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1 Introduction

Current days, Fractional Calculus, also known as non-integer calculus, is
the mostly used phenomena in the different fields of science and engineer-
ing. Day by day so many different types of fractional order derivatives
have been proposed or investigated by researchers along which numeri-
cal methods to solve non-integer order (fractional) differential equations
(FDEs). So many techniques to find the numerical solution of FDEs
have been studied in previous works [15, 26]. In most of the cases, in
such methods, either the solutions of a classical differential equation is
the translation of the given non-integer order differential equations or
the series diffusions in the neighbourhood of the initial constraints are
utilized. These numerical methods are playing a very important role in
the study of complex dynamics. Also, fractional (non-integer) order dif-
ferential equations (FDEs) are very useful in mathematical modelling.
So many non-integer order derivatives have been used in various parts of
engineering and science [11, 15, 24, 26, 13]. Caputo, Atangana-Baleanu-
Caputo (AB), and Caputo-Fabrizio (CF) derivatives are the well known
fractional derivative operators. Caputo derivative has derived with sin-
gular type non-local kernel (or power law type), Caputo-Fabrizio with
exponentially decay-type (or non-singular kernel) and AB derivative has
given with Mittag-Leffler kernel memory. Recently Odibat et al. [23] has
introduced a new modified-version of Caputo-type variable-order deriva-
tive with the modified P-C scheme. The existence proof of a unique so-
lution of the generalized Caputo type FDEs is proved by katugampola et
al. in [14]. Currently so many applications of different fractional deriva-
tives have been come in epidemiology [7, 11, 16, 17, 18, 22]. In [12],
the authors proposed a study on tight-bounds for the path-factors exis-
tence in the parameter settings of network vulnerability. In [20], authors
simulated a non-linear model of COVID-9 for studying the disease out-
breaks in Japan and Iran. A new fractional-order mathematical model
of human liver is given in [2]. A structure of a non-linear dynamical
system is given in [3]. A fractional-order structure of a linear triatomic
molecule is simulated in [4]. A study on p-Laplacian non-periodic non-
linear boundary value problem in the sense of modified Caputo deriva-
tive is proposed in [21]. Rezapour et al. in [27] has proposed a study
on the existence analysis of quantum integro-difference fractional-order
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boundary value problem. Etemad et al. in [8] has investigated some
aspects on neutral non-classical differential inclusions in the sense of
Katugampola derivative. Recently, a number of mathematicians have
analysed some important new algorithms for finding the solutions of
non-linear FDEs. In [10], a new scheme to simulate Atangana-Baleanu
type non-linear volterra integro-differential equations is produced. In
[28], one more method for the FDEs based on Genocchi polynomials has
mentioned. Ganji et al. in [9] suggested a new method to solve AB-
type multi-variable order differential equations. The complex dynamics
which can not be studied by classical derivatives, can be studied by these
non-classical derivatives more clearly. Still, there are many drawbacks
in the non-classical calculus. In several cases, the solutions existence for
many FDEs can not be smoothly described. Lately, an existence analysis
for infinite-coefficient symmetric integro-DEs in Caputo-Fabrizio form is
given by Baleanu in [1].
In this paper, we generalize the numerical technique introduced by
Demirci et al. in [6]. We utilize a transformation in the equivalent non-
integer order Volterra integral equation (VIE) of given FDE and enlist
its exact solution in the form of the solution of an classical-order dif-
ferential equation in the form of generalized Caputo type non-classical
derivatives. We explained some examples to show the applications of
the given scheme clearly. The paper is distributed as follows. In Section
2, we remind some specific definitions of variable-order derivatives. In
Section 3, we review the original method. Section 4 is devoted to the
description of the main results. Some examples with the solution of a
computer virus epidemic model to show the applications of the given
method are given in section 5. A conclusion finishes the paper.

2 Preliminaries

Here, we recall some necessary definitions of the fractional (or non-
integer order) derivatives.

