Concave Multifunctions and the Hammerstein Integral inclusion Problem

R. H. Haghi*
Payame Noor University
\section*{H. Hadavi}
Payame Noor University

Abstract

This paper presents sufficient conditions for the existence of positive solutions for the nonlinear Hammerstein and quadratic integral inclusion. In this way, we use concave multifunctions and fixed point theory for obtaining results. In fact, for solving the Hammerstein integral inclusion problem, we use fixed point of some concave multifunctions.

AMS Subject Classification: 34A60; 47H10; 47H07.
Keywords and Phrases: Concave multifunction, Dedekind complete, Hammerstein integral inclusion, Quadratic integral inclusion.

1 Introduction

A large number of real life problems can be framed as linear or nonlinear differential equations (see [3], [6], [7], [15], [21], [25], [27]) or differential inclusions(see [1], [9], [14], [24]). Using fixed point theorem of mappings and multifunctions is one of oldest and most well-known techniques to prove the existence of solutions for differential equations and inclusions. Picard ([26]) was the first to prove the existence of a positive solution

[^0]for differential and integral equations by using concave operators. Later, u_{0}-concavity, ordered concavity (convexity), and α-concavity(convexity) were introduced by Krasnoselskii([16],[17]), Amann ([5]), and Potter ([23]), respectively. In [20] the equivalent conditions to the existence of fixed point for u_{0}-concave operator were obtained. In [8], [19], [33], [28], and [29] fixed point theorems for some other types of concave operators were proved.
Upper and lower solutions([22]), compactness and continuity assumptions play important roles in order to prove the existence of positive solutions for nonlinear differential and integral equations and inclusions, which is difficult to verify for concrete nonlinear operators. One of the interesting and important techniques to remove or weaken these conditions is using monotone concave operators. See [12], [18], [31], [30], [32], and [34], [35] for some applications which include the existence of positive solutions.
The paper is organized as follows: In Section 2, we introduce some of the preliminaries needed for the next sections. In this section, we prove two lemmas; the first is essential to prove the main results and the second is an important equivalence between two types of concave multifunctions. In Section 3, we establish the existence of results for u_{0}-concave and $\alpha(t)$-concave multifunctions. Furthermore, we provide some examples that satisfy main results. In last section, we provide our main result about the existence of positive solutions for the Hammerstein and quadratic integral inclusions.

2 Preliminaries

Throughout this paper, we assume that E is a real Banach space which is partially ordered by a cone $P \subseteq E$, i.e., $x \leq y$ (or $y \geq x$) iff $y-x \in P$. If $x \leq y$ and $x \neq y$, then we denote $x<y$ (or $y>x$). Note that the nonempty closed convex set $P \subset E$ is a cone if it satisfies $x \in P, \lambda \geq$ $0 \Rightarrow \lambda x \in P$ and $x \in P,-x \in P \Rightarrow x=\theta$. A cone P is said to be normal if there exists a constant $N>0$ such that $\theta \leq x \leq y$ implies $\|x\| \leq N\|y\|$, where $x, y \in E$ and θ denotes the zero element of E. It is easy to prove that the following assumptions are equivalent([11]):
(1) A cone P is normal,
(2) If $x_{n} \leq z_{n} \leq y_{n}$ (for all $n \in \mathbb{N}$), $\left\|x_{n}-x\right\| \rightarrow 0$ and $\left\|y_{n}-x\right\| \rightarrow 0$ (as $n \rightarrow \infty$), then $\left\|z_{n}-x\right\| \rightarrow 0$ (as $n \rightarrow \infty$).
For $x_{1}, x_{2} \in E$, the set $\left[x_{1}, x_{2}\right]=\left\{x \in E: x_{1} \leq x \leq x_{2}\right\}$ is called the order interval between x_{1} and x_{2}. Given $h>\theta$, let P_{h} be the set

$$
P_{h}=\{x \mid x \in E, \exists \lambda(x), \mu(x)>0, \text { s.t. } \lambda(x) h \leq x \leq \mu(x) h\} .
$$

It is easy to see that $P_{h} \subset P$.
Definition 2.1. ([13]) For two subsets X and Y of E, we write $X \leq Y$ if for any $x \in X$ there exists some $y \in Y$ such that $x \leq y$.

Also for subsets X, Y and Z of E we write $X \leq Y \leq Z$ if $X \leq Y$ and $Y \leq Z$. For $\{x\} \leq Y$ or $Y \leq\{x\}$ we write $x \leq Y$ or $Y \leq x$, respectively. Obviously if $Y \leq x$, then for all $y \in Y$ we have $y \leq x$.

Definition 2.2. ([13]) Given a nonempty subset D of E, we say that $A: D \rightarrow 2^{E}$ is increasing (decreasing) on D if for $x, y \in D$ such that $x \leq y$, we have $A x \leq A y(A x \geq A y)$.

Definition 2.3. A multifunction $A: P \rightarrow 2^{P}$ is said to be a u_{0}-concave multifunction $\left(u_{0}>\theta\right)$ if A satisfies the following two conditions:
(i) for any $x>\theta, A x \subseteq P_{u_{0}}$;
(ii) for $x \in P$ and $t \in(0,1)$ there exists a positive number $\eta=\eta(t, x)$ such that $A(t x) \geq t(1+\eta) A x$.
Definition 2.4. A multifunction $A: P_{h} \rightarrow 2^{P_{h}}(h>0)$ is said to be an $\alpha(t, x)$-concave multifunction if there exists $\alpha:(0,1) \times P_{h} \longrightarrow(0,1)$ such that $\alpha(t, x)>t$ and $A(t x) \geq \alpha(t, x) A x$ for all $x \in P_{h}$ and $t \in(0,1)$.

Definition 2.5. A multifunction $A: P_{h} \rightarrow 2^{P_{h}}(h>0)$ is said to be a $\alpha(t)$-concave multifunction if there exists $\alpha:(0,1) \longrightarrow(0,1)$ such that $\alpha(t)>t$ and $A(t x) \geq \alpha(t) A x$ for all $t \in(0,1)$ and $x \in P_{h}$.

A subset X of a E is called order bounded ([4]) if there is a $u \in E$ such that $x \leq u$ for all $x \in X$. In this case, u is called the upper bound of X.

Definition 2.6. ([4]) E is called Dedekind complete (or order complete) if every nonempty subset, which is order bounded, has a supremum in E.

Definition 2.7. The subset X of E is order closed if $\sup X$ belongs to X.

If $X \subseteq E$, then we denote by $B(X)$ the class of nonempty and order bounded subsets of X, by $O B(X)$ the class of nonempty, order bounded and order closed subsets of X, and by $O C B(X)$ the class of nonempty, norm closed, order bounded and order closed subsets of X.

Lemma 2.8. Let E be Dedekind complete, $P \subset E$ be a normal cone and $A: P \rightarrow O B(P)$ be an increasing u_{0}-concave multifunction (for some $\left.u_{0}>\theta\right)$. Suppose that there exist $w_{0} \in P\left(w_{0} \neq \theta\right), v_{0} \in P_{u_{0}}$, and $0<\lambda_{0}<1$, s.t. $\lambda_{0} v_{0} \leq w_{0} \leq v_{0}$. Then there exist two sequences $\left\{v_{n}\right\}$ and $\left\{w_{n}\right\}$ in P, and a real sequence λ_{n} such that for all $n \in \mathbb{N}$ we have

$$
\lambda_{n} v_{n} \leq w_{n} \leq v_{n}
$$

in which $0<\lambda_{n}=\lambda_{0}\left(1+\eta_{n}\right)^{n}<1$ where, for any $n \in \mathbb{N}, \eta_{n}$ is a positive real number.

