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Abstract. This paper presents sufficient conditions for the existence
of positive solutions for the nonlinear Hammerstein and quadratic in-
tegral inclusion. In this way, we use concave multifunctions and fixed
point theory for obtaining results. In fact, for solving the Hammerstein
integral inclusion problem, we use fixed point of some concave multi-
functions.
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1 Introduction

A large number of real life problems can be framed as linear or nonlinear
differential equations (see [3], [6], [7], [15], [21], [25], [27]) or differential
inclusions(see [1], [9], [14], [24]). Using fixed point theorem of mappings
and multifunctions is one of oldest and most well-known techniques to
prove the existence of solutions for differential equations and inclusions.
Picard ([26]) was the first to prove the existence of a positive solution

Received: June 2021; Published: July 2021
∗ Corresponding Author

1



2 R. H. HAGHI AND H. HADAVI

for differential and integral equations by using concave operators. Later,
u0-concavity, ordered concavity(convexity), and α−concavity(convexity)
were introduced by Krasnoselskii([16],[17]), Amann ([5]), and Potter
([23]), respectively. In [20] the equivalent conditions to the existence
of fixed point for u0-concave operator were obtained. In [8], [19], [33],
[28], and [29] fixed point theorems for some other types of concave op-
erators were proved.
Upper and lower solutions([22]), compactness and continuity assump-
tions play important roles in order to prove the existence of positive
solutions for nonlinear differential and integral equations and inclusions,
which is difficult to verify for concrete nonlinear operators. One of the
interesting and important techniques to remove or weaken these con-
ditions is using monotone concave operators. See [12], [18], [31], [30],
[32], and [34], [35] for some applications which include the existence of
positive solutions.
The paper is organized as follows: In Section 2, we introduce some of the
preliminaries needed for the next sections. In this section, we prove two
lemmas; the first is essential to prove the main results and the second
is an important equivalence between two types of concave multifunc-
tions. In Section 3, we establish the existence of results for u0-concave
and α(t)−concave multifunctions. Furthermore, we provide some ex-
amples that satisfy main results. In last section, we provide our main
result about the existence of positive solutions for the Hammerstein and
quadratic integral inclusions.

2 Preliminaries

Throughout this paper, we assume that E is a real Banach space which
is partially ordered by a cone P ⊆ E, i.e., x ≤ y(or y ≥ x) iff y−x ∈ P .
If x ≤ y and x 6= y, then we denote x < y(or y > x). Note that the
nonempty closed convex set P ⊂ E is a cone if it satisfies x ∈ P, λ ≥
0 ⇒ λx ∈ P and x ∈ P, − x ∈ P ⇒ x = θ. A cone P is said to be
normal if there exists a constant N > 0 such that θ ≤ x ≤ y implies
||x|| ≤ N ||y||, where x, y ∈ E and θ denotes the zero element of E. It is
easy to prove that the following assumptions are equivalent([11]):
(1) A cone P is normal,



CONCAVE MULTIFUNCTIONS AND THE HAMMERSTEIN... 3

(2) If xn ≤ zn ≤ yn (for all n ∈ N), ||xn − x|| → 0 and ||yn − x|| → 0 (as
n→∞), then ||zn − x|| → 0 (as n→∞).
For x1, x2 ∈ E, the set [x1, x2] = {x ∈ E : x1 ≤ x ≤ x2} is called the
order interval between x1 and x2. Given h > θ, let Ph be the set

Ph = {x | x ∈ E, ∃λ(x), µ(x) > 0, s.t. λ(x)h ≤ x ≤ µ(x)h}.

It is easy to see that Ph ⊂ P .

Definition 2.1. ([13]) For two subsets X and Y of E, we write X ≤ Y
if for any x ∈ X there exists some y ∈ Y such that x ≤ y.

Also for subsets X, Y and Z of E we write X ≤ Y ≤ Z if X ≤ Y and
Y ≤ Z. For {x} ≤ Y or Y ≤ {x} we write x ≤ Y or Y ≤ x, respectively.
Obviously if Y ≤ x, then for all y ∈ Y we have y ≤ x.

Definition 2.2. ([13]) Given a nonempty subset D of E, we say that
A : D → 2E is increasing (decreasing) on D if for x, y ∈ D such that
x ≤ y, we have Ax ≤ Ay(Ax ≥ Ay).

Definition 2.3. A multifunction A : P → 2P is said to be a u0-concave
multifunction (u0 > θ) if A satisfies the following two conditions:
(i) for any x > θ, Ax ⊆ Pu0 ;
(ii) for x ∈ P and t ∈ (0, 1) there exists a positive number η = η(t, x)
such that A(tx) ≥ t(1 + η)Ax.

Definition 2.4. A multifunction A : Ph → 2Ph (h > 0) is said to be
an α(t, x)-concave multifunction if there exists α : (0, 1)× Ph −→ (0, 1)
such that α(t, x) > t and A(tx) ≥ α(t, x)Ax for all x ∈ Ph and t ∈ (0, 1).

Definition 2.5. A multifunction A : Ph → 2Ph (h > 0) is said to be a
α(t)-concave multifunction if there exists α : (0, 1) −→ (0, 1) such that
α(t) > t and A(tx) ≥ α(t)Ax for all t ∈ (0, 1) and x ∈ Ph.

A subset X of a E is called order bounded ([4]) if there is a u ∈ E
such that x ≤ u for all x ∈ X. In this case, u is called the upper bound
of X.

Definition 2.6. ([4]) E is called Dedekind complete (or order complete)
if every nonempty subset, which is order bounded, has a supremum in
E.
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Definition 2.7. The subset X of E is order closed if supX belongs to
X.

If X ⊆ E, then we denote by B(X) the class of nonempty and order
bounded subsets of X, by OB(X) the class of nonempty, order bounded
and order closed subsets of X, and by OCB(X) the class of nonempty,
norm closed, order bounded and order closed subsets of X.

