exists an rcl-open set U in X contain-
ing x such that f(U) ⊆ V . A bijection σ : X → Y is said to be an
Rcl-homeomorphism if both σ and σ−1 are Rcl-supercontinuous. In this
case, X and Y are said to be Rcl-homeomorphic and it is written as
X ∼=rcl Y .

Let Rcl(X) be the set of all real-valued Rcl-supercontinuous func-
tions on X. It is easily seen that Rcl(X) is a subring and sublattice
of C(X) where C(X) is the ring of all real-valued continuous func-
tions on a space X. Throughout this paper, for f ∈ C(X), the set
Z(f) = {x ∈ X : f(x) = 0} is the zero-set of f . The set-theoretic com-
plement of Z(f) is denoted by coz(f) and is called the cozero-set of f .
We denote by Z(X) the set of all zero-sets in X and Zrcl(X) denotes the
set of all zero-sets Z(f) in X, where f ∈ Rcl(X). We refer the reader to
[6] for undefined terms and notations.

2 Rcl(X) Is a C(Y )

In this section for any topological space X, an ultra-Hausdorff space Y
is established such that Rcl(X) and C(Y ) are isomorphic. First, let us
recall some definitions and facts. A T1-space is called zero-dimensional
if it has a base consisting of clopen sets. According to [11], a topological
space X is called ultra-Hausdorff if every pair of distinct points in X
are contained in disjoint clopen sets.
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Remark 2.1. The following implications hold.

zero-dimensional space⇒ ultra-Hausdorff space⇒ Rcl-space.

However, none of the above implications is reversible. For exam-
ple, the space of strong ultrafilter topology [12, Example 113] is an
ultra-Hausdorff space which is not zero-dimensional. A nondegenerate
indiscrete space is an Rcl-space, but it is not ultra-Hausdorff, see [9].
We cite the following result from [13].

Theorem 2.2. ([13], Theorem 8.2) For a topological space (X, τ) the
following statements are equivalent.

1. (X, τ) is an Rcl-space.

2. Every continuous function from (X, τ) into a space (Y,$) is Rcl-
supercontinuous

Now, let us make the following observation.

Lemma 2.3. If X is an Rcl-space, then C(X) = Rcl(X) and whenever
X is completely regular, the converse is also true.

Proof. Using [13, Theorem 8.2], the first implication is immediate.
Now, suppose that X is a completely regular space and C(X) = Rcl(X).
By [6, Theorem 3.2] the collection β = {coz(f) : f ∈ C(X)} is a base for
open subsets of X. Since C(X) = Rcl(X), for each f ∈ C(X) and every
x ∈ coz(f), we infer that there is an rcl-open set U in X containing x
such that U ⊆ coz(f). This shows that X is an Rcl-space. �

In the following, we give some properties of Rcl-supercontinuous
functions. Before stating our results, recall that for a point x in a
topological space X, the maximal connected subset of X containing
x, denoted by Cx, is called the component of x. A space is called totally
disconnected if the only nonempty components are one-point sets. For a
point x in a topological space X, the intersection of all clopen subsets of
X containing x, denoted by Qx, is called the quasi-component of x. The
collection of all components (resp., quasi-components) of a topological
space X constitutes a decomposition of X into pairwise disjoint closed
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sets. By [5, Theorem 6.1.22], Cx ⊆ Qx for each x ∈ X and the inclusion
may be proper as it is shown by [5, Example 6.1.24]. It is easily seen that
an open (resp., closed) set in a topological space X is rcl-open (resp.,
rcl-closed) if and only if it is a union of quasi-components of X. By [13,
Theorem 4.1], every Z ∈ Zrcl(X) is rcl-closed. Hence, each Z ∈ Zrcl(X) is
a union of quasi-components in X. However, an rcl-closed set need not
be a zero-set in Zrcl(X), see [6, 4N].

Proposition 2.4. For an Rcl-supercontinuous function f : X → Y , the
following statements are true.

1. f [Qx] ⊆ Qf(x) for each x ∈ X.

2. If Y is a T1-space, then f [Qx] = {f(x)} for each x ∈ X.

3. If f is injective and Y is a T1-space, then X is totally disconnected.

4. If f is an Rcl-homeomorphism, then f [Qx] = Qf(x) for each x ∈ X.
Furthermore, if X or Y is a T1-space, then both X and Y are
totally disconnected.