Proof. Since A is increasing, then

$$
\begin{equation*}
A\left(\lambda_{0} v_{0}\right) \leq A\left(w_{0}\right) \leq A\left(v_{0}\right) \tag{1}
\end{equation*}
$$

In addition

$$
\begin{equation*}
A\left(\lambda_{0} v_{0}\right) \geq \lambda_{1} A\left(v_{0}\right) \tag{2}
\end{equation*}
$$

where $0<\lambda_{1}=\lambda_{0}\left(1+\eta_{1}\right)<1$. By (1), (2) we get

$$
\begin{equation*}
\lambda_{1} A\left(v_{0}\right) \leq A\left(w_{0}\right) \tag{3}
\end{equation*}
$$

Let $v_{1}=\sup A\left(v_{0}\right)$ and $w_{1}=\sup A\left(w_{0}\right)$. Since E is Dedekind complete and $A\left(v_{0}\right), A\left(w_{0}\right) \in O B(P)$, then $v_{1} \in A\left(v_{0}\right)$ and $w_{1} \in A\left(w_{0}\right)$. By (3), for some $w_{1}^{\prime} \in A\left(w_{0}\right), \lambda_{1} v_{1} \leq w_{1}^{\prime}$ which implies that $w_{1}^{\prime} \leq w_{1}$. Therefore, we have $\lambda_{1} v_{1} \leq w_{1}$. By $A w_{0} \leq A v_{0}$, there exists $v_{1}^{\prime} \in A v_{0}$ such that $w_{1} \leq v_{1}^{\prime}$. Since $v_{1}=A\left(v_{0}\right)$, then $w_{1} \leq v_{1}$. Finally, we have

$$
\lambda_{1} v_{1} \leq w_{1} \leq v_{1} .
$$

Hence

$$
\begin{equation*}
A\left(\lambda_{1} v_{1}\right) \leq A\left(w_{1}\right) \leq A\left(v_{1}\right) . \tag{4}
\end{equation*}
$$

For some real number η_{2}^{\prime}, we have

$$
A\left(\lambda_{1} v_{1}\right) \geq \lambda_{1}\left(1+\eta_{2}^{\prime}\right) A\left(v_{1}\right)
$$

where $0<\lambda_{1}\left(1+\eta_{2}^{\prime}\right)<1$. Let $\eta_{2}=\min \left\{\eta_{1}, \eta_{2}^{\prime}\right\}$. So

$$
A\left(\lambda_{1} v_{1}\right) \geq \lambda_{1}\left(1+\eta_{2}\right) A\left(v_{1}\right)
$$

which implies

$$
A\left(\lambda_{1} v_{1}\right) \geq \lambda_{0}\left(1+\eta_{1}\right)\left(1+\eta_{2}\right) A\left(v_{1}\right)
$$

Since $\eta_{2} \leq \eta_{1}$, then

$$
A\left(\lambda_{1} v_{1}\right) \geq \lambda_{0}\left(1+\eta_{2}\right)^{2} A\left(v_{1}\right)
$$

If $\lambda_{2}=\lambda_{0}\left(1+\eta_{2}\right)^{2}$, then

$$
\begin{equation*}
A\left(\lambda_{1} v_{1}\right) \geq \lambda_{2} A\left(v_{1}\right) \tag{5}
\end{equation*}
$$

Similarly, by putting $v_{2}=\sup A\left(v_{1}\right), w_{2}=\sup A\left(w_{1}\right)$, and using (4) and (5), we can get

$$
\lambda_{2} v_{2} \leq w_{2} \leq v_{2}
$$

By repeating this process, we obtain sequences $\left\{v_{n}\right\}$ and $\left\{w_{n}\right\}$ such that $v_{n}=\sup A\left(v_{n-1}\right), w_{n}=\sup A\left(w_{n-1}\right)$ and a real sequence $0<\lambda_{n}=$ $\lambda_{0}\left(1+\eta_{n}\right)<1$, in which $\eta_{n}=\min \left\{\eta_{n-1}, \eta_{n-1}^{\prime}\right\}$ that is satisfying

$$
\lambda_{n} v_{n} \leq w_{n} \leq v_{n}
$$

A real sequence η_{n} is called an adjoint sequence of A in w_{0}, v_{0}, and λ_{0}.
The next example shows that Dedekind complete assumption in Lemma (2.8) is the sufficient condition. However, it is not necessary.

Example 2.9. Consider Banach space $\left(E,\|.\|_{\infty}\right)$ where $E=C[0,1]$ is the vector space of a continuous function on $[0,1]$ and $\|.\|_{\infty}$ is the usual supremum norm ([4]). Assume that $P \subseteq E$ is the cone of non-negative continuous functions on $[0,1]$. Let us define multifunction $A: P \rightarrow$ $O B(P)$ with $A x=[\sqrt[3]{x}, \sqrt[3]{x}+1]$. Obviously A is increasing. For $u_{0}=1$,
it is easy to notice that $P_{u_{0}}=\{x \in E \mid x>0\}$. Thus for any $x \in P_{u_{0}}$, we have $A x \subseteq P_{u_{0}}$. Also, for any $t \in(0,1)$, we have

$$
\begin{aligned}
A(t x) & =[\sqrt[3]{t x}, \sqrt[3]{t x}+1]=[\sqrt[3]{t} \sqrt[3]{x}, \sqrt[3]{t} \sqrt[3]{x}+1] \\
& \geq \sqrt{t}(1+\eta)[\sqrt[3]{x}, \sqrt[3]{x}+1]=\sqrt{t}(1+\eta) A(x)
\end{aligned}
$$

where $0<\eta<\frac{1}{\sqrt[6]{t}}-1$. Therefore, A is a u_{0}-concave multifunction. Now let $v_{0}=3$ and $w_{0}=2$. Since $\sup _{x \in[0,1]}[\sqrt[3]{x}, \sqrt[3]{x}+1]=\sqrt[3]{x}+1$, then we can make sequences $\left\{v_{n}\right\}$, and $\left\{w_{n}\right\}$ similar to Lemma 2.8. However ($C[0,1],\|\cdot\| \|_{1}$) is not Dedekind complete ([4]).

Lemma 2.10. Let $u_{0}>\theta$ and
(a), $A: P \rightarrow 2^{P}$ is a u_{0}-concave multifunction. Then $A \mid P_{u_{0}}(A$ confined to $\left.P_{u_{0}}\right)$ is an $\alpha(t, x)$-concave multifunction.
(b), $A: P_{u_{0}} \rightarrow 2^{P_{u_{0}}}$ is an $\alpha(t, x)$-concave multifunction. Then A is a u_{0}-concave multifunction.

Proof. (a): By using (i) of Definition 2.3 for all $x \in P_{u_{0}}$, we have $A x \subset P_{u_{0}}$. Set $\alpha(t, x)=t(1+\eta(t, x))$. Thus for all $x \in P_{u_{0}}$ and $t \in(0,1)$ we have $\alpha(t, x)>t$. Hence $A \mid P_{u_{0}}: P_{u_{0}} \rightarrow 2^{P_{u_{0}}}$ is an $\alpha(t, x)$ concave multifunction.
(b): Since $A: P_{u_{0}} \rightarrow 2^{P_{u_{0}}}$, then A satisfies condition (i) of Definition 2.3. Set $\eta(t, x)=\frac{\alpha(t, x)}{t}-1$ (for all $x \in P_{u_{0}}$ and $\left.t \in(0,1)\right)$. Since for all $x \in P_{u_{0}}$ we have $A(t x) \geq \alpha(t, x) A(x)$, then

$$
t(1+\eta) A(x)=t\left(1+\frac{\alpha(t, x)}{t}-1\right) A(x)=\alpha(t, x) A(x) \leq A(t x)
$$

Therefore, A satisfies condition (ii) of Definition 2.3.
We note that every $\alpha(t)$-concave multifunction is a u_{0}-concave multifunction.

3 Main Results

Now the main results could be stated and proved.