Lemma 2.8. Let E be Dedekind complete, P ⊂ E be a normal cone and
A : P → OB(P ) be an increasing u0-concave multifunction (for some
u0 > θ). Suppose that there exist w0 ∈ P (w0 6= θ), v0 ∈ Pu0, and
0 < λ0 < 1, s.t. λ0v0 ≤ w0 ≤ v0. Then there exist two sequences {vn}
and {wn} in P , and a real sequence λn such that for all n ∈ N we have

λnvn ≤ wn ≤ vn

in which 0 < λn = λ0(1+ηn)n < 1 where, for any n ∈ N, ηn is a positive
real number.

Proof. Since A is increasing, then

A(λ0v0) ≤ A(w0) ≤ A(v0). (1)

In addition
A(λ0v0) ≥ λ1A(v0) (2)

where 0 < λ1 = λ0(1 + η1) < 1. By (1), (2) we get

λ1A(v0) ≤ A(w0). (3)

Let v1 = supA(v0) and w1 = supA(w0). Since E is Dedekind complete
and A(v0), A(w0) ∈ OB(P ), then v1 ∈ A(v0) and w1 ∈ A(w0). By (3),
for some w′1 ∈ A(w0), λ1v1 ≤ w′1 which implies that w′1 ≤ w1. Therefore,
we have λ1v1 ≤ w1. By Aw0 ≤ Av0, there exists v′1 ∈ Av0 such that
w1 ≤ v′1. Since v1 = A(v0), then w1 ≤ v1. Finally, we have

λ1v1 ≤ w1 ≤ v1.

Hence
A(λ1v1) ≤ A(w1) ≤ A(v1). (4)
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For some real number η′2, we have

A(λ1v1) ≥ λ1(1 + η′2)A(v1),

where 0 < λ1(1 + η′2) < 1. Let η2 = min{η1, η′2}. So

A(λ1v1) ≥ λ1(1 + η2)A(v1),

which implies

A(λ1v1) ≥ λ0(1 + η1)(1 + η2)A(v1).

Since η2 ≤ η1, then

A(λ1v1) ≥ λ0(1 + η2)
2A(v1).

If λ2 = λ0(1 + η2)
2, then

A(λ1v1) ≥ λ2A(v1). (5)

Similarly, by putting v2 = supA(v1), w2 = supA(w1), and using (4) and
(5), we can get

λ2v2 ≤ w2 ≤ v2.

By repeating this process, we obtain sequences {vn} and {wn} such that
vn = supA(vn−1), wn = supA(wn−1) and a real sequence 0 < λn =
λ0(1 + ηn) < 1, in which ηn = min{ηn−1, η′n−1} that is satisfying

λnvn ≤ wn ≤ vn.

A real sequence ηn is called an adjoint sequence of A in w0, v0, and λ0.
�

The next example shows that Dedekind complete assumption in
Lemma (2.8) is the sufficient condition. However, it is not necessary.

Example 2.9. Consider Banach space (E, ||.||∞) where E = C[0, 1] is
the vector space of a continuous function on [0, 1] and ||.||∞ is the usual
supremum norm ([4]). Assume that P ⊆ E is the cone of non-negative
continuous functions on [0, 1]. Let us define multifunction A : P →
OB(P ) with Ax = [ 3

√
x, 3
√
x+ 1]. Obviously A is increasing. For u0 = 1,
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it is easy to notice that Pu0 = {x ∈ E | x > 0}. Thus for any x ∈ Pu0 ,
we have Ax ⊆ Pu0 . Also, for any t ∈ (0, 1), we have

A(tx) = [
3
√
tx,

3
√
tx+ 1] = [

3
√
t 3
√
x,

3
√
t 3
√
x+ 1]

≥
√
t(1 + η)[ 3

√
x, 3
√
x+ 1] =

√
t(1 + η)A(x)

where 0 < η < 1
6√t −1. Therefore, A is a u0-concave multifunction. Now

let v0 = 3 and w0 = 2. Since supx∈[0,1][
3
√
x, 3
√
x + 1] = 3

√
x + 1, then

we can make sequences {vn}, and {wn} similar to Lemma 2.8. However
(C[0, 1], ||.||1) is not Dedekind complete ([4]).

Lemma 2.10. Let u0 > θ and
(a), A : P → 2P is a u0-concave multifunction. Then A|Pu0(A confined
to Pu0) is an α(t, x)-concave multifunction.
(b), A : Pu0 → 2Pu0 is an α(t, x)-concave multifunction. Then A is a
u0-concave multifunction.

Proof. (a): By using (i) of Definition 2.3 for all x ∈ Pu0 , we have
Ax ⊂ Pu0 . Set α(t, x) = t(1 + η(t, x)). Thus for all x ∈ Pu0 and
t ∈ (0, 1) we have α(t, x) > t. Hence A|Pu0 : Pu0 → 2Pu0 is an α(t, x)-
concave multifunction.
(b): Since A : Pu0 → 2Pu0 , then A satisfies condition (i) of Definition

2.3. Set η(t, x) = α(t,x)
t − 1 (for all x ∈ Pu0 and t ∈ (0, 1)). Since for all

x ∈ Pu0 we have A(tx) ≥ α(t, x)A(x), then

t(1 + η)A(x) = t(1 +
α(t, x)

t
− 1)A(x) = α(t, x)A(x) ≤ A(tx).

Therefore, A satisfies condition (ii) of Definition 2.3. �
We note that every α(t)-concave multifunction is a u0-concave mul-

tifunction.

3 Main Results

Now the main results could be stated and proved.
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Theorem 3.1. Let P ⊆ E be a normal cone, and A : P → OCB(P ) be
an increasing u0-concave multifunction (for some u0 > θ). Also, assume
that
(i) {vn} and {wn} are the defined sequences in Lemma 2.8 such that
v0 ≥ v1 and w0 ≤ w1;
(ii) for the sequence ηn in Lemma 2.8, we have

lim
n→∞

nηn = ln(
1

λ0
),

Then A has at least one fixed point.

