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Abstract. In this paper, we investigate some qualitative properties of
a class of nonlinear singular systems with multiple constant delays. By
using the Lyapunov-Krasovskii functional (LKF) method and integral
inequalities, we obtain some new sufficient conditions which guarantee
that the considered systems are regular, impulse-free and exponentially
stable. Two numerical examples are provided to illustrate the applica-
tion of the obtained results using MATLAB software. By this paper,
we extend and improve some results in the literature.
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1 Introduction

When we look at the mathematics literature, it is seen that there are
many articles on the stability of solutions of delay differential equations.
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Especially, in recent years, in many books and papers, linear and non-
linear singular systems have been discussed and numerous results have
been obtained on the stability and admissibility of these systems. In
addition, as some recent and interesting works, mathematical modeling
of human liver, fractional dynamics, chaotic and non-chaotic behaviors
and so on for some different mathematical models have been investigated
in the literature [1-6,26-28]

As we know, singular systems, which are also called differential-
algebraic, implicit, semi-state or descriptor systems are widely used in
various engineering systems such as manufacturing, chemical, economic
and circuit systems. The researches on these fields are greatly impor-
tant. The problems of stability and admissibility behaviors for singular
systems with delays have been investigated by many researchers (see,
for example [7-25] and references therein).

Some recent and related results can be summarized as the following:

In 2011, Ding et al. [7] considered the following nonlinear singular
system with time-varying delay:

Eẋ(t) = Ax(t) +Bx(t− h(t)) +G1f1(t, x(t)) +G2f2(t, x(t− h(t)).

Using Lyapunov-Krasovskii functional and free-weighting method, the
authors established some sufficient conditions for the uniformly asymp-
totic stability of solutions of this singular system.

Later, Liu [10] considered the following linear singular system with
constant delay:

Eẋ(t) = Ax(t) +Bx(t− h).

By means of Lyapunov-Krasovskii functional and the integral inequal-
ities, the author obtained asymptotic and exponential stability results
for this system.

Further, in 2014, Liu et al. [11] considered the following linear sin-
gular system with constant delay:

Eẋ(t) = Ax(t) +Adx(t− τ).
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By applying Lyapunov-Krasovskii functional and the Wirtinger-based
integral inequality method, Liu et al. [11] obtained a new stability cri-
terion for this system in terms of a linear matrix inequality (LMI).

The motivation of this paper has been inspired by the results of
Ding et al. [7], Liu [10], Liu et al. ([11], [12]) and those in the literature.
Here, we consider the following nonlinear singular system with multiple
constant delays:

Eẋ(t) =Ax(t) +Bx(t− h1) + Cx(t− h2) + F0(t, x(t))

+ F1(t, x(t− h3)) + F2(t, x(t− h4)), t > 0, (1)

with
x(θ) = φ(θ), θ ∈ [−h, 0], h = max{h1, h2, h3, h4} > 0,

where x(t) ∈ Rn is the state vector, h1, h2, h3, h4 > 0 are constant delays,
φ(t) is a continuous initial function defined on [−h, 0], xt = x(t+ θ) for
−h ≤ θ ≤ 0. A ∈ Rn×n is a negative definite real symmetric constant
matrix, B,C ∈ Rn×n are real constant matrices, the matrix E ∈ Rn×n is
singular, and it is assumed that rankE = r ≤ n, n ≥ 1. Fi(t, 0) = 0, Fi ∈
C1(R+ ×Rn, Rn), (i = 0, 1, 2), and they satisfy the Lipschitz condition:

‖Fi(t, x0)− Fi(t, y0)‖ ≤ ‖Ui(x0 − y0)‖,∀t ∈ R+,∀x0, y0 ∈ Rn, (2)

where U0, U1, U2 are some known constant matrices.

2 Preliminaries

We now give some definitions and lemmas, which are needed in advance.

Definition 1.1 ([6]). The pair (E,A) is said to be regular if det(sE −
A) 6= 0. The pair (E,A) is said to be impulse-free if deg(det(sE−A)) =
rank(E).
Definition 1.2 ([23]). The singular delay system (1) is said to be reg-
ular and impulse-free if the pair (E,A) is regular and impulse-free.
Definition 1.3 ([23]). The singular delay system (1) is said to be ad-
missible if it is regular, impulse-free and stable.
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Lemma 1.1 ([23]).Suppose that the pair (E,A) is regular and impulse-
free. Then, the solution of the singular delay system (1) exists and is
impulse-free and unique on [0,∞).
Lemma 1.2 ([10]). For any positive semi-definite matrix

X =

 X11 X12 X13

XT
12 X22 X23

XT
13 XT

23 X33

 ≥ 0

the following integral inequality holds:

−
∫ t

t−h
ẋT (s)X33ẋ(s)ds ≤

∫ t

t−h

[
xT (t) xT (t− h) ẋT (s)

]
×

 X11 X12 X13

XT
12 X22 X23

XT
13 XT

23 0

 x(t)
x(t− h)
ẋ(s)

 ds.
Lemma 1.3 (Schur Complement) ([23]). Given any real matrices
P1, P2 and P3 with P1 = P T1 and P3 > 0. Then, we have

P1 + P2P
−1
3 P T2 < 0

if and only if [
P1 P2

P T2 −P3

]
< 0

or equivalently [
−P3 P T2
P2 P1

]
< 0.