Theorem 3.1. Let $P \subseteq E$ be a normal cone, and $A: P \rightarrow O C B(P)$ be an increasing u_{0}-concave multifunction (for some $u_{0}>\theta$). Also, assume that
(i) $\left\{v_{n}\right\}$ and $\left\{w_{n}\right\}$ are the defined sequences in Lemma 2.8 such that $v_{0} \geq v_{1}$ and $w_{0} \leq w_{1}$;
(ii) for the sequence η_{n} in Lemma 2.8, we have

$$
\lim _{n \rightarrow \infty} n \eta_{n}=\ln \left(\frac{1}{\lambda_{0}}\right),
$$

Then A has at least one fixed point.
Proof. Since A is increasing and $w_{0} \leq w_{1}$, then we have $A w_{0} \leq A w_{1}$. Also, since $w_{2}=\sup A\left(w_{1}\right)$ and $w_{1} \in A w_{0}$, we get $w_{1} \leq w_{2}$. Therefore $A w_{1} \leq A w_{2}$. By repeating this process, we get

$$
\begin{equation*}
w_{0} \leq w_{1} \leq w_{2} \leq \cdots \leq w_{n} \leq \cdots \tag{6}
\end{equation*}
$$

Similarly, we get

$$
\begin{equation*}
v_{0} \geq v_{1} \geq \cdots \geq v_{n} \geq \cdots \tag{7}
\end{equation*}
$$

By Lemma 2.8, for each $n \in \mathbb{N}$, we have $w_{n} \geq \lambda_{0}\left(1+\eta_{n}\right)^{n} v_{n}$. Then

$$
\theta \leq v_{n}-w_{n} \leq v_{n}-\lambda_{0}\left(1+\eta_{n}\right)^{n} v_{n} \leq\left(1-\lambda_{0}\left(1+\eta_{n}\right)^{n}\right) v_{n} .
$$

In addition

$$
\begin{aligned}
\theta \leq w_{n+p}-w_{n} & \leq v_{n+p}-w_{n}
\end{aligned} \leq v_{n}-w_{n} \leq\left(1-\lambda_{0}\left(1+\eta_{n}\right)^{n}\right) v_{0}, ~ 子 ~=v_{n}-v_{n+p} \leq v_{n}-w_{n+p} \leq v_{n}-w_{n} \leq\left(1-\lambda_{0}\left(1+\eta_{n}\right)^{n}\right) v_{0} .
$$

Normality of P implies that

$$
\begin{aligned}
\left\|w_{n+p}-w_{n}\right\| & \leq N \mid 1-\lambda_{0}\left(1+\eta_{n}\right)^{n}\left\|v_{0}\right\|, \\
\left\|v_{n+p}-v_{n}\right\| & \leq N\left|1-\lambda_{0}\left(1+\eta_{n}\right)^{n}\left\|\mid v_{0}\right\| .\right.
\end{aligned}
$$

Because of the normality of P and that $\left(1-\lambda_{0}\left(1+\eta_{n}\right)^{\left(\frac{1}{\eta_{n}}\right)^{n \eta_{n}}}\right) \rightarrow 0$ (as $n \rightarrow \infty),\left\{w_{n}\right\}$ and $\left\{v_{n}\right\}$ are Cauchy sequences. Since E is a Banach space and P is closed, then there exist $v^{*}, w^{*} \in P$ such that $w_{n} \rightarrow w^{*}$ and $v_{n} \rightarrow v^{*}$ (as $\left.n \rightarrow \infty\right)$. So we have

$$
\theta \leq v^{*}-w^{*} \leq v_{n}-w^{*} \leq v_{n}-w_{n} \leq\left(1-\lambda_{0}\left(1+\eta_{n}\right)^{n}\right) v_{0}
$$

Thus $\left\|v^{*}-w^{*}\right\| \leq N\left\|v_{n}-w_{n}\right\|$. Now if $n \rightarrow \infty$, we have $v^{*}=w^{*}$. Let $x^{*}=v^{*}=w^{*}$. By (6) and (7), we get that $w_{n} \leq x^{*} \leq v_{n}$ and since A is increasing, we have $A w_{n} \leq A x^{*} \leq A v_{n}$. Also, since for each $n \in \mathbb{N}$, $w_{n+1} \in A w_{n}$, then there exists $x_{n+1} \in A x^{*}$ such that $w_{n+1} \leq x_{n+1}$. Since $v_{n+1}=\sup A v_{n}$, then $w_{n+1} \leq x_{n+1} \leq v_{n+1}$. Hence

$$
\theta \leq v_{n+1}-x_{n+1} \leq v_{n+1}-w_{n+1}
$$

By the normality of P we get

$$
\left\|v_{n+1}-x_{n+1}\right\| \leq N\left\|v_{n+1}-w_{n+1}\right\|
$$

Then $x_{n+1} \rightarrow x^{*}($ as $n \rightarrow \infty)$. Since $A x^{*}$ is closed, then $x^{*} \in A x^{*}$.
Remark 3.2. As a result of Lemma 2.10, Theorem 3.1 holds true if we assume that $A: P_{u_{0}} \rightarrow O C B\left(P_{u_{0}}\right)$ (for some $u_{0}>\theta$) is $\alpha(t, x)$-concave multifunction.

In Example 3.3, using Lemma 2.8, we construct sequences $\left\{w_{n}\right\}$, $\left\{v_{n}\right\}$, and η_{n} that satisfy conditions (i) and (ii) of theorem 3.1.

Example 3.3. Let $E=\mathbb{R}$ and $P=[0, \infty)$. For any $u_{0}>0$, we have $P_{u_{0}}=(0, \infty)$. Define $A:[0, \infty) \rightarrow(0, \infty)$ as $A(x)=\sqrt{2+x}$. It is easy to see that for any $u_{0}>0, A$ is a u_{0}-concave function and it is increasing. Let $w_{0}=A(0)=\sqrt{2}, w_{1}=A\left(w_{0}\right)=\sqrt{2+\sqrt{2}}$,

$$
w_{2}=A\left(w_{1}\right)=\sqrt{2+\sqrt{2+\sqrt{2}}}
$$

and $w_{n}=A\left(w_{n-1}\right)=\sqrt{2+\sqrt{2+\cdots+\sqrt{2+\sqrt{2}}}}$ for all n. Also, put $v_{0}=3, v_{1}=A\left(v_{0}\right)=\sqrt{5}, v_{2}=A\left(v_{1}\right)=\sqrt{2+\sqrt{5}}$ and

$$
v_{n}=A\left(v_{n-1}\right)=\sqrt{2+\sqrt{2+\cdots+\sqrt{2+\sqrt{5}}}}
$$

for all n. We have $w_{0}<v_{0}, v_{0} \geq v_{1}$ and $w_{0} \leq w_{1}$. Also for $\lambda_{0}=\frac{1}{3}$ we have $\lambda_{0} v_{0}<w_{0}$. For any $n \in \mathbb{N}$ define $\lambda_{n}=\frac{w_{n}}{v_{n}}$. It can easily be noticed that for any $n \in \mathbb{N}$, we have $0<\lambda_{n}<1$ and $\lambda_{n} v_{n} \leq w_{n}$. Since $w_{n} \rightarrow 2$
and $v_{n} \rightarrow 2$ (as $n \rightarrow \infty$), we get $\lambda_{n} \rightarrow 1$ (as $n \rightarrow \infty$). Now let us define sequence $\eta_{n}=\left(\frac{\lambda_{n}}{\lambda_{0}}\right)^{\frac{1}{n}}-1$ (for any $n \in \mathbb{N}$). Since for any $n \in \mathbb{N}$ we have $0<\lambda_{n}<1$ and $\lambda_{n} \rightarrow 1(n \rightarrow \infty)$, then $\eta_{n} \rightarrow 0$ (as $n \rightarrow \infty$) and (for any $n \in \mathbb{N}$) we have $\eta_{n}>0$. In addition

$$
n \eta_{n}=\frac{\ln \left(\frac{\lambda_{n}}{\lambda_{0}}\right)}{\ln \left(1+\eta_{n}\right)^{\frac{1}{\eta_{n}}}},
$$

for each $n \in \mathbb{N}$. Therefore

$$
\lim _{n \rightarrow \infty} n \eta_{n}=\frac{\ln \left(\frac{1}{\lambda_{0}}\right)}{\ln (e)}=\ln \left(\frac{1}{\lambda_{0}}\right) .
$$

Then $\left\{\eta_{n}\right\}$ is an adjoint sequence of A in w_{0}, v_{0} and λ_{0}. Also, we have proved that A satisfies in the all assumptions of Theorem 3.1.