Proof. Since A is increasing and w0 ≤ w1, then we have Aw0 ≤ Aw1.
Also, since w2 = supA(w1) and w1 ∈ Aw0, we get w1 ≤ w2. Therefore
Aw1 ≤ Aw2. By repeating this process, we get

w0 ≤ w1 ≤ w2 ≤ · · · ≤ wn ≤ · · · . (6)

Similarly, we get
v0 ≥ v1 ≥ · · · ≥ vn ≥ · · · . (7)

By Lemma 2.8, for each n ∈ N, we have wn ≥ λ0(1 + ηn)nvn. Then

θ ≤ vn − wn ≤ vn − λ0(1 + ηn)nvn ≤ (1− λ0(1 + ηn)n)vn.

In addition

θ ≤ wn+p − wn ≤ vn+p − wn ≤ vn − wn ≤ (1− λ0(1 + ηn)n)v0,

θ ≤ vn − vn+p ≤ vn − wn+p ≤ vn − wn ≤ (1− λ0(1 + ηn)n)v0.

Normality of P implies that

||wn+p − wn|| ≤ N |1− λ0(1 + ηn)n|||v0||,

||vn+p − vn|| ≤ N |1− λ0(1 + ηn)n|||v0||.

Because of the normality of P and that (1− λ0(1 + ηn)
( 1
ηn

)nηn
)→ 0 (as

n → ∞), {wn} and {vn} are Cauchy sequences. Since E is a Banach
space and P is closed, then there exist v∗, w∗ ∈ P such that wn → w∗

and vn → v∗(as n→∞). So we have

θ ≤ v∗ − w∗ ≤ vn − w∗ ≤ vn − wn ≤ (1− λ0(1 + ηn)n)v0.
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Thus ||v∗ − w∗|| ≤ N ||vn − wn||. Now if n→∞, we have v∗ = w∗. Let
x∗ = v∗ = w∗. By (6) and (7), we get that wn ≤ x∗ ≤ vn and since A
is increasing, we have Awn ≤ Ax∗ ≤ Avn. Also, since for each n ∈ N,
wn+1 ∈ Awn, then there exists xn+1 ∈ Ax∗ such that wn+1 ≤ xn+1.
Since vn+1 = supAvn, then wn+1 ≤ xn+1 ≤ vn+1. Hence

θ ≤ vn+1 − xn+1 ≤ vn+1 − wn+1

By the normality of P we get

||vn+1 − xn+1|| ≤ N ||vn+1 − wn+1||.

Then xn+1 → x∗(as n→∞). Since Ax∗ is closed, then x∗ ∈ Ax∗. �

Remark 3.2. As a result of Lemma 2.10, Theorem 3.1 holds true if we
assume that A : Pu0 → OCB(Pu0) (for some u0 > θ) is α(t, x)-concave
multifunction.

In Example 3.3, using Lemma 2.8, we construct sequences {wn},
{vn}, and ηn that satisfy conditions (i) and (ii) of theorem 3.1.

Example 3.3. Let E = R and P = [0,∞). For any u0 > 0, we have
Pu0 = (0,∞). Define A : [0,∞) → (0,∞) as A(x) =

√
2 + x. It is

easy to see that for any u0 > 0, A is a u0−concave function and it is

increasing. Let w0 = A(0) =
√

2, w1 = A(w0) =
√

2 +
√

2,

w2 = A(w1) =

√
2 +

√
2 +
√

2

and wn = A(wn−1) =

√
2 +

√
2 + · · ·+

√
2 +
√

2 for all n. Also, put

v0 = 3, v1 = A(v0) =
√

5, v2 = A(v1) =
√

2 +
√

5 and

vn = A(vn−1) =

√
2 +

√
2 + · · ·+

√
2 +
√

5

for all n. We have w0 < v0, v0 ≥ v1 and w0 ≤ w1. Also for λ0 = 1
3 we

have λ0v0 < w0. For any n ∈ N define λn = wn
vn

. It can easily be noticed
that for any n ∈ N, we have 0 < λn < 1 and λnvn ≤ wn. Since wn → 2
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and vn → 2 (as n→∞), we get λn → 1 (as n→∞). Now let us define

sequence ηn = (λnλ0 )
1
n − 1 (for any n ∈ N). Since for any n ∈ N we have

0 < λn < 1 and λn → 1 (n → ∞), then ηn → 0 (as n → ∞) and (for
any n ∈ N) we have ηn > 0. In addition

nηn =
ln(λnλ0 )

ln(1 + ηn)
1
ηn

,

for each n ∈ N. Therefore

lim
n→∞

nηn =
ln( 1

λ0
)

ln(e)
= ln(

1

λ0
).

Then {ηn} is an adjoint sequence of A in w0, v0 and λ0. Also, we have
proved that A satisfies in the all assumptions of Theorem 3.1.

Next we assume that A is α(t)-concave multifunction and then we
obtain a new result.

Lemma 3.4. Let A : P → B(P ) be an α(t)-concave increasing multi-
function and A(h)∩Ph 6= ∅ (for some h > θ). Then there are u0, v0 ∈ Ph
and r ∈ (0, 1) such that rv0 ≤ u0 ≤ v0 , u0 ≤ Au0 ≤ Av0 ≤ v0.

Proof. For some h > θ we have Ah ∩ Ph 6= ∅. Let a ∈ Ah ∩ Ph. Then
there exist positive real µ(a) and λ(a) such that λ(a)h ≤ a ≤ µ(a)h.
Let us choose t0 ∈ (0, 1) such that

t0h ≤ a ≤
1

t0
h. (8)

Since α(t0) ∈ (t0, 1], we can take positive integer k such that

(
α(t0)

t0
)k ≥ 1

t0
. (9)

Put u0 = tk0h and v0 = 1
tk0
h. Clearly u0, v0 ∈ Ph. In addition

u0 = tk0h = tk0t
k
0

1

tk0
h = t2k0 v0 < v0.
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If we take r ∈ (0, t2k0 ] ⊆ (0, 1), we have rv0 ≤ t2k0 v0 = u0. Thus rv0 ≤ u0.
By the monotonicity of A, Au0 ≤ Av0. Further, considering conditions
A is an α(t)-concave multifunction with (8) and (9) we have

Au0 = A(tk0h) = A(t0t
k−1
0 h) ≥ α(t0)A(tk−10 h)

≥ · · · ≥ (α(t0))
kAh ≥ (α(t0))

kt0h ≥ tk0h = u0.