3 Main Results

A. Assumptions
Throughout this work, we suppose the following condition holds.

(A1) E is a singular matrix, rankE = r ≤ n;P,Rj , Qj , Tj , (j = 1, 2) ,
are positive definite symmetric matrices and S,Ui, (i = 0, 1, 2), matrices
with appropriate dimensions and positive semi-definite matrices
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X =

 X11 X12 X13

XT
12 X22 X23

XT
13 XT

23 X33

 ≥ 0, Y =

 Y11 Y12 Y13
Y T
12 Y22 Y23
Y T
13 Y T

23 Y33

 ≥ 0

such that the following LMIs hold:

P TE = ETP ≥ 0, (3)

M =



M11 M12 M13 0 0 M16 M17 M18 M19

∗ M22 0 0 0 0 0 0 M29

∗ ∗ M33 0 0 0 0 0 M39

∗ ∗ ∗ M44 0 0 0 0 0
∗ ∗ ∗ ∗ M55 0 0 0 0
∗ ∗ ∗ ∗ ∗ M66 0 0 M69

∗ ∗ ∗ ∗ ∗ ∗ M77 0 M79

∗ ∗ ∗ ∗ ∗ ∗ ∗ M88 M89

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ M99


< 0,

(4)

ET (R1 −X33)E ≥ 0, ET (R2 − Y33)E ≥ 0,

ET (h1X11 +X13 +XT
13 + h2Y11 + Y13 + Y T

13)E ≥ 0, (5)

where Z ∈ Rn×(n−r) is any matrix satisfying ETZ = 0 and

M11 =ATP + PA+ATZST + SZTA+Q1 +Q2 + T1 + T2 + ε0U
T
0 U0

+ ET (h1X11 +X13 +XT
13 + h2Y11 + Y13 + Y T

13)E,

M12 =PBh1 + SZTBh1 + ET (h1X12 −X13 +XT
23)E,

M13 =PBh2 + SZTBh2 + ET (h2Y12 − Y13 + Y T
23)E,

M16 =P,M17 = P,M18 = P,

M19 =h1A
TR1 + h2A

TR2,

M22 =−Q1 + ET (h1X22 −X23 −XT
23)E,
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M29 =h1B
T
h1R1 + h2B

T
h1R2,

M33 =−Q2 + ET (h2Y22 − Y23 − Y T
23)E,

M39 =h1B
T
h2R1 + h2B

T
h2R2,

M44 =− T1 + ε1U
T
1 U1,M55 = −T2 + ε2U

T
2 U2,

M66 =− ε0I,M69 = h1R1 + h2R2,

M77 =− ε1I,M79 = h1R1 + h2R2,

M88 =− ε2I,M89 = h1R1 + h2R2,M99 = −h1R1 − h2R2,

where I is n× n− identity matrix, and εi, (i = 0, 1, 2) are positive con-
stants.
Theorem 2.1. If the condition (A1) holds, then system (1) is asymp-
totically admissible.
Proof. Firstly, we show that the system (1) is regular and impulse free.
For this purpose, we choose two invertible matrices G,H ∈ Rn×n such
that

E = GEH =

[
Ir 0
0 0

]
. (6)

Then, the matrix Z can be defined as

Z = GT
[

0

K

]
,

where K ∈ R(n−r)×(n−r) is any invertible matrix.

Next as in (6), we can define

A =GAH =

[
A1 A2

A3 A4

]
, S = HTS =

[
S1
S2

]
,

P =G−TPG−1 =

[
P1 P2

P3 P4

]
, Z = G−TZ =

[
0

K

]
.

From M11 < 0, ε0U
T
0 U0 > 0 and the condition (A1), we can write the

following inequality:
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Γ = ATP + PA+ATZST + SZTA < 0.