Next we assume that A is $\alpha(t)$-concave multifunction and then we obtain a new result.

Lemma 3.4. Let $A: P \rightarrow B(P)$ be an $\alpha(t)$-concave increasing multifunction and $A(h) \cap P_{h} \neq \emptyset$ (for some $h>\theta$). Then there are $u_{0}, v_{0} \in P_{h}$ and $r \in(0,1)$ such that $r v_{0} \leq u_{0} \leq v_{0}, u_{0} \leq A u_{0} \leq A v_{0} \leq v_{0}$.

Proof. For some $h>\theta$ we have $A h \cap P_{h} \neq \emptyset$. Let $a \in A h \cap P_{h}$. Then there exist positive real $\mu(a)$ and $\lambda(a)$ such that $\lambda(a) h \leq a \leq \mu(a) h$. Let us choose $t_{0} \in(0,1)$ such that

$$
\begin{equation*}
t_{0} h \leq a \leq \frac{1}{t_{0}} h . \tag{8}
\end{equation*}
$$

Since $\alpha\left(t_{0}\right) \in\left(t_{0}, 1\right]$, we can take positive integer k such that

$$
\begin{equation*}
\left(\frac{\alpha\left(t_{0}\right)}{t_{0}}\right)^{k} \geq \frac{1}{t_{0}} \tag{9}
\end{equation*}
$$

Put $u_{0}=t_{0}^{k} h$ and $v_{0}=\frac{1}{t_{0}^{k}} h$. Clearly $u_{0}, v_{0} \in P_{h}$. In addition

$$
u_{0}=t_{0}^{k} h=t_{0}^{k} t_{0}^{k} \frac{1}{t_{0}^{k}} h=t_{0}^{2 k} v_{0}<v_{0}
$$

If we take $r \in\left(0, t_{0}^{2 k}\right] \subseteq(0,1)$, we have $r v_{0} \leq t_{0}^{2 k} v_{0}=u_{0}$. Thus $r v_{0} \leq u_{0}$. By the monotonicity of $A, A u_{0} \leq A v_{0}$. Further, considering conditions A is an $\alpha(t)$-concave multifunction with (8) and (9) we have

$$
\begin{aligned}
A u_{0} & =A\left(t_{0}^{k} h\right)=A\left(t_{0} t_{0}^{k-1} h\right) \geq \alpha\left(t_{0}\right) A\left(t_{0}^{k-1} h\right) \\
& \geq \cdots \geq\left(\alpha\left(t_{0}\right)\right)^{k} A h \geq\left(\alpha\left(t_{0}\right)\right)^{k} t_{0} h \geq t_{0}^{k} h=u_{0}
\end{aligned}
$$

Thus $u_{0} \leq A u_{0}$. Now we set $x:=\frac{x}{t}$. Since A is an $\alpha(t)$-concave multifunction, then

$$
A(x)=A\left(t \frac{x}{t}\right) \geq \alpha(t) A\left(\frac{x}{t}\right)
$$

so

$$
\begin{equation*}
A\left(\frac{x}{t}\right) \leq \frac{1}{\alpha(t)} A(x) . \tag{10}
\end{equation*}
$$

By (10)

$$
\begin{aligned}
A v_{0} & =A\left(\frac{1}{t_{0}^{k}} h\right)=A\left(\frac{1}{t_{0}} \frac{1}{t_{0}^{k-1}} h\right) \\
& \leq \frac{1}{\alpha\left(t_{0}\right)} A\left(\frac{1}{t_{0}^{k-1}} h\right)=\frac{1}{\alpha\left(t_{0}\right)} A\left(\frac{1}{t_{0}} \frac{1}{t_{0}^{k-2}} h\right) \\
& \leq \frac{1}{\alpha\left(t_{0}\right)} \frac{1}{\alpha\left(t_{0}\right)} A\left(\frac{1}{t_{0}^{k-2}} h\right) \\
& \leq \cdots \leq\left(\frac{1}{\alpha\left(t_{0}\right)}\right)^{k} A h \leq \frac{h}{t_{0}\left(\alpha\left(t_{0}\right)\right)^{k}} .
\end{aligned}
$$

Application of (9) implies that

$$
A v_{0} \leq \frac{h}{t_{0}\left(\alpha\left(t_{0}\right)^{k}\right)} \leq \frac{h}{t_{0}^{k}}=v_{0} .
$$

Thus we have $u_{0} \leq A u_{0} \leq A v_{0} \leq v_{0}$.
Theorem 3.5. Let E be Dedekind complete, $P \subseteq E$ be a normal cone, and $A: P \rightarrow O C B(P)$ be an increasing $\alpha(t)$-concave multifunction. In addition, $x_{0} \in P$ satisfies $\left(A(h)+x_{0}\right) \cap P_{h} \neq \emptyset$ (for some $h>\theta$). Then $A(x)+x_{0}$ has at least one fixed point in P_{h}.

Proof. Let us define multifunction C on P by $C x=A x+x_{0}$. Thus $C: P \rightarrow B(P)$ for each $x \in P$. Also for each $x \in P$ and $t \in(0,1)$, we have

$$
C(t x)=A(t x)+x_{0} \geq \alpha(t) A(x)+x_{0} \geq \alpha(t) A(x)+\alpha(t) x_{0}=\alpha(t) C(x) .
$$

Hence, C is an increasing and $\alpha(t)$-concave multifunction. In addition, for some $h>\theta$ we have

$$
C(h) \cap P_{h}=\left(A(h)+x_{0}\right) \cap P_{h} \neq \emptyset .
$$

Lemma 3.4 implies that there are $u_{0}, v_{0} \in P_{h}$ and $r \in(0,1)$ such that

$$
r v_{0} \leq u_{0} \leq v_{0}, \quad u_{0} \leq C u_{0} \leq C v_{0} \leq v_{0} .
$$

By $u_{0} \leq C u_{0}$, there exists $u_{1}^{\prime} \in C u_{0}$ such that $u_{0} \leq u_{1}^{\prime}$. Assume that $u_{1}=\sup C u_{0}$. Then $u_{0} \leq u_{1}$. Let $v_{1}=\sup C v_{0}$. Since $C v_{0} \leq v_{0}$, we have $v_{1} \leq v_{0}$. Also $C u_{0} \leq C v_{0}$ and $u_{1} \in C u_{0}$. Since $v_{1}=\sup C v_{0}$, then $u_{1} \leq v_{1}$. Hence $u_{0} \leq u_{1} \leq v_{1} \leq v_{0}$. Since C is an increasing multifunctin, then $C u_{0} \leq C u_{1}, C u_{1} \leq C v_{1}$ and $C v_{1} \leq C v_{0}$. Similarly if we take $u_{2}=\sup C u_{1}$ and $v_{2}=\sup C v_{1}$ we get

$$
u_{0} \leq u_{1} \leq u_{2} \leq v_{2} \leq v_{1} \leq v_{0}
$$

By repeating this process we obtain sequences $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ satisfying

$$
\begin{equation*}
u_{0} \leq u_{1} \leq u_{2} \leq \cdots \leq u_{n} \leq v_{n} \leq \cdots \leq v_{2} \leq v_{1} \leq v_{0} \tag{11}
\end{equation*}
$$

