Operator Arithmetic-Harmonic Mean Inequality on Krein Spaces

M. Dehghani*
Yazd University
S. M. S. Modarres Mosadegh
Yazd University

Abstract

We prove an operator arithmetic-harmonic mean type inequality in Krein space setting, by using some block matrix techniques of indefinite type. We also give an example which shows that the operator arithmetic-geometric-harmonic mean inequality for two invertible selfadjoint operators on Krein spaces is not valid, in general.

AMS Subject Classification: 47A64; 46C20; 47A63
Keywords and Phrases: Block matrix, J-selfadjoint operator, J positive operator, operator arithmetic-geometric-harmonic mean inequality, operator mean

1. Introduction and Preliminaries

A Krein space is a triple $(\mathscr{H},\langle\cdot, \cdot\rangle, J)$ such that $(\mathscr{H},\langle\cdot, \cdot\rangle)$ is a Hilbert space and $J: \mathscr{H} \rightarrow \mathscr{H}$ is a selfadjoint involution i.e., $J=J^{*}=J^{-1}$ which defines an indefinite inner product on \mathscr{H}, given by

$$
[x, y]:=\langle J x, y\rangle \quad(x, y \in \mathscr{H}) .
$$

Note that the indefinite inner product space is not assumed to be positive, that is, $[x, x]$ may be negative for some $x \in \mathscr{H}$. We denote this Krein space by (\mathscr{H}, J).

[^0]Let (\mathscr{H}, J) be a Krein space and let $\mathbb{B}(\mathscr{H})$ denote the C^{*}-algebra of all bounded linear operators acting on a Hilbert space $(\mathscr{H},\langle\cdot, \cdot\rangle)$ with the identity I. An operator $T \in \mathbb{B}(\mathscr{H})$ is called positive if $\langle T x, x\rangle \geqslant 0$ for all $x \in \mathscr{H}$. We denote by $\mathbb{B}^{+}(\mathscr{H})$ the subspace of all positive operators on \mathscr{H}. If T is a positive invertible operator we write $T>0$. For bounded selfadjoint operators T and S on \mathscr{H}, we say $T \leqslant S$ if $S-T \geqslant 0$.
The J-adjoint operator of $A \in \mathbb{B}(\mathscr{H})$ is defined by

$$
[A x, y]=\left[x, A^{\sharp} y\right], \quad(x, y \in \mathscr{H}),
$$

which is equivalent to say that $A^{\sharp}=J A^{*} J$. An operator $A \in \mathbb{B}(\mathscr{H})$ is said to be J-selfadjoint if $A^{\sharp}=A$, or equivalently, $A=J A^{*} J$.
For J-selfadjoint operators $A, B \in \mathbb{B}(\mathscr{H})$ the J-order, denoted by $A \leqslant^{J}$ B, is defined by

$$
[A x, x] \leqslant[B x, x], \quad(x \in \mathscr{H})
$$

Clearly $A \leqslant{ }^{J} B$ if and only if $J A \leqslant J B(A J \leqslant B J)$. The J-selfadjoint operator $A \in \mathbb{B}(\mathscr{H})$ is said to be J-positive if $A \geqslant^{J} 0$. For a complete exposition on the subject see $[2,6,11]$.
The theory of matrix and operator means started from the presence of the notion of parallel sum in engineering by Anderson and Duffin [1]. An axiomatic theory of matrix means was developed in [10] by Kubo and Ando. Three classical means, namely, arithmetic mean, harmonic mean and geometric mean for matrices and operators are considered in [4, 5]. A binary operation $\cdot: \mathbb{B}^{+}(\mathscr{H}) \times \mathbb{B}^{+}(\mathscr{H}) \rightarrow \mathbb{B}^{+}(\mathscr{H}),(A, B) \mapsto A \tau B$ is called an operator mean if the following conditions are satisfied:
(i) $A \leqslant C, B \leqslant D$ imply $A \tau B \leqslant C \tau D$.
(ii) $A_{n} \searrow A, B_{n} \searrow B$ imply $A_{n} \tau B_{n} \searrow A \tau B$.
(iii) $T^{*}(A \tau B) T \leqslant\left(T^{*} A T\right) \tau\left(T^{*} B T\right)$ for all $T \in \mathbb{B}(\mathscr{H})$.
(iv) $I \tau I=I$ cf. [9, Chapter 5].