Pre- and post- multiplying Γ < 0 by HT and H, respectively, then we
have

Γ =HTΓH = A
T
P + PA+A

T
ZS

T
+ SZ

T
A

=

[
Γ1 Γ2

∗ A4
T
P4 + P4A4 +A4

T
KS2

T
+ S2K

T
A4

]
< 0. (7)

Since Γ1 and Γ2 are unrelated to the following discussion, the real ex-
pressions for these two variables are omitted here. Next, it follows from
the inequality (7) that

A4
T
P4 + P4A4 +A4

T
KS2

T
+ S2K

T
A4 < 0, (8)

and thus A4 is nonsingular. For this reason, the pair (E,A) is regular
and impulse-free (see [23]). In the light of Definition 1.2, the system (1)
is also regular and impulse-free.

We now prove the asymptotic stability of the system (1). For this
aim, we define a new LKF as follows:

V (t, xt) =

4∑
i=1

Vi(t, xt), (9)

where
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V1(t, xt) =xT (t)PEx(t),

V2(t, xt) =

∫ t

t−h1
xT (s)Q1x(s)ds+

∫ t

t−h2
xT (s)Q2x(s)ds,

V3(t, xt) =

∫ 0

−h1

∫ t

t+θ
ẋ(α)ETR1Eẋ(α)dαdθ

+

∫ 0

−h2

∫ t

t+θ
ẋ(α)ETR2Eẋ(α)dαdθ,

V4(t, xt) =

∫ t

t−h3
xT (s)T1x(s)ds+

∫ t

t−h4
xT (s)T2x(s)ds.

It is clear that the LKF in (9) is positive definite. In view of the Newton-
Leibnitz formula, calculating the time derivative of the LKF V (t, xt) in
(9) along the system (1), we obtain

V̇ (t, xt) =

4∑
i=1

V̇i(t, xt), (10)

where

V̇1(t, xt) =xT (t)ATPx(t) + xT (t)PAx(t)

+ xT (t− h1)BT
h1Px(t) + xT (t− h2)BT

h2Px(t)

+ xT (t)PBh1x(t− h1) + xT (t)PBh2x(t− h2)
+ F T0 (t, x(t))Px(t)

+ F T1 (t, x(t− h3))Px(t) + F T2 (t, x(t− h4))Px(t)

+ xT (t)PF0(t, x(t))

+ xT (t)PF1(t, x(t− h3)) + xT (t)PF2(t, x(t− h4)), (11)

V̇2(t, xt) =xT (t)Q1x(t)− xT (t− h1)Q1x(t− h1)
+ xT (t)Q2x(t)− xT (t− h2)Q2x(t− h2), (12)

V̇3(t, xt) =h1ẋ
T (t)ETR1Eẋ(t)

−
∫ t

t−h1
ẋT (s)ETR1Eẋ(s)ds+ h2ẋ

T (t)ETR2Eẋ(t)
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−
∫ t

t−h2
ẋT (s)ETR2Eẋ(s)ds

=h1ẋ
T (t)ETR1Eẋ(t)−

∫ t

t−h1
ẋT (s)ET (R1 −X33)Eẋ(s)ds

−
∫ t

t−h1
ẋT (s)ETX33Eẋ(s)ds

+ h2ẋ
T (t)ETR2Eẋ(t)−

∫ t

t−h2
ẋT (s)ET (R2 − Y33)Eẋ(s)ds

−
∫ t

t−h2
ẋT (s)ETY33Eẋ(s)ds, (13)

V̇4(t, xt) =xT (t)T1x(t)− xT (t− h3)T1x(t− h3) + xT (t)T2x(t)

− xT (t− h4)T2x(t− h4). (14)

Next, we calculate the derivative of the terms in (13) as follows, respec-
tively:

h1ẋ
T (t)ETR1Eẋ(t) =h1[x

T (t)AT + xT (t− h1)BT
h1 + xT (t− h2)BT

h2

+ F T0 (t, x(t)) + F T1 (t, x(t− h3))
+ F T2 (t, x(t− h4))]R1[Ax(t) +Bh1x(t− h1)
+Bh2x(t− h2) + F0(t, x(t)) + F1(t, x(t− h3))
+ F2(t, x(t− h4))]

=h1x
T (t)ATR1Ax(t) + h1x

T (t)ATR1Bh1x(t− h1)
+ h1x

T (t)ATR1Bh2x(t− h2)
+ h1x

T (t)ATR1F0(t, x(t))

+ h1x
T (t)ATR1F1(t, x(t− h3))

+ h1x
T (t)ATR1F2(t, x(t− h4))

+ h1x
T (t− h1)BT

h1R1Ax(t)

+ h1x
T (t− h1)BT

h1R1Bh1x(t− h1)
+ h1x

T (t− h1)BT
h1R1Bh2x(t− h2)
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+ h1x
T (t− h1)BT

h1R1F0(t, x(t))