By $r v_{0} \leq u_{0}$, we have

$$
u_{n} \geq u_{0} \geq r v_{0} \geq r v_{n}
$$

For each $n \in \mathbb{N}$, set $t_{n}=\sup \left\{t>0 \mid u_{n} \geq t v_{n}\right\}$. Thus for each $n \in \mathbb{N}$, we have $u_{n} \geq t_{n} v_{n}$. In addition, for each $n \in \mathbb{N}$

$$
\begin{equation*}
u_{n+1} \geq u_{n} \geq t_{n} v_{n} \geq t_{n} v_{n+1} . \tag{12}
\end{equation*}
$$

However, we know that $t_{n+1} v_{n+1} \leq u_{n+1}$. Thus by (12) and the definition of t_{n+1} we get $t_{n} \leq t_{n+1}\left(\right.$ for each $n \in \mathbb{N}$). Therefore $\left\{t_{n}\right\}$ is an increasing sequence such that $\left\{t_{n}\right\} \subset(0,1]$. Suppose that $t_{n} \rightarrow t^{*}$ (as
$n \rightarrow \infty)$. We are going to show that $t^{*}=1$. Otherwise $0<t^{*}<1$. We distinguish two cases:
Case one: There exists an integer N such that $t_{N}=t^{*}$. In this case, it should be $t_{n}=t^{*}$ for all $n \geq N$. So for any $n \geq N$ we have

$$
\alpha\left(t^{*}\right) C v_{n} \leq C\left(t^{*} v_{n}\right) \leq C u_{n} .
$$

Since $v_{n+1} \in C v_{n}, v_{n+1}=\sup C v_{n}$ and $u_{n+1}=\sup C u_{n}$, it follows that $\alpha\left(t^{*}\right) v_{n+1} \leq u_{n+1}$. By the definition of t_{n+1}, we have $\alpha\left(t^{*}\right) \leq t_{n+1}$. Then for $n \geq N$ we have $t_{n+1}=t^{*} \geq \alpha\left(t^{*}\right)>t^{*}$ which is a contradiction.
Case two: For all integer $n, t_{n}<t^{*}$. So we obtain

$$
\begin{aligned}
C u_{n} & \geq C\left(t_{n} v_{n}\right)=C\left(\frac{t_{n}}{t^{*}} *^{*} v_{n}\right) \geq \alpha\left(\frac{t_{n}}{t^{*}}\right) C\left(t^{*} v_{n}\right) \\
& \geq \alpha\left(\frac{t_{n}}{t^{*}}\right) \alpha\left(t^{*}\right) C\left(v_{n}\right) \geq \frac{t_{n}}{t^{*}} \alpha\left(t^{*}\right) C\left(v_{n}\right)
\end{aligned}
$$

Thus $\frac{t_{n}}{t^{*}} \alpha\left(t^{*}\right) C\left(v_{n}\right) \leq C u_{n}$. Since $u_{n+1}=\sup C u_{n}$ and $v_{n+1}=\sup C v_{n}$, we have $\frac{t_{n}}{t^{*}} \alpha\left(t^{*}\right) v_{n+1} \leq u_{n+1}$. By definition of t_{n+1} we get $\frac{t_{n}}{t^{*}} \alpha\left(t^{*}\right) v_{n+1} \leq$ t_{n+1}. By letting $n \rightarrow \infty, t^{*} \geq \alpha\left(t^{*}\right)>t^{*}$, which is a contradiction. Thus, $\lim _{n \rightarrow \infty} t_{n}=1$. For any natural number m, we have

$$
\begin{aligned}
& \theta \leq u_{n+m}-u_{n} \leq v_{n}-u_{m} \leq v_{n}-t_{n} v_{n}=\left(1-t_{n}\right) v_{n} \leq\left(1-t_{n}\right) v_{0}, \\
& \theta \leq v_{n}-v_{n+m} \leq v_{n}-u_{n} \leq v_{n}-t_{n} v_{n}=\left(1-t_{n}\right) v_{n} \leq\left(1-t_{n}\right) v_{0} .
\end{aligned}
$$

Since P is normal, then

$$
\begin{aligned}
& \left\|u_{n+m}-u_{n}\right\| \leq N\left(1-t_{n}\right)\left\|v_{0}\right\|, \\
& \left\|v_{n}-v_{n+m}\right\| \leq N\left(1-t_{n}\right)\left\|v_{0}\right\| .
\end{aligned}
$$

So $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ are Cauchy sequences. Because E is complete, there exist u^{*} and v^{*} such that $u_{n} \rightarrow u^{*}$ and $v_{n} \rightarrow v^{*}$ (as $\left.n \rightarrow \infty\right)$. By (11), it follows that $u_{n} \leq u^{*} \leq v^{*} \leq v_{n}, u^{*}, v^{*} \in P_{h}$. Also

$$
\theta \leq v^{*}-u^{*} \leq v_{n}-u_{n} \leq\left(1-t_{n}\right) v_{0}
$$

Furthermore

$$
\left\|v^{*}-u^{*}\right\| \leq N\left(1-t_{n}\right)\left\|v_{0}\right\| .
$$

By letting $n \rightarrow \infty$, we get $u^{*}=v^{*}$. Let $x^{*}=u^{*}=v^{*}$. Then we have

$$
C u_{n} \leq C x^{*} \leq C v_{n}
$$

Since for any $n \in \mathbb{N}, u_{n+1}=\sup C u_{n}$ and $v_{n+1}=\sup C v_{n}$, for each n, there exists $x_{n+1} \in C x^{*}$ such that $u_{n+1} \leq x_{n+1} \leq v_{n+1}$. Thus

$$
\theta \leq x_{n+1}-u_{n+1} \leq v_{n+1}-u_{n+1} \leq\left(1-t_{n+1}\right) v_{0},
$$

so

$$
\left\|x_{n+1}-u_{n+1}\right\| \leq N\left(1-t_{n+1}\right)\left\|v_{0}\right\| .
$$

Since $u_{n} \rightarrow x^{*}, x_{n+1} \rightarrow x^{*}($ as $n \rightarrow \infty)$. Since $C x^{*}$ is closed, $x^{*} \in C x^{*}$.
Example 3.6 shows that there exists an $\alpha(t)$-concave multifunction such that all the conditions of Theorem 3.5 are satisfied.

Example 3.6. Let $E=C[0,1]$ and $P=\{x \in E \mid x(t) \geq 0$ for all $t \in$ $[0,1]\}$. Define $A: P \rightarrow O C B([0,1])$ as $A(x)=[\sqrt{x}, \sqrt{x}+1]$. It is easy to seen that A is increasing and $\alpha(t)$-concave multifunction for $\alpha(t)=\sqrt{t}$.

Example 3.7 shows that there exists a u_{0}-concave operator which is not $\alpha(t)$-concave.

Example 3.7. Let $E=\mathbb{R}$ and $P=[0, \infty)$. For any $u_{0}>0$, we have $P_{u_{0}}=(0, \infty)$. Let us define $f:[0, \infty) \rightarrow[0, \infty)$ as the following

$$
f(x)= \begin{cases}\sin (x) & 0 \leq x<\frac{\pi}{2} \\ 1 & x \geq \frac{\pi}{2}\end{cases}
$$

Let $t \in(0,1)$ be fixed. It is easily noticed that for any $x \in\left(0, \frac{\pi}{2}\right)$ we have $\frac{\sin (t x)}{t \sin (x)}>1$. Then $f:[0, \infty) \rightarrow[0, \infty)$ is a u_{0}-concave operator(for any $u_{0}>0$). But f is not an $\alpha(t)$-concave operator. If f is an $\alpha(t)$ concave operator, then for any $t \in(0,1)$ and $x \in\left[0, \frac{\pi}{2}\right)$, we should have $\frac{\sin (t x)}{\sin (x)} \geq \alpha(t)>t$ for some $\alpha:(0,1) \rightarrow(0,1)$. Let $t \in(0,1)$ be fixed. Since $\lim _{x \rightarrow 0^{+}} \frac{\sin (t x)}{\sin (x)}=t$, then there exists $x_{0} \in(0,1)$ such that $\alpha(t)>\frac{\sin \left(t x_{0}\right)}{\sin \left(x_{0}\right)}>t$ which is a contradiction.