Let A and B be positive operators on a Hilbert space \mathscr{H}. Then their arithmetic mean is defined by

$$
\begin{equation*}
A \nabla_{\lambda} B=\lambda A+(1-\lambda) B \quad(\lambda \in[0,1]) \tag{1}
\end{equation*}
$$

If $A>0$ and $B>0$, then the harmonic mean $A!{ }_{\lambda} B$ is defined by

$$
\begin{equation*}
A!_{\lambda} B=\left(\lambda A^{-1}+(1-\lambda) B^{-1}\right)^{-1} \quad(\lambda \in[0,1]) \tag{2}
\end{equation*}
$$

and the geometric mean $A \sharp B$ between A and B is defined as follows:

$$
A \sharp B=A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{\frac{1}{2}} A^{\frac{1}{2}} .
$$

We denote $A \nabla B:=A \nabla_{\frac{1}{2}} B$ and $A!B:=A!_{\frac{1}{2}} B$.
The following arithmetic-geometric-harmonic mean inequality hold, see [4].

$$
\begin{equation*}
A!_{\lambda} B \leqslant A \sharp B \leqslant A \nabla_{\lambda} B . \tag{3}
\end{equation*}
$$

Matrix and operator inequalities in the setting of Krein spaces is a fascinating subject of operator theory. For instance, operator monotone functions in finite dimensional Krein spaces (specially, the Lowner inequality) has been studied in [3]. In addition, a notion of operator convexity in Krein spaces was studied recently, by Moslehian and Dehghani [11].
In this Note, we consider the notions of arithmetic and harmonic mean of two J-positive operators on a Krein space (\mathscr{H}, J). We will prove the operator arithmetic-harmonic mean inequality on Krein spaces, by using some block matrix techniques of indefinite type. We describe appropriate conditions to define the notion of power mean for two invertible J-selfadjoint operators on a Krein space (\mathscr{H}, J). Also we give an example which shows that the inequality (3) is not correct for operators on Krein spaces, in general.

2. Main Results

Let \mathscr{H}_{1} and \mathscr{H}_{2} be Hilbert spaces. It is well-know that an operator $\mathbf{A} \in \mathbb{B}\left(\mathscr{H}_{1} \oplus \mathscr{H}_{2}\right)$ is uniquely determined by the bounded linear operators $A_{i j}: \mathscr{H}_{j} \rightarrow \mathscr{H}_{i}(1 \leqslant i, j \leqslant 2)$. We write \mathbf{A} by the block matrix

$$
\mathbf{A}=\left(\begin{array}{ll}
A_{11} & A_{12} \tag{4}\\
A_{21} & A_{22}
\end{array}\right) .
$$

The diagonal block matrix $\left(\begin{array}{cc}A_{11} & 0 \\ 0 & A_{22}\end{array}\right)$ is denoted by $A_{11} \oplus A_{22}$.
Let (\mathscr{H}, J) be a Krein space. We consider the selfadjoint involution
$\tilde{\mathbf{J}}=J \oplus J$ on the Hilbert space $\mathscr{H} \oplus \mathscr{H}$. Therefore $(\mathscr{H} \oplus \mathscr{H}, \tilde{\mathbf{J}})$ is a Krein space. Let $\mathbf{A} \in \mathbb{B}(\mathscr{H} \oplus \mathscr{H})$ be the block matrix introduced in (4). Note that

$$
\mathbf{A}^{\sharp}=\tilde{\mathbf{J}} \mathbf{A}^{*} \tilde{\mathbf{J}}=\left(\begin{array}{cc}
J A_{11}^{*} J & J A_{21}^{*} J \\
J A_{12}^{*} J & J A_{22}^{*} J
\end{array}\right)
$$

Therefore \mathbf{A} is $\tilde{\mathbf{J}}$-selfadjoint if and only if $\mathbf{A}=\left(\begin{array}{ll}A_{11} & A_{12} \\ A_{12}^{\ddagger} & A_{22}\end{array}\right)$ in which A_{11} and A_{22} are J-selfadjoint cf. [8]
We need the following lemma, which is a consequence of [8, Theorem 8] in the setting of Krein spaces.