+ h1x
T (t− h1)BT

h1R1F1(t, x(t− h3))
+ h1x

T (t− h1)BT
h1R1F2(t, x(t− h4)) (15)

+ h1x
T (t− h2)BT

h2R1Ax(t)

+ h1x
T (t− h2)BT

h2R1Bh1x(t− h1)
+ h1x

T (t− h2)BT
h2R1Bh2x(t− h2)

+ h1x
T (t− h2)BT

h2R1F0(t, x(t))

+ h1x
T (t− h2)BT

h2R1F1(t, x(t− h3))
+ h1x

T (t− h2)BT
h2R1F2(t, x(t− h4))

+ h1F
T
0 (t, x(t))R1Ax(t)

+ h1F
T
0 (t, x(t))R1Bh1x(t− h1)

+ h1F
T
0 (t, x(t))R1Bh2x(t− h2)

+ h1F
T
0 (t, x(t))R1F0(t, x(t))

+ h1F
T
0 (t, x(t))R1F1(t, x(t− h3))

+ h1F
T
0 (t, x(t))R1F2(t, x(t− h4))

+ h1F
T
1 (t, x(t− h3))R1Ax(t)

+ h1F
T
1 (t, x(t− h3))R1Bh1x(t− h1)

+ h1F
T
1 (t, x(t− h3))R1Bh2x(t− h2)

+ h1F
T
1 (t, x(t− h3))R1F0(t, x(t))

+ h1F
T
1 (t, x(t− h3))R1F1(t, x(t− h3))

+ h1F
T
1 (t, x(t− h3))R1F2(t, x(t− h4))

+ h1F
T
2 (t, x(t− h4))R1Ax(t)

+ h1F
T
2 (t, x(t− h4))R1Bh1x(t− h1)

+ h1F
T
2 (t, x(t− h4))R1Bh2x(t− h2)

+ h1F
T
2 (t, x(t− h4))R1F0(t, x(t))

+ h1F
T
2 (t, x(t− h4))R1F1(t, x(t− h3))

+ h1F
T
2 (t, x(t− h4))R1F2(t, x(t− h4)), (16)

h2ẋ
T (t)ETR2Eẋ(t) =h2[x

T (t)AT + xT (t− h1)BT
h1

+ xT (t− h2)BT
h2 + F T0 (t, x(t))

+ F T1 (t, x(t− h3)) + F T2 (t, x(t− h4))]R2[Ax(t)

+Bh1x(t− h1) +Bh2x(t− h2)
+ F0(t, x(t)) + F1(t, x(t− h3)) + F2(t, x(t− h4))]
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=h2x
T (t)ATR2Ax(t) + h2x

T (t)ATR2Bh1x(t− h1)
+ h2x

T (t)ATR2Bh2x(t− h2) + h2x
T (t)ATR2F0(t, x(t))

+ h2x
T (t)ATR2F1(t, x(t− h3)) + h2x

T (t)ATR2F2(t, x(t− h4))
+ h2x

T (t− h1)BT
h1R2Ax(t) + h2x

T (t− h1)BT
h1R2Bh1x(t− h1)

+ h2x
T (t− h1)BT

h1R2Bh2x(t− h2)
+ h2x

T (t− h1)BT
h1R2F0(t, x(t))

+ h2x
T (t− h1)BT

h1R2F1(t, x(t− h3))
+ h2x

T (t− h1)BT
h1R2F2(t, x(t− h4))

+ h2x
T (t− h2)BT

h2R2Ax(t)

+ h2x
T (t− h2)BT

h2R2Bh1x(t− h1)
+ h2x

T (t− h2)BT
h2R2Bh2x(t− h2)

+ h2x
T (t− h2)BT

h2R2F0(t, x(t))

+ h2x
T (t− h2)BT

h2R2F1(t, x(t− h3))
+ h2x

T (t− h2)BT
h2R2F2(t, x(t− h4))

+ h2F
T
0 (t, x(t))R2Ax(t)

+ h2F
T
0 (t, x(t))R2Bh1x(t− h1)

+ h2F
T
0 (t, x(t))R2Bh2x(t− h2)

+ h2F
T
0 (t, x(t))R2F0(t, x(t))

+ h2F
T
0 (t, x(t))R2F1(t, x(t− h3))

+ h2F
T
0 (t, x(t))R2F2(t, x(t− h4))

+ h2F
T
1 (t, x(t− h3))R2Ax(t)

+ h2F
T
1 (t, x(t− h3))R2Bh1x(t− h1)

+ h2F
T
1 (t, x(t− h3))R2Bh2x(t− h2)

+ h2F
T
1 (t, x(t− h3))R2F0(t, x(t))

+ h2F
T
1 (t, x(t− h3))R2F1(t, x(t− h3))