Proof. (1) Let x ∈ X, p ∈ Qx and f(p) /∈ Qf(x). Then there is a
clopen set V in Y containing f(p) such that f(x) /∈ V . Since f is Rcl-
supercontinuous, f [Qx] ⊆ V . So f(x) ∈ V which is a contradiction.
(2) Let x ∈ X, p ∈ Qx and f(p) 6= f(x). Then there is an open set V in
Y containing f(x) such that f(p) /∈ V . Since f is Rcl-supercontinuous,
f [Qx] ⊆ V which yields that f(p) ∈ V , and it is a contradiction.
(3) By part (2), f [Qx] = {f(x)} for every x ∈ X, this implies that
Qx = {x}. Since f is injective we infer that X is totally disconnected.
(4) It is an immediate consequence of parts (1) and (3). �

Corollary 2.5. Let X be a topological space. If f ∈ Rcl(X), then
f [Qx] = {f(x)} for each x ∈ X.

Definition 2.6. Let X be a space and Y be a set and let p : X → Y
be a surjection. The collection τp = {U ⊆ Y : p−1(U) is rcl-open inX}
of subsets of Y is called the rcl-quotient topology on Y induced by p, see
[13]. Moreover, (Y, τp) is called an rcl-quotient space of X.

Next, we state the main result of this section.
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Theorem 2.7. For any topological space X, there is an ultra-Hausdorff
space Xu which is an rcl-quotient space of X and Rcl(X) ∼= C(Xu).

Proof. Let Xu = {Qx : x ∈ X} and define p : X −→ Xu by p(x) = Qx,
for all x ∈ X. Let τp be the rcl-quotient topology on Xu induced by
p. Then (Xu, τp) is ultra-Hausdorff. In fact, if Qx and Qy are distinct
points in Xu, then x /∈ Qy and hence there is a clopen set V in X such
that x ∈ V and y /∈ V . Now, let H = {Qz : z ∈ V }. Then H is a clopen
set in Xu, for V = p−1(H) =

⋃
z∈V Qz is a clopen set in X. Clearly,

Qx ∈ H and Qy /∈ H which shows that Xu is ultra-Hausdorff.
To complete the proof, we show that Rcl(X) ∼= C(Xu). To this end,
define θ : Rcl(X) → C(Xu) by θ(f) = fu, for each f ∈ Rcl(X), where
fu : Xu → R be defined as fu(Qx) = f(x), for all x ∈ X. By Corollary
2.5, fu and θ are well-defined. To show that fu ∈ C(Xu), let x ∈ X,
Qx ∈ Xu and let fu(Qx) = f(x) = a. Then for each ε > 0, there is
an rcl-open set U in X containing x such that f(U) ⊆ (a − ε, a + ε).
Now G = {Qz : Qz ⊆ U} is an open set in Xu containing Qx such
that fu(G) ⊆ (a − ε, a + ε). It is easily seen that θ is a one to one
homomorphism. Finally, we show that θ is onto. To this end, let g ∈
C(Xu) and define f : X → R by f(x) = g(Qx), for all x ∈ X. To see
that f ∈ Rcl(X), let x ∈ X and let f(x) = a. Since g ∈ C(Xu), there is
an open set G in Xu containing Qx such that g(G) ⊆ (a − ε, a + ε) for
every ε > 0. So U =

⋃
Qz∈GQz is an rcl-open set in X containing x such

that f(U) ⊆ (a− ε, a+ ε) and this shows that f is Rcl-supercontinuous.
Also we have θ(f) = g. �

Remark 2.8. From now on, for each topological space X, we consider
Xu and the isomorphism θ : Rcl(X)→ C(Xu) as defined in the proof of
Theorem 2.7.

Definition 2.9. A topological space X is said to be rcl-compact if every
rcl-open cover of X has a finite subcover.

Note that every compact space is rcl-compact, but not conversely.
For instance, R is an rcl-compact space which is not compact. Clearly,
a space X is rcl-compact if and only if Xu is compact.

Corollary 2.10. If X is rcl-compact, then Rcl(X) ∼= C(Y ) for a zero-
dimensional space Y .
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Proof. By Theorem 2.7, Xu is ultra-Hausdorff and since Xu is com-
pact, Xu is zero-dimensional. Now, let Y = Xu, so by Theorem 2.7,
Rcl(X) ∼= C(Y ). �

Accourding to [7], a topological space X is called sum connected if
each component in X is open. Obviously, if X is sum connected, then
Cx = Qx for every x ∈ X.