Lemma 2.1. Let (\mathscr{H}, J) be a Krein space. Suppose that A and B are J-selfadjoint operators. If A is invertible, then the operator $\left(\begin{array}{cc}A & X \\ X^{\sharp} & B\end{array}\right)$ is $\tilde{\mathbf{J}}$-positive if and only if $A \geqslant^{J} 0$ and $X^{\sharp} A^{-1} X \leqslant^{J} B$.

Corollary 2.2. Let (\mathscr{H}, J) be a Krein space. If C is an invertible J positive operator on \mathscr{H}, then the operator $\left(\begin{array}{cc}C & I \\ I & C^{-1}\end{array}\right)$ is $\tilde{\mathbf{J}}$-positive.
Proof. Let $A=C, B=C^{-1}$ and $X=I$ in Lemma 2.1.
A real valued continuous function f on an interval \mathcal{I} is said to be operator monotone if $A \leqslant B$ implies $f(A) \leqslant f(B)$ for all selfadjoint operators A and B on a Hilbert space \mathscr{H} whose spectra are contained in \mathcal{I}, where $f(A)$ is defined by the usual functional calculus for a selfadjoint operator [9, Chapter 1].

Lemma 2.3. [9, Example 1.6] The function $f(t)=-\frac{1}{t}$ is operator monotone on $(0, \infty)$.
Operator means for Krein space operators is naturally defined as follows:
Definition 2.4. Let (\mathscr{H}, J) be a Krein space and let $\mathbb{B}_{J}^{+}(\mathscr{H})$ be the space of all J-positive operators on \mathscr{H}. A binary operation $\cdot: \mathbb{B}_{J}^{+}(\mathscr{H}) \times$ $\mathbb{B}_{J}^{+}(\mathscr{H}) \rightarrow \mathbb{B}_{J}^{+}(\mathscr{H}),(A, B) \mapsto A \tau B$ is called an operator mean if the following conditions are satisfied:
(i) $A \leqslant^{J} C, B \leqslant^{J} D$ imply $A \tau B \leqslant^{J} C \tau D$.
(ii) $A_{n} \searrow A, B_{n} \searrow B$ imply $A_{n} \tau B_{n} \searrow A \tau B$.
(iii) $T^{\sharp}(A \tau B) T \leqslant^{J}\left(T^{\sharp} A T\right) \tau\left(T^{\sharp} B T\right)$ for all $T \in \mathbb{B}(\mathscr{H})$.
(iv) $I \tau I=I$.

The arithmetic and harmonic means of two J-positive operators are defined by (1) and (2), respectively. Indeed, suppose that A and B are J-positive operators on a Krein space (\mathscr{H}, J). Clearly $A \nabla_{\lambda} B \geqslant^{J} 0$. If A and B are invertible, then the J-positivity of A^{-1} and B^{-1} implies that $A!{ }_{\lambda} B \geqslant^{J} 0$. It is easy to see that other properties of an operator mean (properties (i)-(iv) of Definition 2.4) are satisfied by replacing \leqslant and $*$ by \leqslant^{J} and \sharp, respectively. Therefore $A \nabla_{\lambda} B$ and $A!{ }_{\lambda} B$ can be regarded as means of two J-positive operators.
One may immediately say that if A and B are invertible J-positive operators, then $J A>0$ and $J B>0$. It follows from the usual operator arithmetic-harmonic mean inequality that $J A!_{\lambda} J B \leqslant J A \nabla_{\lambda} J B$. Therefore $A!_{\lambda} B \leqslant{ }^{J} A \nabla_{\lambda} B$. In the following theorem a direct proof of this inequality (without using the usual operator arithmetic-harmonic mean inequality) is provided.