Thus u0 ≤ Au0. Now we set x := x
t . Since A is an α(t)-concave

multifunction, then

A(x) = A(t
x

t
) ≥ α(t)A(

x

t
),

so

A(
x

t
) ≤ 1

α(t)
A(x). (10)

By (10)

Av0 = A(
1

tk0
h) = A(

1

t0

1

tk−10

h)

≤ 1

α(t0)
A(

1

tk−10

h) =
1

α(t0)
A(

1

t0

1

tk−20

h)

≤ 1

α(t0)

1

α(t0)
A(

1

tk−20

h)

≤ · · · ≤ (
1

α(t0)
)kAh ≤ h

t0(α(t0))k
.

Application of (9) implies that

Av0 ≤
h

t0(α(t0)k)
≤ h

tk0
= v0.

Thus we have u0 ≤ Au0 ≤ Av0 ≤ v0. �

Theorem 3.5. Let E be Dedekind complete, P ⊆ E be a normal cone,
and A : P → OCB(P ) be an increasing α(t)-concave multifunction. In
addition, x0 ∈ P satisfies (A(h) + x0) ∩ Ph 6= ∅ (for some h > θ). Then
A(x) + x0 has at least one fixed point in Ph.



CONCAVE MULTIFUNCTIONS AND THE HAMMERSTEIN... 11

Proof. Let us define multifunction C on P by Cx = Ax + x0. Thus
C : P → B(P ) for each x ∈ P . Also for each x ∈ P and t ∈ (0, 1), we
have

C(tx) = A(tx) + x0 ≥ α(t)A(x) + x0 ≥ α(t)A(x) + α(t)x0 = α(t)C(x).

Hence, C is an increasing and α(t)-concave multifunction. In addition,
for some h > θ we have

C(h) ∩ Ph = (A(h) + x0) ∩ Ph 6= ∅.

Lemma 3.4 implies that there are u0, v0 ∈ Ph and r ∈ (0, 1) such that

rv0 ≤ u0 ≤ v0, u0 ≤ Cu0 ≤ Cv0 ≤ v0.

By u0 ≤ Cu0, there exists u′1 ∈ Cu0 such that u0 ≤ u′1. Assume that
u1 = supCu0. Then u0 ≤ u1. Let v1 = supCv0. Since Cv0 ≤ v0, we
have v1 ≤ v0. Also Cu0 ≤ Cv0 and u1 ∈ Cu0. Since v1 = supCv0,
then u1 ≤ v1. Hence u0 ≤ u1 ≤ v1 ≤ v0. Since C is an increasing
multifunctin, then Cu0 ≤ Cu1, Cu1 ≤ Cv1 and Cv1 ≤ Cv0. Similarly if
we take u2 = supCu1 and v2 = supCv1 we get

u0 ≤ u1 ≤ u2 ≤ v2 ≤ v1 ≤ v0

By repeating this process we obtain sequences {un} and {vn} satisfying

u0 ≤ u1 ≤ u2 ≤ · · · ≤ un ≤ vn ≤ · · · ≤ v2 ≤ v1 ≤ v0. (11)

By rv0 ≤ u0, we have

un ≥ u0 ≥ rv0 ≥ rvn

For each n ∈ N, set tn = sup{t > 0 | un ≥ tvn}. Thus for each n ∈ N,
we have un ≥ tnvn. In addition, for each n ∈ N

un+1 ≥ un ≥ tnvn ≥ tnvn+1. (12)

However, we know that tn+1vn+1 ≤ un+1. Thus by (12) and the defi-
nition of tn+1 we get tn ≤ tn+1(for each n ∈ N). Therefore {tn} is an
increasing sequence such that {tn} ⊂ (0, 1]. Suppose that tn → t∗ (as
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n→∞). We are going to show that t∗ = 1. Otherwise 0 < t∗ < 1. We
distinguish two cases:
Case one: There exists an integer N such that tN = t∗. In this case, it
should be tn = t∗ for all n ≥ N . So for any n ≥ N we have

α(t∗)Cvn ≤ C(t∗vn) ≤ Cun.

Since vn+1 ∈ Cvn, vn+1 = supCvn and un+1 = supCun, it follows that
α(t∗)vn+1 ≤ un+1. By the definition of tn+1, we have α(t∗) ≤ tn+1. Then
for n ≥ N we have tn+1 = t∗ ≥ α(t∗) > t∗ which is a contradiction.
Case two: For all integer n, tn < t∗. So we obtain

Cun ≥ C(tnvn) = C(
tn
t∗
t∗vn) ≥ α(

tn
t∗

)C(t∗vn)

≥ α(
tn
t∗

)α(t∗)C(vn) ≥ tn
t∗
α(t∗)C(vn).

Thus tn
t∗α(t∗)C(vn) ≤ Cun. Since un+1 = supCun and vn+1 = supCvn,

we have tn
t∗α(t∗)vn+1 ≤ un+1. By definition of tn+1 we get tn

t∗α(t∗)vn+1 ≤
tn+1. By letting n→∞, t∗ ≥ α(t∗) > t∗, which is a contradiction. Thus,
limn→∞ tn = 1. For any natural number m, we have

θ ≤ un+m − un ≤ vn − um ≤ vn − tnvn = (1− tn)vn ≤ (1− tn)v0,

θ ≤ vn − vn+m ≤ vn − un ≤ vn − tnvn = (1− tn)vn ≤ (1− tn)v0.