Definition 2.1. [26] The Riemann and Liouville (R-L) non-classical
derivative of order θ > 0 of a mapping X : (0,∞)→ R is formulated by

Dθ
ηX (η) =

(
d

dη

)n 1

Γ(n− θ)

∫ η

0
(η − ξ)n−θ−1X(ξ)dξ,
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where n = [θ] + 1 and [θ] is the integer-part of θ.

Definition 2.2. [26] The Caputo-type non-integer order derivative of
order θ > 0 of a mapping X : (0,∞)→ R is described by

Dθ
ηX (η) =

1

Γ(k − θ)

∫ η

0
(η − ξ)k−θ−1Xk(ξ)dξ,

where k = [θ] + 1 and [θ] is the integer-part of θ.

Definition 2.3. [14] The generalized Riemann-type non-classical deriva-

tive operator, RDθ,ρ
c+ , of order θ > 0 is given as:

(RDθ,ρ
c+X)(η) =

ρθ−n+1

Γ(n− θ)

(
η1−ρ d

dη

)n ∫ η

c
sρ−1(ηρ − sρ)n−θ−1X(s)ds, η > c,

where c ≥ 0, ρ > 0, & n− 1 < θ ≤ n.

Definition 2.4. [14] The generalized-version of Caputo-type non-classical

derivative, CDθ,ρ
c+ , of order θ > 0 is given as:

(CDθ,ρ
c+X)(η) =

(
RDθ,ρ

c+

[
X(x)−

n−1∑
k=0

X(k)(c)

k!
(x− c)k

])
(η), η > c,

where c ≥ 0, ρ > 0, & n = dθe.

Definition 2.5. [23] The version of new modified generalized Caputo

non-integer order derivative, Dθ,ρ
c+ , of order θ > 0 is described as:

(Dθ,ρ
c+X)(η) =

ρθ−n+1

Γ(n− θ)

∫ η

c
sρ−1(ηρ − sρ)n−θ−1

(
s1−ρ d

ds

)n
X(s)ds, η > c,

where c ≥ 0, ρ > 0, & n− 1 < θ ≤ n.

3 The Solution Method In Caputo Sense

In this portion of the study, we review the numerical algorithm proposed
in [6]. This technique is rooted on converting the classical order systems
to a non-classical (fractional-order) systems and finding the solution of
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the fractional-order system in to the form of the solution of a classical
systems
Let us remind the initial value problem (IVP)

CDθ
t ζ(t) = G(t, ζ(t)),

ζ(0) = ζ0,
(1)

where G ∈ C([0, T ] × R,R), 0 < θ < 1. CDθ
t is the Caputo derivative

operator mentioned in Def. (2.2).
Since G is considered as a continuous mapping or function, so each

solution of the IVP (1) is also satisfy the given Volterra fractional inte-
gral equation (VFIE):

ζ(t) = ζ0 +
1

Γ(θ)

∫ t

0
(t− χ)θ−1G(χ, ζ(χ))dχ, t ∈ [0, T ]. (2)

Beyond it, every solution of (2) is also satisfy the IVP (1). We find that
IVP (1) is similar to the IVP

CDθ
t (ζ(t)− ζ0) = G(t, ζ(t)),

ζ(0) = ζ0.

Theorem 3.1. [19](existence) Assume that G ∈ C[R0, R] where R0 =
{(t, ζ) : 0 ≤ t ≤ m and |ζ − ζ0| ≤ b} and fix |G(t, ζ)| ≤ M on R0.
Then at least one solution for the IVP (1) exists on 0 ≤ t ≤ δ, where

δ = min
(
m,
[
b
MΓ(θ + 1)]

1
θ

)
, 0 < θ < 1.