Corollary 2.11. If X is sum connected, then Rcl(X) ∼= C(Y ) for a
discrete space Y .

Proof. Since X is sum connected, Qx is rcl-open for every x ∈ X. So
every one point set {Qx} is open in Xu which yields that Xu is discrete.
Now, let Y = Xu, so by Theorem 2.7, Rcl(X) ∼= C(Y ). �

We conclude this section by the following proposition.

Proposition 2.12. Let X and Y be two topological spaces. If X ∼=rcl Y ,
then Xu

∼= Yu.

Proof. Let ϕ : X → Y be an Rcl-homeomorphism. Define τ : Xu −→
Yu by τ(Q) = ϕ(Q), for all Q ∈ Xu. Clearly, τ is one to one. To
see that τ is onto, let y ∈ Y and let Qy ∈ Yu. Then there is x ∈ X
such that ϕ(x) = y and hence τ(Qx) = ϕ(Qx) = Qy by part (4) of
Proposition 2.4. Now, we show that τ and τ−1 are continuous. To this
end, let x ∈ X, Qx ∈ Xu and let H be an open set in Yu containing
ϕ(Qx). Then V =

⋃
Qz∈H Qz is an open set in Y containing ϕ(x). So

by Rcl-supercontinuity of ϕ, there is an rcl-open set U in X containing
x such that ϕ(U) ⊆ V . Therefore, G = {Qx|x ∈ U} is an open set in
Xu containingQx such that τ(G) ⊆ H. Similarly, τ−1 is continuous. �

We remind the reader that the converse of Proposition 2.12 is not
true in general. For instance, let X = {a} and let Y = R. Then Xu is
homeomorphic to Yu, but X and Y are not Rcl-homeomorphic.

3 Maximal Ideals of Rcl(X)

In this section, we turn our attention to the maximal ideals in the rings
Rcl(X). First, let us recall that an ideal I of Rcl(X) is called a fixed
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ideal if
⋂
f∈I Z(f) 6= ∅, otherwise I is called a free ideal. We begin with

the following easy lemma, its proof is left to the reader.

Lemma 3.1. An ideal I in Rcl(X) is fixed if and only if θ(I) is fixed in
C(Xu).

Now, we completely characterize the fixed maximal ideals of a ring
Rcl(X).

Theorem 3.2. For a topological space X, any fixed maximal ideal in
Rcl(X) is in the form of

MQx =
{
f ∈ Rcl(X) : Qx ⊆ Z(f)

}
, x ∈ X.

The ideals MQx are distinct for distinct Qx. Furthermore, Rcl(X)
MQx

∼= R
for every x ∈ X.

Proof. By [6, Theorem 4.6] and Lemma 3.1, M is a fixed maximal ideal
in Rcl(X) if and only if M = θ−1(My) for some y ∈ Xu. So M = MQx

for some x ∈ X. Now, suppose that Qx 6= Qy for x, y ∈ X. Then
Qx ∩ Qy = ∅, so there is a clopen set Cx in X containing x such that
Qx ⊆ Cx and Cx ∩ Qy = ∅. Let f : X → R be defined as f(x) = 0, if
x ∈ Cx and f(x) = 1, if x /∈ Cx. Then f ∈ Rcl(X), f ∈ MQx \MQy

which shows that MQx 6= MQy . For the last assertion, let x ∈ X and
define ϕ : Rcl(X)→ R by ϕ(f) = f(x), for all f ∈ Rcl(X). Then ϕ is a

homomorphism and Kerϕ = MQx . Consequently, Rcl(X)
MQx

∼= R. �

Lemma 3.3. If X is rcl-compact, then each ideal in Rcl(X) is fixed.

Proof. If X is rcl-compact, then Xu is zero-dimensional by Corollary
2.10. So in view of [6, Theorem 4.11], every ideal in C(Xu) is fixed.
Consequently, each ideal in Rcl(X) is fixed by Lemma 3.1. �

Definition 3.4. A topological space X is called scl-completely regu-
lar if for each rcl-closed set A and each x /∈ A, there exists an Rcl-
supercontinuous function f : X → R such that f [A] = {0} and f [Qx] =
{1}.

Clearly, a space X is scl-completely regular if and only if Xu is com-
pletely regular.
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Theorem 3.5. For a scl-completely regular space X, the following state-
ments are equivalent.