Since P is normal, then

||un+m − un|| ≤ N(1− tn)||v0||,

||vn − vn+m|| ≤ N(1− tn)||v0||.

So {un} and {vn} are Cauchy sequences. Because E is complete, there
exist u∗ and v∗ such that un → u∗ and vn → v∗ (as n → ∞). By (11),
it follows that un ≤ u∗ ≤ v∗ ≤ vn, u∗, v∗ ∈ Ph. Also

θ ≤ v∗ − u∗ ≤ vn − un ≤ (1− tn)v0.

Furthermore
||v∗ − u∗|| ≤ N(1− tn)||v0||.



CONCAVE MULTIFUNCTIONS AND THE HAMMERSTEIN... 13

By letting n→∞, we get u∗ = v∗. Let x∗ = u∗ = v∗. Then we have

Cun ≤ Cx∗ ≤ Cvn

Since for any n ∈ N, un+1 = supCun and vn+1 = supCvn, for each n,
there exists xn+1 ∈ Cx∗ such that un+1 ≤ xn+1 ≤ vn+1. Thus

θ ≤ xn+1 − un+1 ≤ vn+1 − un+1 ≤ (1− tn+1)v0,

so

||xn+1 − un+1|| ≤ N(1− tn+1)||v0||.

Since un → x∗, xn+1 → x∗(as n → ∞). Since Cx∗ is closed, x∗ ∈ Cx∗.
�

Example 3.6 shows that there exists an α(t)-concave multifunction
such that all the conditions of Theorem 3.5 are satisfied.

Example 3.6. Let E = C[0, 1] and P = {x ∈ E | x(t) ≥ 0 for all t ∈
[0, 1]}. Define A : P → OCB([0, 1]) as A(x) = [

√
x,
√
x+1]. It is easy to

seen that A is increasing and α(t)-concave multifunction for α(t) =
√
t.

Example 3.7 shows that there exists a u0-concave operator which is
not α(t)-concave.

Example 3.7. Let E = R and P = [0,∞). For any u0 > 0, we have
Pu0 = (0,∞). Let us define f : [0,∞)→ [0,∞) as the following

f(x) =

{
sin(x) 0 ≤ x < π

2 ,
1 x ≥ π

2

Let t ∈ (0, 1) be fixed. It is easily noticed that for any x ∈ (0, π2 ) we

have sin(tx)
t sin(x) > 1. Then f : [0,∞) → [0,∞) is a u0-concave operator(for

any u0 > 0). But f is not an α(t)-concave operator. If f is an α(t)-
concave operator, then for any t ∈ (0, 1) and x ∈ [0, π2 ), we should

have sin(tx)
sin(x) ≥ α(t) > t for some α : (0, 1) → (0, 1). Let t ∈ (0, 1) be

fixed. Since limx→0+
sin(tx)
sin(x) = t, then there exists x0 ∈ (0, 1) such that

α(t) > sin(tx0)
sin(x0)

> t which is a contradiction.
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Remark 3.8. Comparing Theorem 3.1 with Theorem 3.5, we see that
the conditions of Theorem 3.5 are greatly weaker than the conditions of
Theorem 3.1. In Theorem 3.5, conditions ”there exist w0, v0 ∈ P and
0 < λ0 < 1 such that λ0v0 ≤ w0 ≤ v0” , ”v0 ≥ v1” , ”w0 ≤ w1” and
”there exist adjoint sequence of A in w0, v0 and λ0 ∈ (0, 1) such that
limn→∞ nηn = ln( 1

λ0
)” are removed.

4 Application

To illustrate the ideas involved in Theorem 3.5, we need to discuss the
Hammerstein and quadratic integral inclusions. Consider Banach space
E = L1[0, T ] with the usual ||.||1 norm([4]). Let 0 < T <∞. Hammer-
stein integral inclusion is defined as

u(r) ∈
∫ T

0
k(r, s)g(s, u(s))ds on [0, T ], (13)

such that k is a real single-valued function, while g : [0, T ]×E → 2E is a
multifunction with nonempty values. Also for any r ∈ [0, T ], quadratic
integral inclusion is defined as

u(r) ∈ y(r, u(r))

∫ r

0
k(r, s)g(s, u(s))ds r ∈ [0, T ], (14)

such that k is a real single-valued function, while g : [0, T ] × E → 2E

and y : [0, T ]×E → 2E are the multifunctions with nonempty values. If
y(r, u(r)) = 1, the quadratic integral inclusion is called Volterra integral
inclusion.

Theorem 4.1. Consider Banach space E = L1[0, T ] with the usual
norm ||.||1 where 0 < T < ∞. Also consider normal cone P = {x ∈
E | x(s) ≥ 0 for all s ∈ [0, T ]} in E. Suppose that
(i) k : [0, T ] × [0, T ] → (0,∞) is a bounded function respect to each of
its variables(which means there exists M > 0 such that k(r, s) ≤M , for
any r, s ∈ [0, T ]);
(ii) g : [0, T ] × E −→ OCB(E) be an multifunction such that g :
[0, T ]× P −→ OCB(E) is an α(t)-concave increasing multifunction;
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(iii) for each u ∈ P , g(s, u(s)) is sequentially compact respect to point-
wise convergence(which means for any sequence {wn} ⊆ g(s, u(s)), there
exists a subsequence {nk} of {n} such that wnk is a pointwise conver-
gence to w (as k →∞) for some w ∈ g(s, u(s)));

(iv) there exists h > θ such that g(s, h(s))∩Ph 6= ∅ and
∫ T
0 k(r, s)h(s)ds ∈

Ph.
Then Hammerstein integral inclusions (13) have at least one positive
solution in Ph.