Remark 3.8. Comparing Theorem 3.1 with Theorem 3.5, we see that the conditions of Theorem 3.5 are greatly weaker than the conditions of Theorem 3.1. In Theorem 3.5, conditions "there exist $w_{0}, v_{0} \in P$ and $0<\lambda_{0}<1$ such that $\lambda_{0} v_{0} \leq w_{0} \leq v_{0} ", " v_{0} \geq v_{1} ", " w_{0} \leq w_{1} "$ and "there exist adjoint sequence of A in w_{0}, v_{0} and $\lambda_{0} \in(0,1)$ such that $\lim _{n \rightarrow \infty} n \eta_{n}=\ln \left(\frac{1}{\lambda_{0}}\right) "$ are removed.

4 Application

To illustrate the ideas involved in Theorem 3.5, we need to discuss the Hammerstein and quadratic integral inclusions. Consider Banach space $E=L^{1}[0, T]$ with the usual $\|.\|_{1}$ norm $([4])$. Let $0<T<\infty$. Hammerstein integral inclusion is defined as

$$
\begin{equation*}
u(r) \in \int_{0}^{T} k(r, s) g(s, u(s)) d s \text { on }[0, T] \tag{13}
\end{equation*}
$$

such that k is a real single-valued function, while $g:[0, T] \times E \rightarrow 2^{E}$ is a multifunction with nonempty values. Also for any $r \in[0, T]$, quadratic integral inclusion is defined as

$$
\begin{equation*}
u(r) \in y(r, u(r)) \int_{0}^{r} k(r, s) g(s, u(s)) d s \quad r \in[0, T] \tag{14}
\end{equation*}
$$

such that k is a real single-valued function, while $g:[0, T] \times E \rightarrow 2^{E}$ and $y:[0, T] \times E \rightarrow 2^{E}$ are the multifunctions with nonempty values. If $y(r, u(r))=1$, the quadratic integral inclusion is called Volterra integral inclusion.

Theorem 4.1. Consider Banach space $E=L^{1}[0, T]$ with the usual norm $\|.\|_{1}$ where $0<T<\infty$. Also consider normal cone $P=\{x \in$ $E \mid x(s) \geq 0$ for all $s \in[0, T]\}$ in E. Suppose that
(i) $k:[0, T] \times[0, T] \rightarrow(0, \infty)$ is a bounded function respect to each of its variables(which means there exists $M>0$ such that $k(r, s) \leq M$, for any $r, s \in[0, T]$);
(ii) $g:[0, T] \times E \longrightarrow O C B(E)$ be an multifunction such that $g:$ $[0, T] \times P \longrightarrow O C B(E)$ is an $\alpha(t)$-concave increasing multifunction;
(iii) for each $u \in P, g(s, u(s))$ is sequentially compact respect to pointwise convergence(which means for any sequence $\left\{w_{n}\right\} \subseteq g(s, u(s))$, there exists a subsequence $\left\{n_{k}\right\}$ of $\{n\}$ such that $w_{n_{k}}$ is a pointwise convergence to w (as $k \rightarrow \infty$) for some $w \in g(s, u(s))$);
(iv) there exists $h>\theta$ such that $g(s, h(s)) \cap P_{h} \neq \emptyset$ and $\int_{0}^{T} k(r, s) h(s) d s \in$ P_{h}.
Then Hammerstein integral inclusions (13) have at least one positive solution in P_{h}.

Proof. For each $w \in P$, let us define $f(w)=\int_{0}^{T} k(r, s) w(s) d s$. By (i) and Fubini theorem we have

$$
\begin{aligned}
\int_{0}^{T}\left|\int_{0}^{T} k(r, s) w(s) d s\right| d r & =\int_{0}^{T} \int_{0}^{T} k(r, s) w(s) d r d s \\
& =\int_{0}^{T} w(s)\left(\int_{0}^{T} k(r, s) d r\right) d s<\infty
\end{aligned}
$$

Then $f: P \rightarrow P$ is an operator. Also for each $u \in P$, let us define $G(u)=\{w \in P: w \in g(s, u(s))\}$. Moreover for each $u \in P$ define $A(u)=\{f(w): w \in G(u)\}$. By (ii), for any $u \in P$ we have $A(u) \neq \emptyset$ and since $f: P \rightarrow P$, we have $A: P \rightarrow 2^{P}$. Assume that $\left\{f\left(w_{n}\right)\right\}$ is a sequence in $A(u)$ such that

$$
f\left(w_{n}\right) \xrightarrow{L^{1}} v \quad(\text { as } n \rightarrow \infty)
$$

for some $v \in P$. Then $\left\{w_{n}\right\} \subseteq G(u)$ and by (iii) there exists a subsequence $\left\{n_{k}\right\}$ of $\{n\}$ such that $w_{n_{k}}$ is a pointwise convergence to w (as $k \rightarrow \infty)$ for some $w \in G(u)$. Since $G(u)$ is bounded, by Lebesgue's dominated convergence theorem we have

$$
f\left(w_{n}\right) \xrightarrow{L^{1}} f(w) \quad(\text { as } n \rightarrow \infty)
$$

Thus $v=f(w)$. Therefore for any $u \in P, A(u)$ is a closed subset of P (respect to the L^{1} norm). For any $u \in P, G(u)$ is order bounded and E is Dedekind complete space. So there exists $z \in G(u)$ such that $z=\sup G(u)$. Thus for any $w \in G(u)$, we have $f(w) \leq f(z)$ and it follows that $A(u)$ is bounded. Since E is Dedekind complete, there exists $y \in E$ such that $y=\sup A(u)$. Since $f(z)$ is an upper bound of
$A(u), y \leq f(z)$. But since $z \in G(u)$, we should have $f(z) \leq y$. Therefore $y=f(z)$ and we have $A: P \rightarrow O C B(P)$. Now we prove that A is an $\alpha(t)$-concave multifunction. Let $u \in P, w \in G(u)$ and $t \in(0,1)$. By (ii) there exists $c \in G(t u)$ such that $c \geq \alpha(t) w$. So we have

$$
\begin{aligned}
\alpha(t) f(w) & =\alpha(t) \int_{0}^{T} k(r, s) w(s) d s \\
& =\int_{0}^{T} k(r, s) \alpha(t) w(s) d s \leq \int_{0}^{T} k(r, s) c(s) d s=f(c) .
\end{aligned}
$$

Since $f(c) \in A(t u)$ and $f(w) \in A(u)$, then A is an $\alpha(t)$-concave multifunction. At the end of the proof we show that there exists $h>\theta$ such that $A(h) \cap P_{h} \neq \emptyset$. By (iv), there exists $h>\theta$ such that $G(h) \cap P_{h} \neq \emptyset$. If $w \in G(h) \cap P_{h}$, there exists $\lambda, \mu>0$ such that

$$
\lambda h \leq f(w)=\int_{0}^{T} k(r, s) w(s) d s \leq \mu h
$$

Now if we put $x_{0}=\theta$, by theorem 3.5, Hammerstein integral inclusions (13) have at least one positive solution in P_{h}.