1. X is rcl-compact.

2. Xu is compact.

3. Every ideal in Rcl(X) is fixed.

4. Every maximal ideal in Rcl(X) is fixed.

Proof. Clearly, parts (1) and (2) are equivalent.
(2)⇒ (3). It is immediate by Lemma 3.3.
(3)⇒ (4). It is immediate.
(4) ⇒ (2). Since X is scl-completely regular, Xu is completely regular
and by Lemma 3.1, each maximal ideal in C(Xu) is fixed. These follow
by [6, Theorem 4.11], that Xu is compact. �

Theorem 3.6. Let X and Y be two topological spaces. If Xu
∼= Yu,

then Rcl(X) ∼= Rcl(Y ) and whenever X and Y are rcl-compact, then the
converse is also true.

Proof. If Xu
∼= Yu, then C(Xu) ∼= C(Yu). So Rcl(X) ∼= Rcl(Y ) by The-

orem 2.7. Now, suppose that X and Y are rcl-compact. Then Xu and
Yu are compact zero-dimensional spaces by Theorem 3.5 and Corollary
2.10. If Rcl(X) ∼= Rcl(Y ), then C(Xu) ∼= C(Yu) by Theorem 2.7. This
implies that Xu

∼= Yu, see [6, Theorem 4.9]. �

Corollary 3.7. For two topological spaces X and Y , if X ∼=rcl Y , then
Rcl(X) ∼= Rcl(Y ).

Proof. It follows immediately from Proposition 2.12 and Theorem 3.6.
�

Remark 3.8. For two rcl-compact spaces X and Y , the rings Rcl(X)
and Rcl(Y ) may be isomorphic, while X and Y may not be homeo-
morphic. To see that, we utilize the example of [1, Remark 4.7]. Let
X = { 1n : n ∈ N} ∪ {0} and Y =

⋃∞
n=1(

1
n+1 ,

1
n) ∪ {0} as subspaces

of R. Since X and Y are compact, we infer that X and Y are rcl-
compact. Using a proof similar to [1, Remark 4.7], we can show that
Rcl(X) ∼= Rcl(Y ), but X and Y are not homeomorphic.
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Theorem 3.9. For a scl-completely regular space X, the maximal ideals
of Rcl(X) are precisely the sets

Mp = {f ∈ Rcl(X) : p ∈ clβXuZ(fu)} , p ∈ βXu.

Proof. Using Theorem 2.11 and in view of [6, Theorem 7.3], it is evident.
�

Remark 3.10. Let X be a space and let M be a maximal ideal of
Rcl(X). Similar to C(X), we define

OM = {f ∈ Rcl(X) : fg = 0 for some g /∈MQx} ,

see the discussion preceding [2, Theorem 2.12] .For each x ∈ X, let
OQx =

{
f ∈ Rcl(X) : Qx ⊆ intrclZ(f)

}
. If X is scl-completely regular

and M is a fixed maximal ideal of Rcl(X), then OM = OQx for some
x ∈ X. In fact, if M is a fixed maximal ideal in Rcl(X), then by Theorem
3.2, M = MQx for some x ∈ X. Now we show that OM = OQx . To
this end, let f ∈ OM . Then fg = 0 for some g /∈ MQx and hence
Qx ⊆ X \Z(g) ⊆ Z(f). Since X \Z(g) is rcl-open, then Qx ⊆ intrclZ(f)
which follows that f ∈ OQx . Now, let f ∈ OQx . Then Qx ⊆ intrclZ(f),
so there is an rcl-open set U in X such that Qx ⊆ U ⊆ Z(f). Since X is
scl-completely regular, there exists g ∈ Rcl(X) such that g[X \U ] = {0}
and g[Qx] = {1}. Therefore g /∈ MQx and fg = 0 which shows that
f ∈ OM .

Theorem 3.11. Let X be an rcl-compact space. Then for every x ∈ X,
the ideal OQx in Rcl(X) is generated by a set of idempotents.