Theorem 2.5. Let (\mathscr{H}, J) be a Krein space. If A and B are invertible J-positive operators on \mathscr{H}, then

$$
A!_{\lambda} B \leqslant{ }^{J} A \nabla_{\lambda} B
$$

Proof. Let $\tilde{\mathbf{A}}=\left(\begin{array}{cc}A & I \\ I & A^{-1}\end{array}\right)$ and $\tilde{\mathbf{B}}=\left(\begin{array}{cc}B & I \\ I & B^{-1}\end{array}\right)$. Then Corollary 2.2 implies that $\tilde{\mathbf{A}}$ and $\tilde{\mathbf{B}}$ are $\tilde{\mathbf{J}}$-positive. Therefore,

$$
\lambda \tilde{\mathbf{A}}+(1-\lambda) \tilde{\mathbf{B}}=\left(\begin{array}{cc}
\lambda A+(1-\lambda) B & I \\
I & \lambda A^{-1}+(1-\lambda) B^{-1}
\end{array}\right)
$$

is $\tilde{\mathbf{J}}$-positive for all $\lambda \in[0,1]$. Lemma 2.1 implies that

$$
(\lambda A+(1-\lambda) B)^{-1} \leqslant \lambda A^{-1}+(1-\lambda) B^{-1}
$$

By the definition, we have

$$
J(\lambda A+(1-\lambda) B)^{-1} \leqslant J\left(\lambda A^{-1}+(1-\lambda) B^{-1}\right)
$$

which is equivalent to

$$
(\lambda A J+(1-\lambda) B J)^{-1} \leqslant \lambda(A J)^{-1}+(1-\lambda)(B J)^{-1}
$$

By the assumption, $A J>0, B J>0$ so is $\lambda A J+(1-\lambda) B J$. It follows from Lemma 2.3 that

$$
\left(\lambda(A J)^{-1}+(1-\lambda)(B J)^{-1}\right)^{-1} \leqslant \lambda A J+(1-\lambda) B J .
$$

So

$$
\left(\lambda A^{-1}+(1-\lambda) B^{-1}\right)^{-1} J \leqslant(\lambda A+(1-\lambda) B) J .
$$

Hence $A!_{\lambda} B \leqslant{ }^{J} A \nabla_{\lambda} B$.
It is well-known that the spectrum of a J-positive operator on a Krein space (\mathscr{H}, J) is real and it contains a non-negative number as well as a non-positive one; see [3, Theorem 2.1]. According to this fact, the square root of a J-positive operator can not be defined by usual functional calculus such as a positive operator. Let J be a selfadjoint involution on \mathbb{C}^{n}. For a J-selfadjoint matrix A with nonnegative eigenvalues on Krein space $\left(\mathbb{C}^{n}, J\right)$, the J-selfadjoint square root $A^{\frac{1}{2}}$ was defined by Ando [4, Lemma 5]. Moreover A^{α} was defined by Sano in [12] for all $0<\alpha<1$. By a similar argument, for the J-selfadjoint operator C on a Krein space (\mathscr{H}, J) with positive spectrum, the J-selfadjoint square root of C is defined by the Riesz-Dunford integral as follows:

$$
\begin{equation*}
C^{\frac{1}{2}}=\frac{1}{\pi} \int_{0}^{\infty} \lambda^{-\frac{1}{2}} C(\lambda I+C)^{-1} d \lambda \tag{5}
\end{equation*}
$$

An operator $C \in \mathbb{B}(\mathscr{H})$ on a Krein space (\mathscr{H}, J) is called a J-contraction if $C^{\sharp} C \leqslant^{J} I$. The operator C is called a J-bicontraction if both C and C^{\sharp} are J-contractions. Note that in contrast to the setting of Hilbert spaces, not all J-contractions are J-bicontractions. As a result of PotapovGinzburg theorem [6, Chapter 2, Section 4] we have the following proposition; also see [3, Corollary 3.4.1].

Proposition 2.6. Let (\mathscr{H}, J) be a Krein space and let $C \in \mathbb{B}(\mathscr{H})$. Then C is a J-bicontraction if and only if $\sigma\left(C^{\sharp} C\right) \subseteq[0, \infty)$.

Moreover The following proposition appropriate a condition for a Jcontraction to being a J-bicontraction.