Proof. For each w ∈ P , let us define f(w) =
∫ T
0 k(r, s)w(s)ds. By (i)

and Fubini theorem we have∫ T

0
|
∫ T

0
k(r, s)w(s)ds|dr =

∫ T

0

∫ T

0
k(r, s)w(s)drds

=

∫ T

0
w(s)(

∫ T

0
k(r, s)dr)ds <∞

Then f : P → P is an operator. Also for each u ∈ P , let us define
G(u) = {w ∈ P : w ∈ g(s, u(s))}. Moreover for each u ∈ P define
A(u) = {f(w) : w ∈ G(u)}. By (ii), for any u ∈ P we have A(u) 6= ∅
and since f : P → P , we have A : P → 2P . Assume that {f(wn)} is a
sequence in A(u) such that

f(wn)
L1

−→ v (as n→∞)

for some v ∈ P . Then {wn} ⊆ G(u) and by (iii) there exists a subse-
quence {nk} of {n} such that wnk is a pointwise convergence to w (as
k → ∞) for some w ∈ G(u). Since G(u) is bounded, by Lebesgue’s
dominated convergence theorem we have

f(wn)
L1

−→ f(w) (as n→∞)

Thus v = f(w). Therefore for any u ∈ P , A(u) is a closed subset of
P (respect to the L1 norm). For any u ∈ P , G(u) is order bounded
and E is Dedekind complete space. So there exists z ∈ G(u) such that
z = supG(u). Thus for any w ∈ G(u), we have f(w) ≤ f(z) and
it follows that A(u) is bounded. Since E is Dedekind complete, there
exists y ∈ E such that y = supA(u). Since f(z) is an upper bound of
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A(u), y ≤ f(z). But since z ∈ G(u), we should have f(z) ≤ y. Therefore
y = f(z) and we have A : P → OCB(P ). Now we prove that A is an
α(t)-concave multifunction. Let u ∈ P , w ∈ G(u) and t ∈ (0, 1). By (ii)
there exists c ∈ G(tu) such that c ≥ α(t)w. So we have

α(t)f(w) = α(t)

∫ T

0
k(r, s)w(s)ds

=

∫ T

0
k(r, s)α(t)w(s)ds ≤

∫ T

0
k(r, s)c(s)ds = f(c).

Since f(c) ∈ A(tu) and f(w) ∈ A(u), then A is an α(t)-concave multi-
function. At the end of the proof we show that there exists h > θ such
that A(h)∩Ph 6= ∅. By (iv), there exists h > θ such that G(h)∩Ph 6= ∅.
If w ∈ G(h) ∩ Ph, there exists λ, µ > 0 such that

λh ≤ f(w) =

∫ T

0
k(r, s)w(s)ds ≤ µh.

Now if we put x0 = θ, by theorem 3.5, Hammerstein integral inclusions
(13) have at least one positive solution in Ph. �

Example 4.2. Let E = L1[0, T ] with the usual norm ||.||1 where 0 <
T < ∞, and P = {x ∈ E | x(s) ≥ 0 for all s ∈ [0, T ]}. Also, assume
that g is defined by g(u(s), s) = [ 3

√
u(s), 3

√
u(s)+1] for any u ∈ E, h = 1

is a constant function on [0, T ] and k(r, s) = ers

1+rs . Then by Theorem
4.1 there exists u ∈ Ph such that

u(r) ∈
∫ T

0
k(r, s)g(s, u(s))ds.

Theorem 4.3. Consider Banach space E = L1[0, T ] with the usual
norm ||.||1 where 0 < T <∞. Also consider the normal cone P = {x ∈
E | x(s) ≥ 0 for all s ∈ [0, T ]} in E. Suppose that
(i) k : [0, T ]× [0, T ]→ (0,∞) is a bounded function respect to each of its
variables (which means there exists M > 0 such that k(r, s) ≤ M , for
any r, s ∈ [0, T ]);
(ii) g : [0, T ] × E −→ OCB(E) is an multifunction such that g :
[0, T ]× P −→ OCB(E) is an α(t)-concave increasing multifunction;



CONCAVE MULTIFUNCTIONS AND THE HAMMERSTEIN... 17

(iii) for each u ∈ P , g(s, u(s)) is sequentially compact respect to point-
wise convergence(which means for any sequence {wn} ⊆ g(s, u(s)), there
exists a subsequence {nk} of {n} such that wnk is a pointwise conver-
gence to w (as k →∞) for some w ∈ g(s, u(s)));
(iv) y : [0, T ] × P −→ P is a multifunction such that y is bounded
above (which means there exist L > 0 such that for any r ∈ [0, T ],
y(r, u(r)) < L ). Also y is sequentially continuous respect to u(which
means for any sequence {un} ⊆ P such that un is a pointwise con-
vergence to u, y(r, un(r)) is a pointwise convergence to y(r, u(r)) as
n→∞);

(v) there exists h > θ such that g(s, h(s))∩Ph 6= ∅,
∫ T
0 k(r, s)h(s)ds ∈ Ph

and y(r, h(r)) ∈ Ph.
Then quadratic integral inclusions (14) have at least one positive solution
in Ph.

Proof. For each w ∈ P , let us define f(w)(r) = y(r, u(r))
∫ r
0 k(r, s)w(s)ds.

By (i) we have∫ T

0
|
∫ r

0
f(w(s))(r)ds|dr =

∫ T

0
|y(r, u(r))

∫ r

0
k(r, s)w(s)ds|dr

=

∫ T

0
|y(r, u(r))||

∫ r

0
k(r, s)w(s)ds|dr

≤
∫ T

0
|y(r, u(r))|

∫ r

0
|k(r, s)w(s)|dsdr

≤
∫ T

0
L

∫ r

0
(M |w(s)|)dsdr <∞.