Theorem 3.2. Consider the IVP proposed by (1). Let

φ(ν, ζ∗(ν)) = G(t− (tθ − νΓ(θ + 1))
1
θ , ζ(t− (tθ − νΓ(θ + 1))

1
θ )),

and suppose that the Theorem 3.1 hold. Then, a solution of (1), ζ(t),
is established by

ζ(t) = ζ∗(t
θ/Γ(θ + 1)),

where ζ∗(ν) is a solution of the integer-order differential equations

dζ∗(ν)

dν
= φ(ν, ζ∗(ν)), (3)

with the initial conditions
ζ∗(0) = ζ0. (4)
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Proof. According to the Theorem 3.1, the solution of the (1) exists.
If ζ(t) is a solution of (1) then, it will also satisfy the (2). Let τ =

t− (tθ − νΓ(θ + 1))
1/θ
. So, VFIE (2) can be defined as

ζ(t) = ζ0 +

∫ tθ/Γ(θ+1)

0
G(t− (tθ − νΓ(θ + 1))

1/θ
, ζ(t− (tθ − νΓ(θ + 1))

1/θ
))dν

= ζ0 +

∫ tθ/Γ(θ+1)

0
φ(ν, ζ∗(ν))dν.

(5)

Also every solution of (3)-(4) is a solution of the VFIE written below
and vice versa.

ζ∗(ν) = ζ0 +

∫ ν

0
φ(s, ζ∗(s))ds, 0 ≤ ν ≤ aθ/Γ(θ + 1).

Since 0 ≤ tθ/Γ(θ+ 1) ≤ aθ/Γ(θ+ 1), the right-hand part of equation (5)
is equal to ζ∗(t

θ/Γ(θ + 1)). �

4 Main Results in new Generalized Caputo Sense

After successfully reviewed the above method in the Caputo sense, now
we do our main simulations with the generalize form of Caputo differ-
ential operator. Let us adopt the IVP

CDθ,ρ
t Λ(t) = G(t,Λ(t)), (6)

with the initial condition

Λ(0) = Λ0, (7)

where G ∈ C([0, T ] × R,R), 0 < θ ≤ 1, ρ > 0 and CDθ,ρ
t is the new

generalised fractional derivative operator mentioned in Def. (2.5).
Since, G is considered as a continuous mapping so every solution of

the IVP (6)-(7) is also satisfy the given Volterra integral equation (VIE):

Λ(t) = Λ0 +
ρ1−θ

Γ(θ)

∫ t

0
τρ−1(tρ − τρ)θ−1G(τ,Λ(τ))dτ, t ∈ [0, T ]. (8)
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Also, the IVP (6) is equivalent to the IVP

CDθ,ρ
t (Λ(t)− Λ0) = G(t,Λ(t)),

Λ(0) = Λ0.

Now, first we mention the solution existence of the given IVP by the
following theorem.

Theorem 4.1. [7, 14] (Existence analysis). Let 0 < θ ≤ 1, Λ0 ∈
R, η > 0 and a > 0. Let R0 := {(t,Λ) : t ∈ [0, a], |Λ − Λ0| ≤ η}
and assume that the mapping G : R0 → R be continuous. Next, allocate
S := sup(t,Λ)∈R0

|G(t,Λ)| and

T =


a, ifS = 0,

min{a,
(
ηΓ(θ + 1)ρθ

S

)1

θ } else.

Then, here a function Λ ∈ C[0, T ] exists that satisfy the IVP (6) and
(7).

Theorem 4.2. Consider the initial value problem proposed by (6)-(7).
Let

f(ν,Λ∗(ν)) = G(tρ − (tθ − νΓ(θ + 1)ρθ)
1
θ ,Λ(tρ − (tθ − νΓ(θ + 1)ρθ)

1
θ )),

with the assumption of existence of Theorem 4.1. Then, a solution of
(6), Λ(t), is established by

Λ(t) = Λ∗(t
θρ−θ/Γ(θ + 1)),

where Λ∗(ν) is a solution of integer-order differential equation

dΛ∗(ν)

dν
= f(ν,Λ∗(ν)), (9)

and

Λ∗(0) = Λ0. (10)