+ h2F
T
1 (t, x(t− h3))R2F2(t, x(t− h4))

+ h2F
T
2 (t, x(t− h4))R2Ax(t)
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+ h2F
T
2 (t, x(t− h4))R2Bh1x(t− h1)

+ h2F
T
2 (t, x(t− h4))R2Bh2x(t− h2)

+ h2F
T
2 (t, x(t− h4))R2F0(t, x(t))

+ h2F
T
2 (t, x(t− h4))R2F1(t, x(t− h3))

+ h2F
T
2 (t, x(t− h4))R2F2(t, x(t− h4)). (17)

Using Lemma 1.2 and the Newton-Leibnitz formula for the terms

−
∫ t

t−h1
ẋT (s)ETX33Eẋ(s)ds

and

−
∫ t

t−h2
ẋT (s)ETY33Eẋ(s)ds

in (13), respectively, we obtain the following inequalities:

−
∫ t

t−h1
ẋT (s)X33ẋ(s)ds (18)

≤
∫ t

t−h1

[
xT (t) xT (t− h1) ẋT (s)

]  X11 X12 X13

XT
12 X22 X23

XT
13 XT

23 0

 x(t)
x(t− h1)
ẋ(s)

 ds
≤xT (t)[h1X11 +XT

13 +X13]x(t) + xT (t)[h1X12 −X13 +XT
23]x(t− h1)

+ xT (t− h1)[h1XT
12 −XT

13 +X23]x(t)

+ xT (t− h1)[h1X22 −X23 −XT
23]x(t− h1), (19)

−
∫ t

t−h2
ẋT (s)Y33ẋ(s)ds

≤
∫ t

t−h2

[
xT (t) xT (t− h2) ẋT (s)

]  Y11 Y12 Y13
Y T
12 Y22 Y23
Y T
13 Y T

23 0

 x(t)
x(t− h2)
ẋ(s)

 ds
≤xT (t)[h2Y11 + Y T

13 + Y13]x(t) + xT (t)[h2Y12 − Y13 + Y T
23]x(t− h2)

+ xT (t− h2)[h2Y T
12 − Y T

13 + Y23]x(t)

+ xT (t− h2)[h2Y22 − Y23 − Y T
23]x(t− h2). (20)
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In addition, nothing ETZ = 0, we can deduce

0 =2ẋT (t)ETZSTx(t),

0 =xT (t)ATZSTx(t) + xT (t− h1)BT
h1ZS

Tx(t) + xT (t− h2)BT
h2ZS

Tx(t)

+ xT (t)SZTAx(t) + xT (t)SZTBh1x(t− h1) + xT (t)SZTBh2x(t− h2).
(21)

For nonlinear functions Fi(t, x(t)) endowed with εi > 0, (i = 0, 1, 2), we
can obtain

0 ≤− ε0F T0 (t, x(t))F0(t, x(t)) + ε0x
T (t)UT0 U0x(t),

0 ≤− ε1F T1 (t, x(t− h3))F1(t, x(t− h3)) + ε1x
T (t− h3)UT1 U1x(t− h3),

0 ≤− ε2F T2 (t, x(t− h4))F2(t, x(t− h4)) + ε2x
T (t− h4)UT2 U2x(t− h4).

(22)

On the gathering the estimates (10)-(22), we have

V̇ (t, xt) <ξ
T (t)Ξξ(t)−

∫ t

t−h1
ẋT (s)ET (R1 −X33)Eẋ(s)ds

−
∫ t

t−h2
ẋT (s)ET (R2 − Y33)Eẋ(s)ds, (23)

where

ξT (t) =xT (t) xT (t− h1) xT (t− h2) xT (t− h3) xT (t− h4)
F T0 (t, x(t)) F T1 (t, x(t− h3)) F T2 (t, x(t− h4))