Example 4.2. Let $E=L^{1}[0, T]$ with the usual norm $\|.\|_{1}$ where $0<$ $T<\infty$, and $P=\{x \in E \mid x(s) \geq 0$ for all $s \in[0, T]\}$. Also, assume that g is defined by $g(u(s), s)=[\sqrt[3]{u(s)}, \sqrt[3]{u(s)}+1]$ for any $u \in E, h=1$ is a constant function on $[0, T]$ and $k(r, s)=\frac{e^{r s}}{1+r s}$. Then by Theorem 4.1 there exists $u \in P_{h}$ such that

$$
u(r) \in \int_{0}^{T} k(r, s) g(s, u(s)) d s
$$

Theorem 4.3. Consider Banach space $E=L^{1}[0, T]$ with the usual norm $\|.\|_{1}$ where $0<T<\infty$. Also consider the normal cone $P=\{x \in$ $E \mid x(s) \geq 0$ for all $s \in[0, T]\}$ in E. Suppose that
(i) $k:[0, T] \times[0, T] \rightarrow(0, \infty)$ is a bounded function respect to each of its variables (which means there exists $M>0$ such that $k(r, s) \leq M$, for any $r, s \in[0, T]$);
(ii) $g:[0, T] \times E \longrightarrow O C B(E)$ is an multifunction such that g : $[0, T] \times P \longrightarrow O C B(E)$ is an $\alpha(t)$-concave increasing multifunction;
(iii) for each $u \in P, g(s, u(s))$ is sequentially compact respect to pointwise convergence(which means for any sequence $\left\{w_{n}\right\} \subseteq g(s, u(s))$, there exists a subsequence $\left\{n_{k}\right\}$ of $\{n\}$ such that $w_{n_{k}}$ is a pointwise convergence to $w($ as $k \rightarrow \infty)$ for some $w \in g(s, u(s))$);
(iv) $y:[0, T] \times P \longrightarrow P$ is a multifunction such that y is bounded above (which means there exist $L>0$ such that for any $r \in[0, T]$, $y(r, u(r))<L)$. Also y is sequentially continuous respect to $u(w h i c h$ means for any sequence $\left\{u_{n}\right\} \subseteq P$ such that u_{n} is a pointwise convergence to $u, y\left(r, u_{n}(r)\right)$ is a pointwise convergence to $y(r, u(r))$ as $n \rightarrow \infty)$;
(v) there exists $h>\theta$ such that $g(s, h(s)) \cap P_{h} \neq \emptyset, \int_{0}^{T} k(r, s) h(s) d s \in P_{h}$ and $y(r, h(r)) \in P_{h}$.
Then quadratic integral inclusions (14) have at least one positive solution in P_{h}.

Proof. For each $w \in P$, let us define $f(w)(r)=y(r, u(r)) \int_{0}^{r} k(r, s) w(s) d s$. By (i) we have

$$
\begin{aligned}
\int_{0}^{T}\left|\int_{0}^{r} f(w(s))(r) d s\right| d r & =\int_{0}^{T}\left|y(r, u(r)) \int_{0}^{r} k(r, s) w(s) d s\right| d r \\
& =\int_{0}^{T}|y(r, u(r))|\left|\int_{0}^{r} k(r, s) w(s) d s\right| d r \\
& \leq \int_{0}^{T}|y(r, u(r))| \int_{0}^{r}|k(r, s) w(s)| d s d r \\
& \leq \int_{0}^{T} L \int_{0}^{r}(M|w(s)|) d s d r<\infty
\end{aligned}
$$

Then $f: P \rightarrow P$ is an operator. Also for each $u \in P$, let us define $G(u)=\{w \in P: w \in g(s, u(s))\}$. Moreover for each $u \in P$, define $A(u)=\{f(w): w \in G(u)\}$. By (ii), for any $u \in P$, we have $A(u) \neq \emptyset$ and since $f: P \rightarrow P$, we have $A: P \rightarrow 2^{P}$. Assume that $\left\{f\left(w_{n}\right)\right\}$ is a sequence in $A(u)$, such that

$$
f\left(w_{n}\right) \xrightarrow{L^{1}} v \quad(\text { as } n \rightarrow \infty)
$$

for some $v \in P$. Then $\left\{w_{n}\right\} \subseteq G(u)$ and by (iii) there exists a subsequence $\left\{n_{k}\right\}$ of $\{n\}$ such that $w_{n_{k}}$ is pointwise convergence to w (as
$k \rightarrow \infty)$ for some $w \in G(u)$. Since $G(u)$ is bounded, by Lebesgue's dominated convergence theorem, for any $r \in[0, T]$, we have

$$
\int_{0}^{r} k(r, s) w_{n_{k}} d s \rightarrow \int_{0}^{r} k(r, s) w(s) d s \quad(\text { as } \quad k \rightarrow \infty)
$$

Also by (iv), $y\left(r, w_{n_{k}}\right)$ is a pointwise convergence to $y(r, w)$ (as $\left.k \rightarrow \infty\right)$ and we can deduce that

$$
f\left(w_{n}\right) \xrightarrow{L^{1}} f(w) \quad(\text { as } n \rightarrow \infty) .
$$

Thus $v=f(w)$. Therefore for any $u \in P, A(u)$ is closed subset of P (respect to the L^{1} norm). For any $u \in P, G(u)$ is order bounded and E is Dedekind complete space. So, there exists $z \in G(u)$ such that $z=\sup G(u)$. Thus for any $w \in G(u)$, we have

$$
f(w)(r)=y(r, u(r)) \int_{0}^{r} k(r, s) w(s) d s<L M \int_{0}^{r} w(s) d s<\infty .
$$

Hence $A(u)$ is bounded. Since E is Dedekind complete, there exists $y \in E$ such that $y=\sup A(u)$. Since $f(z)$ is upper bound of $A(u)$, $y \leq f(z)$. But since $z \in G(u)$, we should have $f(z) \leq y$. Therefore $y=f(z)$ and we have $A: P \rightarrow O C B(P)$. Now we show that A is an $\alpha(t)$-concave multifunction. Let $u \in P, w \in G(u)$ and $t \in(0,1)$. By (ii) there exists $c \in G(t u)$ such that $c \geq \alpha(t) w$. So we have

$$
\begin{aligned}
\alpha(t) f(w) & =\alpha(t) y(r, u(r)) \int_{0}^{r} k(r, s) w(s) d s \\
& =y(r, u(r)) \int_{0}^{r} \alpha(t) w(s) d s \leq \int_{0}^{T} k(r, s) c(s) d s=f(c) .
\end{aligned}
$$

Since $f(c) \in A(t u)$ and $f(w) \in A(u)$, then A is an $\alpha(t)$-concave multifunction. At the end of the proof we show that there exists $h>\theta$ such that $A(h) \cap P_{h} \neq \emptyset$. By (v), there exists $h>\theta$ such that $G(h) \cap P_{h} \neq \emptyset$. If $w \in G(h) \cap P_{h}$, there exists $\lambda, \mu>0$ such that

$$
\lambda h \leq f(w)=y(r, u(r)) \int_{0}^{r} k(r, s) w(s) d s \leq \mu h .
$$

Now if we put $x_{0}=\theta$, by theorem 3.5, quadratic integral inclusions (14) have at least one positive solution in P_{h}.

Example 4.4. Let $E=L^{1}[0, T]$ with the usual norm $\|.\|_{1}$ where $0<$ $T<\infty$, and $P=\{x \in E \mid x(s) \geq 0$ for all $s \in[0, T]\}$. Also, assume that for any $u \in E, g(u(s), s)=\left[\frac{u(s)}{1+u(s)}, \frac{u(s)}{1+u(s)}+1\right], y(r, u(r))=e^{-u(r)}+1$, $h=1$ is a constant function on $[0, T]$ and $k(r, s)=\ln (1+r s)$. Then by Theorem 4.3 there exists $u \in P_{h}$ such that

$$
u(r) \in y(r, u(r)) \int_{0}^{r} k(r, s) g(s, u(s)) d s
$$

5 Conclusion

In this paper, we generalized concave operators to multifunction version. Also, we extended the fixed point theorems of concave operators ([33],[20]) to multifunction version on Dedekind complete spaces. In addition, we provided an example for adjoint sequence of u_{0}-concave operators (example 3.3) and an example which shows that there exists a u_{0}-concave operator such that it is not an $\alpha(t)$-concave(example 3.7). Before this article, these two types of mappings had not been compared. Main part of this work relates to investigation of the existence of solutions for the Hammerstein and quadratic integral inclusions by using some new ideas.