8 P. KUMAR et al.

Proof. The solution of the (6)-(7) is existed from the result of Theorem
4.1. If Λ(t) is a solution of (6)-(7) then, it also satisfies (8). Let τρ =

tρ − (tθ − νΓ(θ + 1)ρθ)
1/θ
. So, VFIE (8) can be established as

Λ(t) = Λ0 +

∫ tθρ−θ/Γ(θ+1)

0
[G(tρ − (tθ − νΓ(θ + 1)ρθ)

1/θ
,

Λ(tρ − (tθ − νΓ(θ + 1)ρθ)
1/θ

))]dν

= Λ0 +

∫ tθρ−θ/Γ(θ+1)

0
f(ν,Λ∗(ν))dν.

(11)

Also, every solution of (9)-(10) satisfies the VIE given below and vice
versa.

Λ∗(ν) = Λ0 +

∫ ν

0
f(s,Λ∗(s))ds, 0 ≤ ν ≤ aθρ−θ/Γ(θ + 1).

Since 0 ≤ tθρ−θ/Γ(θ + 1) ≤ aθρ−θ/Γ(θ + 1), the right-hand part of
equation (11) is equal to Λ∗(t

θρ−θ/Γ(θ + 1)). �
A simplification of Theorem 4.1 and 4.2 for n-dimensional system is as
follows:

Theorem 4.3. Let ‖.‖ denotes any convenient norm on Rn. Let A ∈
[R1, R

n], where R1 = {(t,Λ) : 0 ≤ t ≤ a and |Λ − Λ0| ≤ K},A =
(A1,A2, ...,An)T ,Λ = (Λ1,Λ2, ...,Λn)T , and let ‖A(t,Λ)‖ ≤ M , on R1.
Then, atleast one solution for the given system of FDE’s is exists and
defined by

CDθ,ρΛ(t) = A(t,Λ(t)), (12)

with initial conditions

Λ(0) = Λ0, (13)

on 0 ≤ t ≤ T ∗, where T ∗ = min
(
a,
[
K
MΓ(θ + 1)ρθ]

1
θ

)
, 0 < θ ≤ 1, ρ > 0.

Theorem 4.4. Consider the IVP demonstrated by (12)-(13) of order
θ, 0 < θ ≤ 1, ρ > 0. Assume

f(ν,Λ∗(ν)) = A(tρ− (tθ−νρθΓ(θ+1))1/θ,Λ(tρ− (tθ−νρθΓ(θ+1))1/θ)),
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then when the Theorem 4.3 hold, a solution of (6)-(7), Λ(t),can be ex-
pressed by

Λ(t) = Λ∗(t
θρ−θ/Γ(θ + 1)),

where Λ∗(ν) is a solution of the model of classical differential equations

dΛ∗(ν)

dν
= f(ν,Λ∗(ν)),

alongwith the constraints
Λ∗(0) = Λ0.

5 Important Examples

Here we give some important examples which are interpreted by utiliz-
ing Mathematica 10 software.
Example 5.1 Consider the following linear non-homogeneous non-integer
order equation

Dθ,ρ0+y(t) = t, ρ > 0, 0 < θ ≤ 1,
y(0) = y0.

(14)

For this example,

g(ν) =

ρ−θ

(
θ((θ+1)tθ−νρθΓ(θ+2))(tθ−νρθΓ(θ+1))

1
θ +(θ+1)

(
ρθΓ(θ+2)(νtρ+y0)−θ(tθ)

1
θ
+1

))
(θ+1)Γ(θ+2) .

The solution of the related integer order problem as mentioned in The-
orem 4 is

y1(ν) =
ρ−θtθ

(
(θ+1)tρ−θ(tθ)

1
θ

)
Γ(θ+2) + y0.