and
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Ξ =



Ξ11 Ξ12 Ξ13 0 0 Ξ16 Ξ17 Ξ18

∗ Ξ22 Ξ23 0 0 Ξ26 Ξ27 Ξ28

∗ ∗ Ξ33 0 0 Ξ36 Ξ37 Ξ38

∗ ∗ ∗ Ξ44 0 0 0 0
∗ ∗ ∗ ∗ Ξ55 0 0 0
∗ ∗ ∗ ∗ ∗ Ξ66 Ξ67 Ξ68

∗ ∗ ∗ ∗ ∗ ∗ Ξ77 Ξ78

∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ88


with

Ξ11 =ATP + PA+ATZST + SZTA+Q1 +Q2 + ε0U
T
0 U0

+ ET (h1X11 +XT
13 +X13)E

+ T1 + T2 + ET (h2Y11 + Y T
13 + Y13)E

+ h1A
TR1A+ h2A

TR2A,

Ξ12 =PBh1 + SZTBh1 + ET (h1X12 −X13 +XT
23)E

+ h1A
TR1Bh1 + h2A

TR2Bh1 ,

Ξ13 =PBh2 + SZTBh2 + ET (h2Y12 − Y13 + Y T
23)E

+ h1A
TR1Bh2 + h2A

TR2Bh2 ,

Ξ16 =P + h1A
TR1 + h2A

TR2,Ξ17 = P + h1A
TR1 + h2A

TR2,

Ξ18 =P + h1A
TR1 + h2A

TR2,

Ξ22 =−Q1 + ET (h1X22 −X23 −XT
23)E + h1B

T
h1R1Bh1

+ h2B
T
h1R2Bh1 ,

Ξ23 =h1B
T
h1R1Bh2 + h2B

T
h1R2Bh2 ,

Ξ26 =h1B
T
h1R1 + h2B

T
h1R2,Ξ27 = h1B

T
h1R1 + h2B

T
h1R2,

Ξ28 =h1B
T
h1R1 + h2B

T
h1R2,

Ξ33 =−Q2 + ET (h2Y22 − Y23 − Y T
23)E + h1B

T
h2R1Bh2

+ h2B
T
h2R2Bh2 ,

Ξ36 =h1B
T
h2R1 + h2B

T
h2R2,Ξ37 = h1B

T
h2R1 + h2B

T
h2R2,
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Ξ38 =h1B
T
h2R1 + h2B

T
h2R2,

Ξ44 =− T1 + ε1U
T
1 U1,Ξ55 = −T2 + ε2U

T
2 U2,

Ξ66 =h1R1 + h2R2 − ε0I,Ξ67 = h1R1 + h2R2,

Ξ68 =h1R1 + h2R2,

Ξ77 =h1R1 + h2R2 − ε1I,Ξ78 = h1R1 + h2R2,

Ξ88 =h1R1 + h2R2 − ε2I.

In order to guarantee V̇ (t, xt) < 0, we need to ensure that Ξ < 0, ET (R1−
X33)E ≥ 0 and ET (R2 − Y33)E ≥ 0. It follows from the Lyapunov-
Krasovskii stability theorem and Lemma 1.3 and the Schur complement
(see [23]) that the conditions (4) and (5) are satisfied. Therefore, the
zero solution of the system (1) is asymptotically stable. Consequently,
since the system (1) is regular, impulse free and asymptotically stable,
it is asymptotically admissible.

Now, we present a new assumption for the next theorem.

B. Assumption

(A2) Assume that there exist a singular matrix E with rankE =
r ≤ n, positive definite symmetric matrices P,Rj , Qj , Tj , (j = 1, 2), the
matrices S,Ui, (i = 0, 1, 2) with appropriate dimensions and positive
semi-definite matrices

X =

 X11 X12 X13

XT
12 X22 X23

XT
13 XT

23 X33

 ≥ 0, Y =

 Y11 Y12 Y13
Y T
12 Y22 Y23
Y T
13 Y T

23 Y33

 ≥ 0

such that the following LMIs hold:

P TE = ETP ≥ 0, (24)
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N =



N11 N12 N13 0 0 N16 N17 N18 N19

∗ N22 0 0 0 0 0 0 N29

∗ ∗ N33 0 0 0 0 0 N39

∗ ∗ ∗ N44 0 0 0 0 0
∗ ∗ ∗ ∗ N55 0 0 0 0
∗ ∗ ∗ ∗ ∗ N66 0 0 N69

∗ ∗ ∗ ∗ ∗ ∗ N77 0 N79

∗ ∗ ∗ ∗ ∗ ∗ ∗ N88 N89

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ N99


< 0,

(25)

ET (R1 −X33)E ≥ 0, ET (R2 − Y33)E ≥ 0,

ET (h1X11 +X13 +XT
13 + h2Y11 + Y13 + Y T

13)E ≥ 0, (26)