Proof. By Corollary 2.10, Xu is zero-dimensional. In view of [4, The-
orem 2.4], a space X is zero-dimensional if and only if for each x ∈ X,
the ideal Ox in C(X) is generated by a set of idempotents. Using this
fact, for each x ∈ X, the ideal OQx in C(Xu) is generated by a set of
idempotents. This follows by Theorem 2.7, that the ideal OQx in Rcl(X)
is generated by a set of idempotents. �

4 Prcl-Spaces and Almost Prcl-Spaces

In this section the counterparts of P-spaces and almost P-spaces are
defined and characterized both algebraically and topologically. We recall
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that a completely regular Hausdorff space X is called a P -space if Z(f)
is open for each f ∈ C(X), equivalently, C(X) is a von Neumann regular
ring, see [6, 4J]. Recall that a ring R is called von Neumann regular if for
every a ∈ R there is x ∈ R for which axa = a. We observe trivially that
if C(X) is von Neumann regular, then so is Rcl(X), but the converse
is not true in general. For example, the space Rcl(R) is von Neumann
regular but C(R) is not von Neumann regular. Motivated by this, we
offer the following definition.

Definition 4.1. A scl-completely regular space X is called Prcl-space if
Z(f) is open for each f ∈ Rcl(X).

Lemma 4.2. Every P -space is a Prcl-space.

Proof. Suppose that X is a P -space. Then X is zero-dimensional and
hence X is scl-completely regular. Also each Z ∈ Zrcl(X) is open, for
Zrcl(X) ⊆ Z(X). �

Theorem 4.3. Let X be a scl-completely regular space X. The following
statements are equivalent.

1. X is a Prcl-space.

2. Xu is a P -space.

3. MQx = OQx for every x ∈ X.

4. Each countable intersection of rcl-open sets is rcl-open.

5. Rcl(X) is von Neumann regular.

Proof. (1) ⇔ (2) If f ∈ Rcl(X), then Z(f) =
⋃
Qx∈Z(fu)Qx. So Z(f)

is open in X if and only if Z(fu) is open in Xu. This implies that X is
a Prcl-space if and only if Xu is a P -space.
Using [6, 4J], parts (2), (3) and (4) are equivalent.
(2) ⇔ (5) By [6, 4J], Xu is a P -space if and only if C(Xu) is a von
Neumann regular ring. This implies by Theorem 2.7, that Xu is a P -
space if and only if Rcl(X) is a von Neumann regular ring. �

Proposition 4.4. A Hausdorff space X is a P -space if and only if X
is both an Rcl-space and a Prcl-space.
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Proof. If X is a P -space, then X is zero-dimensional and hence X
is an Rcl-space. Furthermore X is a Prcl-space by Lemma 4.2. Con-
versely, suppose that X is an Rcl-space and a Prcl-space. Since every
scl-completely regular Rcl-space is completely regular, we infer that X
is completely regular. X is a Prcl-space and by Theorem 4.3 Rcl(X) is
a von Neumann regular ring which implies that C(X) is von Neumann
regular, for Rcl(X) = C(X) by Lemma 2.2. �

We recall that a completely regular Hausdorff space X is an almost
P -space if every nonempty zero-set in Z(X) has non-empty interior.
Motivated by this, we offer the following definition.

Definition 4.5. A scl-completely regular space X is called an almost
Prcl-space if every non-empty zero-set in Zrcl(X) has non-empty rcl-
interior.

The following shows that the classes of almost P -spaces and almost
Prcl-spaces are independent of each other.

Example 4.6. The space R is an almost Prcl-space but it is not an
almost P -space. Now, let Y = X ∪ N, where X is a connected almost
P -space, see [1, Example 5.3]. Then Y is an almost P -space. To see that
Y is not an almost Prcl-space, let f : Y → R be defined as f(n) = 1

n , if
n ∈ N and f(x) = 0, if x ∈ X. Then f ∈ Rcl(Y ) and Z(f) = X, but
intrclZ(f) = ∅, for if x ∈ intrclZ(f), then there is an open set U in Y
such that X = Qx ⊆ U ⊆ Z(f) = X which shows that X is open in Y ,
a contradiction.

We conclude this section by the following theorem which character-
izes almost Prcl-space. We call a set A in a space X is rcl-dense in X if
every rcl-open set in X intersects A nontrivially.

Theorem 4.7. The following statements are equivalent for a scl-completely
regular space X.

1. X is an almost Prcl-space.

2. Xu is an almost P -space.

3. Every non-unit element in Rcl(X) is a zero-divisor.
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4.
⋃
x∈X OQx =

⋃
x∈XMQx.

5. If G =
⋂
i∈NGi, where each Gi is rcl-open, then intrclG is rcl-dense

in G.

6. Every non-empty zero-set in Zrcl(X) has non-empty rcl-interior.

Proof. Using [3, Theorem 2.2] and by Theorem 2.7, the proof is easy.
�
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