Then f : P → P is an operator. Also for each u ∈ P , let us define
G(u) = {w ∈ P : w ∈ g(s, u(s))}. Moreover for each u ∈ P , define
A(u) = {f(w) : w ∈ G(u)}. By (ii), for any u ∈ P , we have A(u) 6= ∅
and since f : P → P , we have A : P → 2P . Assume that {f(wn)} is a
sequence in A(u), such that

f(wn)
L1

−→ v (as n→∞)

for some v ∈ P . Then {wn} ⊆ G(u) and by (iii) there exists a sub-
sequence {nk} of {n} such that wnk is pointwise convergence to w (as
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k → ∞) for some w ∈ G(u). Since G(u) is bounded, by Lebesgue’s
dominated convergence theorem, for any r ∈ [0, T ], we have∫ r

0
k(r, s)wnkds→

∫ r

0
k(r, s)w(s)ds (as k →∞).

Also by (iv), y(r, wnk) is a pointwise convergence to y(r, w)(as k →∞)
and we can deduce that

f(wn)
L1

−→ f(w) (as n→∞).

Thus v = f(w). Therefore for any u ∈ P , A(u) is closed subset of P
(respect to the L1 norm). For any u ∈ P , G(u) is order bounded and
E is Dedekind complete space. So, there exists z ∈ G(u) such that
z = supG(u). Thus for any w ∈ G(u), we have

f(w)(r) = y(r, u(r))

∫ r

0
k(r, s)w(s)ds < LM

∫ r

0
w(s)ds <∞.

Hence A(u) is bounded. Since E is Dedekind complete, there exists
y ∈ E such that y = supA(u). Since f(z) is upper bound of A(u),
y ≤ f(z). But since z ∈ G(u), we should have f(z) ≤ y. Therefore
y = f(z) and we have A : P → OCB(P ). Now we show that A is an
α(t)-concave multifunction. Let u ∈ P , w ∈ G(u) and t ∈ (0, 1). By (ii)
there exists c ∈ G(tu) such that c ≥ α(t)w. So we have

α(t)f(w) = α(t)y(r, u(r))

∫ r

0
k(r, s)w(s)ds

= y(r, u(r))

∫ r

0
α(t)w(s)ds ≤

∫ T

0
k(r, s)c(s)ds = f(c).

Since f(c) ∈ A(tu) and f(w) ∈ A(u), then A is an α(t)-concave multi-
function. At the end of the proof we show that there exists h > θ such
that A(h)∩Ph 6= ∅. By (v), there exists h > θ such that G(h)∩Ph 6= ∅.
If w ∈ G(h) ∩ Ph, there exists λ, µ > 0 such that

λh ≤ f(w) = y(r, u(r))

∫ r

0
k(r, s)w(s)ds ≤ µh.

Now if we put x0 = θ, by theorem 3.5, quadratic integral inclusions (14)
have at least one positive solution in Ph. �
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Example 4.4. Let E = L1[0, T ] with the usual norm ||.||1 where 0 <
T <∞, and P = {x ∈ E | x(s) ≥ 0 for all s ∈ [0, T ]}. Also, assume that

for any u ∈ E, g(u(s), s) = [ u(s)
1+u(s) ,

u(s)
1+u(s) + 1], y(r, u(r)) = e−u(r) + 1,

h = 1 is a constant function on [0, T ] and k(r, s) = ln(1 + rs). Then by
Theorem 4.3 there exists u ∈ Ph such that

u(r) ∈ y(r, u(r))

∫ r

0
k(r, s)g(s, u(s))ds.

5 Conclusion

In this paper, we generalized concave operators to multifunction ver-
sion. Also, we extended the fixed point theorems of concave operators
([33],[20]) to multifunction version on Dedekind complete spaces. In
addition, we provided an example for adjoint sequence of u0-concave
operators (example 3.3) and an example which shows that there exists
a u0-concave operator such that it is not an α(t)-concave(example 3.7).
Before this article, these two types of mappings had not been compared.
Main part of this work relates to investigation of the existence of so-
lutions for the Hammerstein and quadratic integral inclusions by using
some new ideas.

Remark 5.1. It is suggested that our results be extended to fractional
differential equations and inclusions([7], [15], [27]). Another useful ex-
tension of our main theorems can be proving in metric like spaces similar
to the generalized metric space([2]) or G−metric spaces([10]). Further-
more, it seems interesting to prove Theorems 3.1 and 3.5, without as-
suming Dedekind complete. Example 2.9 shows that in both theorems,
Dedekind complete assumption is sufficient but not necessary.

Acknowledgements
The authors were supported by Payame Noor University. The author
express their gratitude to dear unknown referees for their helpful sug-
gestions which improved the final version of this paper.



20 R. H. HAGHI AND H. HADAVI

References

[1] M. U. Ali, A. Pitea, Existence theorem for integral inclusions by a
fixed point theorem for multivalued implicit-type contractive map-
ping, Nonlinear Analysis: Modelling and Control, 26(2) (2021) 334–
348.

[2] M. A. Alghamdi1, N. Shahzad, O. Valero, Fixed point theorems
in generalized metric spaces with applications to computer science,
Fixed Point Theory and Applications, (2013) 2013:118.

[3] B. Alqahtani, H. Aydi, E. Karapinar, V. Rakocevic, A Solution
for Volterra Fractional Integral Equations by Hybrid Contractions,
Mathematics, 7(8) (2019) 694.

[4] C. D. Aliprantis, K. C. Border, Infinite Dimensional Analysis,
Springer-Verlag, Berlin (2006).

[5] H. Amann, Fixed point equations and nonlinear eigenvalue prob-
lems in ordered Banach spaces, SIAM Review, 18 (1976) 602–709.

[6] F. Si. Bachir, A. Said, M. Benbachir, M. Benchora, Hilfer-
Hadamard Fractional Differential Equations; Existence and Attrac-
tivity, Advances in the Theory of Nonlinear Analysis and its Appli-
cations, 5(1) (2021) 49–57.

[7] D. Baleanua, A. Jajarmi, H. Mohammadi, Sh. Rezapoure, A new
study on the mathematical modelling of human liver with Caputo-
Fabrizio fractional derivative, Chaos, Solitons and Fractals, 134
(2020) 109705.

[8] Zh. Chengbo, G. Chunmei, On α-convex operators, J. Math. Anal.
Appl., 316 (2006) 556–565.