where Z ∈ Rn×(n−r) is any matrix satisfying ETZ = 0 and

N11 =(A+ 0.5αI)TP + P (A+ 0.5αI) +ATZST + SZTA

+Q1 +Q2 + T1 + T2 + ε0U
T
0 U0

+ e−αh1ET (h1X11 +X13 +XT
13)E

+ e−αh2ET (h2Y11 + Y13 + Y T
13)E,

N12 =PBh1 + SZTBh1 + e−αh1ET (h1X12 −X13 +XT
23)E,

N13 =PBh2 + SZTBh2 + e−αh2ET (h2Y12 − Y13 + Y T
23)E,

N16 =P,N17 = P,N18 = P,N19 = h1A
TR1 + h2A

TR2,

N22 =e−αh1 [ET (h1X22 −X23 −XT
23)E −Q1],

N29 =h1B
T
h1R1 + h2B

T
h1R2,

N33 =e−αh2 [ET (h2Y22 − Y23 − Y T
23)E −Q2],

N39 =h1B
T
h2R1 + h2B

T
h2R2, N44 = −e−αh3T1 + ε1U

T
1 U1,

N55 =− e−αh4T2 + ε2U
T
2 U2, N66 = −ε0I,N69 = h1R1 + h2R2,

N77 =− ε1I,N79 = h1R1 + h2R2, N88 = −ε2I,N89 = h1R1 + h2R2,

N99 =− h1R1 − h2R2,
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where I is n× n− identity matrix, and εi, (i = 0, 1, 2) are positive con-
stants.
Theorem 2.2. If the assumption (A2) holds, then system (1) is expo-
nentially admissible.
Proof. In Theorem 2.1, it has been shown that the system (1) is regular
and impulse free. We now show that the zero solution of system (1) is
exponentially stable. From this point of view, we define as a new LKF
by

V (t, xt) =
4∑
i=1

Vi(t, xt), (27)

where

V1(t, xt) =eαtxT (t)PEx(t),

V2(t, xt) =

∫ t

t−h1
eαsxT (s)Q1x(s)ds

+

∫ t

t−h2
eαsxT (s)Q2x(s)ds,

V3(t, xt) =

∫ 0

−h1

∫ t

t+θ
eαsẋ(α)ETR1Eẋ(α)dαdθ

+

∫ 0

−h2

∫ t

t+θ
eαsẋ(α)ETR2Eẋ(α)dαdθ,

V4(t, xt) =

∫ t

t−h3
eαsxT (s)T1x(s)ds+

∫ t

t−h4
eαsxT (s)T2x(s)ds.

It is clear that the LKF (25) is positive definite. Calculating the time
derivative V (t, xt) along the system (1) and using the Newton-Leibnitz
formula, we get

V̇ (t, xt) =
4∑
i=1

V̇i(t, xt), (28)

where



18 A. YİG̃İT AND C. TUNÇ

V̇1(t, xt) =eαt{xT (t)(A+ 0.5αI)TPx(t) + xT (t)P (A+ 0.5αI)x(t)

+ xT (t− h1)BT
h1Px(t) + xT (t− h2)BT

h2Px(t)

+ xT (t)PBh1x(t− h1) + xT (t)PBh2x(t− h2)
+ F T0 (t, x(t))Px(t) + F T1 (t, x(t− h3))Px(t)

+ F T2 (t, x(t− h4))Px(t)

+ xT (t)PF0(t, x(t)) + xT (t)PF1(t, x(t− h3))
+ xT (t)PF2(t, x(t− h4))}, (29)

V̇2(t, xt) =eαt{xT (t)Q1x(t)− e−αh1xT (t− h1)Q1x(t− h1) + xT (t)Q2x(t)

− e−αh2xT (t− h2)Q2x(t− h2)}, (30)

V̇3(t, xt) =eαth1ẋ
T (t)ETR1Eẋ(t)−

∫ t

t−h1
eαsẋT (s)ETR1Eẋ(s)ds

+ eαth2ẋ
T (t)ETR2Eẋ(t)−

∫ t

t−h2
eαsẋT (s)ETR2Eẋ(s)ds

=eαt{h1ẋT (t)ETR1Eẋ(t)

−
∫ t

t−h1
eα(s−t)ẋT (s)ET (R1 −X33)Eẋ(s)ds

−
∫ t

t−h1
eα(s−t)ẋ(s)ETX33Eẋ(s)ds+ h2ẋ

T (t)ETR2Eẋ(t)

−
∫ t

t−h2
eα(s−t)ẋT (s)ET (R2 − Y33)Eẋ(s)ds

−
∫ t

t−h2
eα(s−t)ẋ(s)ETY33Eẋ(s)ds}, (31)

V̇4(t, xt) =eαt{xT (t)T1x(t)− e−αh3xT (t− h3)T1x(t− h3) + xT (t)T2x(t)

− e−αh4xT (t− h4)T2x(t− h4)}. (32)

It is clear that, for any a scalar s ∈ [t− h1, t], e−αh1 ≤ eα(s−t) ≤ 1 and

−
∫ t

t−h1
eα(s−t)ẋT (s)ETX33Eẋ(s)ds ≤ −e−αh1

∫ t

t−h1
ẋT (s)ETX33Eẋ(s)ds.
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Similarly, for any a scalar s ∈ [t − h2, t], we have e−αh2 ≤ eα(s−t) ≤ 1
and

−
∫ t

t−h2
eα(s−t)ẋT (s)ETY33Eẋ(s)ds ≤ −e−αh2

∫ t

t−h2
ẋT (s)ETY33Eẋ(s)ds.