Proposition 2.7. [3, Corollary 3.3.3] Let (\mathscr{H}, J) be a Krein space. If $C \in \mathbb{B}(\mathscr{H})$ is an invertible J-contraction, then C is a J-bicontraction. The notion of α-power mean for two J-selfajoint matrices with nonnegative eigenvalues was defined by Bebiano et al. in [7]. Now, we are going to construct power mean of two invertible J-selfadjoint operators on Krein spaces.
Let A and B be invertible J-selfadjoint operators on a Krein space (\mathscr{H}, J) with nonnegative spectrum such that $A \geqslant^{J} B$. Then $A^{-\frac{1}{2}} B A^{-\frac{1}{2}} \leqslant^{J}$ I. By the definition, we have

$$
\begin{aligned}
\left(B^{\frac{1}{2}} A^{-\frac{1}{2}}\right)^{\sharp} B^{\frac{1}{2}} A^{-\frac{1}{2}} & =J\left(B^{\frac{1}{2}} A^{-\frac{1}{2}}\right)^{*} J B^{\frac{1}{2}} A^{-\frac{1}{2}} \\
& =J\left(A^{-\frac{1}{2}}\right)^{*}\left(B^{\frac{1}{2}}\right)^{*} J B^{\frac{1}{2}} A^{-\frac{1}{2}} \\
& =A^{-\frac{1}{2}} J\left(B^{\frac{1}{2}}\right)^{*} J B^{\frac{1}{2}} A^{-\frac{1}{2}} \\
& =A^{-\frac{1}{2}} J^{2} B^{\frac{1}{2}} B^{\frac{1}{2}} A^{-\frac{1}{2}} \\
& \left.=A^{-\frac{1}{2}} \text { is } J \text {-selfadjoint }\right) \\
& \left(B^{\frac{1}{2}} B A^{-\frac{1}{2}} \leqslant^{J} I .\right.
\end{aligned}
$$

Therefore $B^{\frac{1}{2}} A^{-\frac{1}{2}}$ is an invertible J-contraction. It follows from Propositions 2.6 and 2.7 that $\sigma\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right) \subseteq(0, \infty)$. Then the operator $\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{\frac{1}{2}}$ is well defined by Riesz-Dunford integral (5). Therefore, the power mean of A and B is well-defined as follows:

$$
A \natural B:=A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{\frac{1}{2}} A^{\frac{1}{2}} .
$$

Since B is J-selfadjoint it is easy to see that $A \npreceq B$ is J-selfadjoint. Note that this notion is like the geometric mean of two positive operators, but in fact, it is not a mean. For instance it is not J-positive, in general; see Example 2.8.
Let \mathbb{C}^{n} be the n-dimensional complex Hilbert space consisting of all column vectors $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ for which $x_{j} \in \mathbb{C}(j=1,2, \cdots, n)$. The standard inner product in \mathbb{C}^{n} is denoted by $\langle.,$.$\rangle . The formula$

$$
[x, y]=\sum_{k=1}^{n-1} x_{k} \bar{y}_{k}-x_{n} \bar{y}_{n} \quad\left(x, y \in \mathbb{C}^{n}\right)
$$

determines an indefinite inner product on \mathbb{C}^{n}. It is clear that the selfadjoint involution corresponding to this indefinite inner product is $J_{0}=\left(\begin{array}{cc}I_{n-1} & 0 \\ 0 & -1\end{array}\right)$, where I_{n-1} denotes the identity matrix of order $n-1$, and

$$
[x, y]=\left\langle J_{0} x, y\right\rangle \quad\left(x, y \in \mathbb{C}^{n}\right)
$$

The Krein space $\left(\mathbb{C}^{n}, J_{0}\right)$ is called the n-dimensional Minkowski space. The following example shows that the J-positivity of operators in Theorem 2.5 is an essential assumption. Also, it shows that the arithmetic-geometric-harmonic mean inequality for operators on Hilbert spaces is not true for operators on Krein spaces, in general.

Example 2.8. Consider the 2-dimensional Minkowski space (\mathbb{C}^{2}, J_{0}) with $J_{0}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$. Suppose that $A=\left(\begin{array}{cc}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$ is a 2×2 complex J_{0}-selfadjoint matrix. Since the J_{0}-selfadjoitness of A is equivalent to the usual selfadjointness of $J_{0} A$, we have $A=\left(\begin{array}{cc}a_{11} & a_{12} \\ -\overline{a_{12}} & a_{22}\end{array}\right)$ in which a_{11} and a_{22} are real.
Let $A=\left(\begin{array}{cc}2 & \frac{1}{4} \\ -\frac{1}{4} & 1\end{array}\right)$ and $B=\left(\begin{array}{cc}1 & \frac{1}{3} \\ -\frac{1}{3} & 2\end{array}\right)$. Then A and B are J_{0} selfadjoint with positive eigenvalues and