So, the solution of the given non-integer order problem is

y(t) = y1

(
ρ−θtθ

Γ(θ + 1)

)
=
ρ−θtθ

(
(θ + 1)tρ − θ

(
tθ
) 1

θ

)
Γ(θ + 2)

+ y0. (15)
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Indeed, it can be illustrated that (15) is a solution of (14) by using the
generalized non-integer order derivative. it should be note that solution
(15) is the same as solution [p.2757, Eq.(11)] obtained in [6] for θ = 1/2
and ρ = 1.
Example 5.2 Let us remind the fractional order Riccati differential
equation given in [23]:

Dθ,ρ0+y(t) = 2y(t)− y2(t) + 1, t, ρ > 0, 0 < θ ≤ 1,
y(0) = 0.

(16)

The exact solution of (16), at ρ = 1 and θ = 1 is

y(t) = 1 +
√

2 tanh

[
√

2t+
1

2
log

(√
2− 1√
2 + 1

)]
.

In Fig. 1, we give the comparison of the approximate solution plots of
Eq.(16) by the new method and the adaptive predictor-corrector algo-
rithm [23] with the exact solution of Eq.(16). Here we checked that the
approximate solutions are in contract with exact solution, graphically.
The absolute errors in the proposed techniques are given in Figure 2
where solid-type and dashed-type lines demonstrate errors in the new
method and the adaptive predictor-corrector algorithm, respectively.

Example 5.3 Now we choose the following non-classical order dif-
ferential equation system given in [5]:

Dθ,ρ0+x(t) = wx(t)− y2(t),

Dθ,ρ0+y(t) = µ(z(t)− y(t)),

Dθ,ρ0+z(t) = ay(t)− bz(t) + x(t)y(t),

(17)

where t, ρ > 0, 0 < θ ≤ 1, and a, b, w, µ are constant quantities.
Moreover, w = −2.667, a = 27.3, b = 1, µ = 10 (time step h = 0.02,
initial conditions are (0, 10, 10)).

Figures 3, 4 and 5 show the solutions x(t), y(t) and z(t) of the system
(17) for (θ = 0.89, ρ = 1.2) whereas 6, 7 and 8 show phase portrait of
the system (17) for the same values of θ and ρ. The CPU time, needed to
get the solution for the system (17) by the new method is just 0.265625
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Figure 1: Solutions of equation (16)

Figure 2: Error in approximate solutions of (16)
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Figure 3: Outputs of Eqn. (17) for in the (t, x)-plane.

Figure 4: Outputs of Eqn. (17) for in the (t, y)-plane.
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Figure 5: Outputs of Eqn. (17) for in the (t, z)-plane.

Figure 6: Outputs of Eqn. (17) in the xy-phase plane.
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Figure 7: Solutions of equation (17) in the yz-phase plane.

Figure 8: Solutions of equation (17) in the xz-phase plane.
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in seconds. It may be observed from Figures 6, 7 and 8 that the system
show chaotic behaviour for (θ = 0.89, ρ = 1.2).

Example 5.4 As a last example, we consider a computer virus model
proposed by Piqueira et al. [25] in integer order sense, which is as follows:

dS

dt
= −βSASA− αSI + ηR,

dI

dt
= −βIAIA+ αSI − ζI,

dR

dt
= −ηR+ ζI,

dA

dt
= βSASA+ βIAIA,

(18)

where S(t) is for susceptible computers subjected to possible infection,
A(t) for non-infected computers furnished with anti-virus, I(t) denotes
virus-infected computer systems and R(t) define removed computers due
to infection or not. Parameter βSA denotes the conversion rate of sus-
ceptible into antidotal, α denotes the transmission rate of susceptible
into infection, βIA is the transmission rate of infected computers into
antidotal, ζ is the removed rate and η is the rate of removed computers
which can be restored and varied into susceptible.
Now for numerical simulations we use two different values of given
parameters with initial conditions for endemic equilibrium (EE) and
disease-free equilibrium (DFE) conditions, respectively as given in [25] .
Numerical values for DFE case;
α = 0.1, ζ = 20, βSA = 0.025, βIA = 0.25, η = 0.8 with initial con-
straints S(0) = 74, I(0) = 25, R(0) = 0, A(0) = 1.
Numerical values for EE case;
α = 0.1, ζ = 9, βSA = 0.025, βIA = 0.25, η = 0.8 with initial restric-
tions S(0) = 3, I(0) = 95, R(0) = 1, A(0) = 1.
Now the generalization of the above system (18) in the new modified
Caputo-type non-classical derivative sense is as follows:

CDθ,ρ
t S = −βSASA− αSI + ηR,

CDθ,ρ
t I = −βIAIA+ αSI − ζI,

CDθ,ρ
t R = −ηR+ ζI,

CDθ,ρ
t A = βSASA+ βIAIA,

(19)
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The related integer order system given in Theorem 4.2 is

dS∗

dt
= −βSAS∗A∗ − αS∗I∗ + ηR∗,

dI∗

dt
= −βIAI∗A∗ + αS∗I∗ − ζI∗,

dR∗

dt
= −ηR∗ + ζI∗,

dA∗

dt
= βSAS

∗A∗ + βIAI
∗A∗,

If (S∗(ν), I∗(ν), R∗(ν), A∗(ν), is the solution of this classical model then
the solution of the system (19) is (S∗(t

θρ−θ/Γ(θ + 1)), I∗(t
θρ−θ/Γ(θ +

1)), R∗(t
θρ−θ/Γ(θ+1)), A∗(t

θρ−θ/Γ(θ+1))). So the numerical solution
of the system (19) for the given numerical values is calculated using
the method of Theorem 4.2. From the above graphical simulations, we
studied the nature of S(t) susceptible, non-infected A(t), infected I(t)
and removed R(t) computers in Figures 9, 10, 11 and 12 respectively.
In the given group of Figure 13 (fig 9, 10, 11 and 12), we settled the
parameter values for DFE case. To perform the simulations for EE case,
we studied the nature of S(t) susceptible, non-infected A(t), infected I(t)
and removed R(t) computers in Figures 14, 15, 16 and 17 respectively.
In the given group of Figure 18 (fig 14, 15, 16 and 17), we settled the
parameter values for EE case. From the all above graphical calculations,
we concluded that the given numerical technique works well to frame the
structures of non-linear epidemic models.

6 Conclusion

In this article, we have proposed an generalised numerical algorithm for
finding the solutions of non-linear new generalized Caputo-type non-
classical differential equations of order 0 < θ ≤ 1. We have proposed
the propinquity between the solutions of classical and fractional-order
systems. A generalized form of the given technique to finite systems
is also presented. By the given scheme, we can find the numerical or
exact solutions of the important FDEs in the terms of classical dif-
ferential equations solution, which is the main benefit of the proposed
scheme. This technique is precious in the applications of FDEs in var-
ious fields. There are so many various types of numerical techniques
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Figure 9: Nature of S(t) for DFE
case
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Figure 10: Nature of I(t) for DFE
case
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Figure 11: Nature of R(t) for DFE
case
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Figure 12: Nature of A(t) for DFE
case

Figure 13: Nature of all given classes for DFE case
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Figure 14: Nature of S(t) for EE
case
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Figure 15: Nature of I(t) for EE
case
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Figure 16: Nature of R(t) for EE
case
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Figure 17: Nature of A(t) for EE
case

Figure 18: Nature of all given classes for EE case
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are available to find the solutions of applied fractional order problems
but the techniques for integer-order equations are much stronger in the
view of chastity and convergence rate. By this scheme, we can use the
numerical techniques of classical differential equations for the numerical
solutions of non-integer order differential equations. Some important
examples are explained with the comparison of their exact solutions to
the numerical solutions founded by some other techniques. Solution of a
computer virus epidemic model is also given to prove the availability of
the proposed method in mathematical epidemiology. In the future, the
given technique will be very useful to solve different kinds of important
FDEs and also will be easy in the implementations.
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