[9] A. M. A. El-Sayed, Sh. M. Al-Issa, Monotonic solutions for a
quadratic integral equation of fractional order, AIMS Mathemat-
ics, 4(3) (2019) 821–830.

[10] Y. U. Gaba, Fixed point theorems in G-metric spaces, J. Math.
Anal. Appl., 455(1) (2017) 528–537.



CONCAVE MULTIFUNCTIONS AND THE HAMMERSTEIN... 21

[11] D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract
Cones, Academic Press, New York (1988).

[12] C. Guo, C. Zhai, R. Song, An existence and uniqueness result for the
singular Lane–Emden–Fowler equation, Nonlinear Anal., 72 (2010)
1275–1279.

[13] S. Hong, Fixed points for mixed monotone multivalued operators in
Banach spaces with applications, J. Math. Anal. Appl., 156 (2008)
333–342.

[14] Sh. Hong, L. Wang, Existence of solutions for integral inclusions,
J. Math. Anal. Appl., 317 (2006) 429–441.

[15] E. Karapinar, A. Fulga, M. Rashid, L. Shahid, H. Aydi, Large Con-
tractions on Quasi-Metric Spaces with an Application to Nonlinear
Fractional Differential Equations, Mathematics, 7(5) (2019) 444.

[16] M. A. Krasnoselskii, Operators with monotone minorant, DAN
USSR, 76(4) (1951) 481–484.

[17] M. A. Krasnoselskii, L. A. Ladyzhenskii, The structure of the spec-
trum of positive nonhomogeneous operators, Tr. Mosk. Mat. Obs.,
3 (1954) 321–346.

[18] S. Li, X. Zhang, Existence and uniqueness of monotone positive so-
lutions for an elastic beam equation with nonlinear boundary con-
ditions, Comput. Math. Appl., 63 (2012) 1355–1360.

[19] K. Li, J. Liang, T. J. Xiato, A fixed point theorem for convex and
decreasing operators, Nonlinear Anal., 63 (2005) 206–209.

[20] Z. D. Liang, W. X. Wang, S. J. Li, On concave operators, Acta.
Math. Sinica, 22(2) (2006) 577–582.

[21] H. Mohammadi, S. Kumar, Sh. Rezapour, S. Etemad, A theoretical
study of the Caputo-Fabrizio fractional modeling for hearing loss
due to Mumps virus with optimal control Author links open overlay,
Chaos, Solitons and Fractals, 144 (2021) 110668.



22 R. H. HAGHI AND H. HADAVI

[22] J. J. Nieto, R. Rodriguez-Lopez, Contractive mapping theorems
in partially ordered sets and applications to ordinary differential
equations, Order, 22 (2005) 223–239.

[23] A. J. B. Potter, Applications of Hilbert’s projective metric to cer-
tain classes of non-homogenous operators, Quart. J. Math. Oxford
Ser., 28(2) (1977) 93–99.

[24] H. K. Pathak, Ravi P. Agarwal, Yeol Je Chod, Coincidence and
fixed points for multi-valued mappings and its application to non-
convex integral inclusions, J. Computat. Appl. Math., 283 (2015)
201–217.

[25] K. R. Prasad, D. Leela, M. Khuddush, Existence and Uniqueness
of Positive Solutions for System of (p,q,r)-Laplacian Fractional Or-
der Boundary Value Problems,Advances in the Theory of Nonlinear
Analysis and its Applications, 5(1) (2021) 138–57.

[26] E. Picard, Trait d’Analyse, Gauthier-Villars, Paris (1908).

[27] Sh. Rezapour, H. Mohammadi, A. Jajarmi, A new mathematical
model for Zika virus transmission, Adv. Diff. Equ., (2020) 2020:589.

[28] C. Zhai, Li. Wang, ϕ− (h, e)− concave operators and applications,
J. Math. Anal. Appl., 454 (2017) 571–584.

[29] C. Zhai, F. Wang, Properties of positive solutions for the operator
Ax = λx and applications to fractional diffeential equations with
integral boundary conditions, Adv. Diff. Equ., (2015) 2015:366.

[30] C. Yang, J. Yan, Existence and uniqueness of positive solutions
to three-point boundary value problems for second order impulsive
differential equations, Electron. J. Qual. Theory Differ. Equ., 70
(2011) 1–10.

[31] C. Yang, J. Zhang, Uniqueness of positive solutions for a perturbed
fractional differential equation, J. Funct. Spaces, Article ID 672543
(2012) 1–8.



CONCAVE MULTIFUNCTIONS AND THE HAMMERSTEIN... 23

[32] C. Zhai, R. Song, Existence and uniqueness of positive solutions for
Neumann problems of second order impulsive differential equations,
Electron. J. Qual. Theory Differ. Equ., 76 (2010) 1–9.

[33] C. Zhai, C. Yang, X. Zhang, Positive solutions for nonlinear op-
erator equations and several classes of applications to functional
equations, Math. Zeit., 266 (2010) 43–63.

[34] L. Zhang, Y. Noriaki, C. Zhai, Optimal control problem of positive
solutions to second order impulsive differential equations, Z. Anal.
Anwend., 31 (2012) 237–250.

[35] L. Zhang, C. Zhai, Existence and uniqueness of positive solutions to
nonlinear second order impulsive differential equations with concave
or convex nonlinearities, Discrete Dyn. Nat. Soc., Article ID 259730
(2013) 1–10.

Robab Hamlbarani Haghi
Assistant Professor of Mathematics
Department of Mathematics
Payame Noor University, P.O. Box 19395-3697
Tehran, Iran

E-mail: robab.haghi@gmail.com

Hadi Hadavi
Ph.D. Candidate of Mathematics
Department of Mathematics
Payame Noor University, P.O. Box 19395-3697
Tehran, Iran

E-mail: hadihadavi@yahoo.com


	1 Introduction
	2 Preliminaries
	3 Main Results
	4 Application
	5 Conclusion
	References