$$
J_{0}(A-B)=\left(\begin{array}{cc}
1 & 0.0833 \\
-0.0833 & 1
\end{array}\right)
$$

is positive. It follows that $A \geqslant{ }^{J_{0}} B$. Some matrix calculation shows

$$
A \sharp B=\left(\begin{array}{cc}
1.4208 & 0.2755 \\
-0.2755 & 1.4153
\end{array}\right)
$$

and

$$
\frac{A+B}{2}-A \sharp B=\left(\begin{array}{cc}
0.0792 & 0.0162 \\
-0.0162 & 0.0847
\end{array}\right) .
$$

The matrix $J_{0}\left(\frac{A+B}{2}-A \sharp B\right)$ has a negative eigenvalue. It follows that

$$
A \sharp B \not ڭ^{J_{0}} \frac{A+B}{2}=A \nabla B .
$$

Moreover

$$
A \nvdash B-2\left(A^{-1}+B^{-1}\right)^{-1}=\left(\begin{array}{cc}
0.0750 & 0.0153 \\
-0.0153 & 0.0799
\end{array}\right) .
$$

The matrix $J_{0}\left(A \natural B-2\left(A^{-1}+B^{-1}\right)^{-1}\right)$ has a negative eigenvalue．Hence

$$
A!B=2\left(A^{-1}+B^{-1}\right)^{-1} \not 丈^{J_{0}} A \sharp B .
$$

Therefore

$$
A!B \not 丈^{J_{0}} A \natural B \not 丈^{J_{0}} A \nabla B .
$$

Acknowledgement

The authors would like to sincerely thank the referees for the several valuable comments improving the manuscript．

References

［1］W．N．Anderson and R．J．Duffin，Series and parallel addition of matrices， J．Math．Anal．Appl．， 26 （1969），576－594．
［2］T．Ando，Linear Operators on Krein Spaces，Hokkaido University，Sap－ poro，Japan， 1979.
［3］T．Ando，Lowner inequality of indefinite type，Linear Algebra Appl．， 385 （2004），73－80．
［4］T．Ando，Concavity of certain maps on positive definite matrices and applications to Hadamard products，Linear Algebra Appl．， 26 （1979），203－ 241.
［5］T．Ando，On the arithmetic－geometric－harmonic mean inequality for pos－ itive definite matrices，Linear Algebra and its Applications，Vol．52－53， （1983），31－37．
［6］T．Ya．Azizov and I．S．Iokhvidov，Linear Operators in Spaces with an Indefinite Metric，Nauka，Moscow， 1986 English translation：Wiley，New York， 1989.
［7］N．Bebiano，R．Lemos，J．Da providencia，and G．Soares，Operator in－ equalities for J－contractions，Math．Inequal．Appl．，15（4）（2012），883－897．
[8] M. Dehghani, S. M. S. Modarres, and M. S. Moslehian, Positive block matrices on Hilbert and Krein C^{*}-modules, Surv. Math. Appl., 8 (2013), 23-34.
[9] T. Furuta, J. Mićić Hot, J. E. Pečarić, and Y. Seo, Mond-Pečarić Method in Operator Inequalities, Element, Zagreb, 2005.
[10] F. Kubo and T. Ando, Means of positive linear operators, Math. Ann., 246 (1980), 205-224.
[11] M. S. Moslehian and M. Dehghani, Operator convexity in Krein spaces, New York, J. Math., 20 (2014), 133-144.
[12] T. Sano, Furuta inequality of indefinite type, Math. Inequal. Appl., 10 (2007), 381-387.

Mehdi Dehghani

Department of Pure and Applied Mathematics
Assistant Professor of Mathematics
Yazd University
P.O. Box: 89195-741

Yazd, Iran
E-mail: e.g.mahdi@gmail.com
Seyed Mohammad Sadegh Modarres Mosadegh
Department of Pure and Applied Mathematics
Associate professor of Mathematics
Yazd University
P.O. Box: 89195-741

Yazd, Iran
E-mail: smodarres@yazduni.ac.ir

[^0]: Received: October 2013; Accepted: December 2013

 * Corresponding author