Remark 5.1. It is suggested that our results be extended to fractional differential equations and inclusions([7], [15], [27]). Another useful extension of our main theorems can be proving in metric like spaces similar to the generalized metric space([2]) or G-metric spaces([10]). Furthermore, it seems interesting to prove Theorems 3.1 and 3.5 , without assuming Dedekind complete. Example 2.9 shows that in both theorems, Dedekind complete assumption is sufficient but not necessary.

Acknowledgements

The authors were supported by Payame Noor University. The author express their gratitude to dear unknown referees for their helpful suggestions which improved the final version of this paper.

References

[1] M. U. Ali, A. Pitea, Existence theorem for integral inclusions by a fixed point theorem for multivalued implicit-type contractive mapping, Nonlinear Analysis: Modelling and Control, 26(2) (2021) 334348.
[2] M. A. Alghamdi1, N. Shahzad, O. Valero, Fixed point theorems in generalized metric spaces with applications to computer science, Fixed Point Theory and Applications, (2013) 2013:118.
[3] B. Alqahtani, H. Aydi, E. Karapinar, V. Rakocevic, A Solution for Volterra Fractional Integral Equations by Hybrid Contractions, Mathematics, 7(8) (2019) 694.
[4] C. D. Aliprantis, K. C. Border, Infinite Dimensional Analysis, Springer-Verlag, Berlin (2006).
[5] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Review, 18 (1976) 602-709.
[6] F. Si. Bachir, A. Said, M. Benbachir, M. Benchora, HilferHadamard Fractional Differential Equations; Existence and Attractivity, Advances in the Theory of Nonlinear Analysis and its Applications, 5(1) (2021) 49-57.
[7] D. Baleanua, A. Jajarmi, H. Mohammadi, Sh. Rezapoure, A new study on the mathematical modelling of human liver with CaputoFabrizio fractional derivative, Chaos, Solitons and Fractals, 134 (2020) 109705.
[8] Zh. Chengbo, G. Chunmei, On α-convex operators, J. Math. Anal. Appl., 316 (2006) 556-565.
[9] A. M. A. El-Sayed, Sh. M. Al-Issa, Monotonic solutions for a quadratic integral equation of fractional order, AIMS Mathematics, 4(3) (2019) 821-830.
[10] Y. U. Gaba, Fixed point theorems in G-metric spaces, J. Math. Anal. Appl., 455(1) (2017) 528-537.
[11] D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, New York (1988).
[12] C. Guo, C. Zhai, R. Song, An existence and uniqueness result for the singular Lane-Emden-Fowler equation, Nonlinear Anal., 72 (2010) 1275-1279.
[13] S. Hong, Fixed points for mixed monotone multivalued operators in Banach spaces with applications, J. Math. Anal. Appl., 156 (2008) 333-342.
[14] Sh. Hong, L. Wang, Existence of solutions for integral inclusions, J. Math. Anal. Appl., 317 (2006) 429-441.
[15] E. Karapinar, A. Fulga, M. Rashid, L. Shahid, H. Aydi, Large Contractions on Quasi-Metric Spaces with an Application to Nonlinear Fractional Differential Equations, Mathematics, 7(5) (2019) 444.
[16] M. A. Krasnoselskii, Operators with monotone minorant, DAN USSR, 76(4) (1951) 481-484.
[17] M. A. Krasnoselskii, L. A. Ladyzhenskii, The structure of the spectrum of positive nonhomogeneous operators, Tr. Mosk. Mat. Obs., 3 (1954) 321-346.
[18] S. Li, X. Zhang, Existence and uniqueness of monotone positive solutions for an elastic beam equation with nonlinear boundary conditions, Comput. Math. Appl., 63 (2012) 1355-1360.
[19] K. Li, J. Liang, T. J. Xiato, A fixed point theorem for convex and decreasing operators, Nonlinear Anal., 63 (2005) 206-209.
[20] Z. D. Liang, W. X. Wang, S. J. Li, On concave operators, Acta. Math. Sinica, 22(2) (2006) 577-582.
[21] H. Mohammadi, S. Kumar, Sh. Rezapour, S. Etemad, A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control Author links open overlay, Chaos, Solitons and Fractals, 144 (2021) 110668.
[22] J. J. Nieto, R. Rodriguez-Lopez, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, 22 (2005) 223-239.
[23] A. J. B. Potter, Applications of Hilbert's projective metric to certain classes of non-homogenous operators, Quart. J. Math. Oxford Ser., 28(2) (1977) 93-99.
[24] H. K. Pathak, Ravi P. Agarwal, Yeol Je Chod, Coincidence and fixed points for multi-valued mappings and its application to nonconvex integral inclusions, J. Computat. Appl. Math., 283 (2015) 201-217.
[25] K. R. Prasad, D. Leela, M. Khuddush, Existence and Uniqueness of Positive Solutions for System of (p,q,r)-Laplacian Fractional Order Boundary Value Problems, Advances in the Theory of Nonlinear Analysis and its Applications, 5(1) (2021) 138-57.
[26] E. Picard, Trait d'Analyse, Gauthier-Villars, Paris (1908).
[27] Sh. Rezapour, H. Mohammadi, A. Jajarmi, A new mathematical model for Zika virus transmission, Adv. Diff. Equ., (2020) 2020:589.
[28] C. Zhai, Li. Wang, $\varphi-(h, e)-$ concave operators and applications, J. Math. Anal. Appl., 454 (2017) 571-584.
[29] C. Zhai, F. Wang, Properties of positive solutions for the operator $A x=\lambda x$ and applications to fractional diffeential equations with integral boundary conditions, Adv. Diff. Equ., (2015) 2015:366.
[30] C. Yang, J. Yan, Existence and uniqueness of positive solutions to three-point boundary value problems for second order impulsive differential equations, Electron. J. Qual. Theory Differ. Equ., 70 (2011) 1-10.
[31] C. Yang, J. Zhang, Uniqueness of positive solutions for a perturbed fractional differential equation, J. Funct. Spaces, Article ID 672543 (2012) 1-8.
[32] C. Zhai, R. Song, Existence and uniqueness of positive solutions for Neumann problems of second order impulsive differential equations, Electron. J. Qual. Theory Differ. Equ., 76 (2010) 1-9.
[33] C. Zhai, C. Yang, X. Zhang, Positive solutions for nonlinear operator equations and several classes of applications to functional equations, Math. Zeit., 266 (2010) 43-63.
[34] L. Zhang, Y. Noriaki, C. Zhai, Optimal control problem of positive solutions to second order impulsive differential equations, Z. Anal. Anwend., 31 (2012) 237-250.
[35] L. Zhang, C. Zhai, Existence and uniqueness of positive solutions to nonlinear second order impulsive differential equations with concave or convex nonlinearities, Discrete Dyn. Nat. Soc., Article ID 259730 (2013) 1-10.

Robab Hamlbarani Haghi

Assistant Professor of Mathematics
Department of Mathematics
Payame Noor University, P.O. Box 19395-3697
Tehran, Iran
E-mail: robab.haghi@gmail.com

Hadi Hadavi

Ph.D. Candidate of Mathematics
Department of Mathematics
Payame Noor University, P.O. Box 19395-3697
Tehran, Iran
E-mail: hadihadavi@yahoo.com

[^0]: Received: June 2021; Published: July 2021

 * Corresponding Author