For nonlinear functions Fi(t, x(t)) endowed with εi > 0, (i = 0, 1, 2), it
follows that

0 ≤− ε0F T0 (t, x(t))F0(t, x(t)) + ε0x
T (t)UT0 U0x(t),

0 ≤− ε1F T1 (t, x(t− h3))F1(t, x(t− h3)) + ε1x
T (t− h3)UT1 U1x(t− h3),

0 ≤− ε2F T2 (t, x(t− h4))F2(t, x(t− h4)) + ε2x
T (t− h4)UT2 U2x(t− h4).

From this point of view, it can be followed from the combination of the
equalities (26)-(30) and the above inequalities that

V̇ (t, xt) <e
αt{ξT (t)Ψξ(t)−

∫ t

t−h1
e−αh1 ẋT (s)ET (R1 −X33)Eẋ(s)ds

−
∫ t

t−h2
e−αh2 ẋT (s)ET (R1 − Y33)Eẋ(s)ds},

where

ξT (t) =[xT (t) xT (t− h1) xT (t− h2) xT (t− h3)
xT (t− h4)F T0 (t, x(t))F T1 (t, x(t− h3)) F T2 (t, x(t− h4))]

and

Ψ =



Ψ11 Ψ12 Ψ13 0 0 Ψ16 Ψ17 Ψ18

∗ Ψ22 Ψ23 0 0 Ψ26 Ψ27 Ψ28

∗ ∗ Ψ33 0 0 Ψ36 Ψ37 Ψ38

∗ ∗ ∗ Ψ44 0 0 0 0
∗ ∗ ∗ ∗ Ψ55 0 0 0
∗ ∗ ∗ ∗ ∗ Ψ66 Ψ67 Ψ68

∗ ∗ ∗ ∗ ∗ ∗ Ψ77 Ψ78

∗ ∗ ∗ ∗ ∗ ∗ ∗ Ψ88


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with

Ψ11 =(A+ 0.5αI)TP + P (A+ 0.5αI) +ATZST + SZTA

+Q1 +Q2 + T1 + T2

+ e−αh1ET (h1X11 +XT
13 +X13)E

+ ε0U
T
0 U0 + e−αh2ET (h2Y11 + Y T

13 + Y13)E

+ h1A
TR1A+ h2A

TR2A,

Ψ12 =PBh1 + SZTBh1 + e−αh1ET (h1X12 −X13 +XT
23)E

+ h1A
TR1Bh1 + h2A

TR2Bh1 ,

Ψ13 =PBh2 + SZTBh2 + e−αh2ET (h2Y12 − Y13 + Y T
23)E

+ h1A
TR1Bh2 + h2A

TR2Bh2 ,

Ψ16 =P + h1A
TR1 + h2A

TR2,

Ψ17 =P + h1A
TR1 + h2A

TR2,

Ψ18 =P + h1A
TR1 + h2A

TR2,

Ψ22 =e−αh1 [−Q1 + ET (h1X22 −X23 −XT
23)E]

+ h1B
T
h1R1Bh1 + h2B

T
h1R2Bh1 ,

Ψ23 =h1B
T
h1R1Bh2 + h2B

T
h1R2Bh2 ,

Ψ26 =h1B
T
h1R1 + h2B

T
h1R2,Ψ27 = h1B

T
h1R1 + h2B

T
h1R2,

Ψ28 =h1B
T
h1R1 + h2B

T
h1R2,

Ψ33 =e−αh2 [−Q2 + ET (h2Y22 − Y23 − Y T
23)E]

+ h1B
T
h2R1Bh2 + h2B

T
h2R2Bh2 ,

Ψ36 =h1B
T
h2R1 + h2B

T
h2R2,Ψ37 = h1B

T
h2R1 + h2B

T
h2R2,

Ψ38 =h1B
T
h2R1 + h2B

T
h2R2,

Ψ44 =− e−αh3T1 + ε1U
T
1 U1,Ψ55 = −e−αh4T2 + ε2U

T
2 U2,

Ψ66 =h1R1 + h2R2 − ε0I,Ψ67 = h1R1 + h2R2,

Ψ68 =h1R1 + h2R2,

Ψ77 =h1R1 + h2R2 − ε1I,Ψ78 = h1R1 + h2R2,

Ψ88 =h1R1 + h2R2 − ε2I.
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In order to guarantee V̇ (t, xt) < 0, it is needed to show that Ψ < 0 and
ET (R1 − X33)E ≥ 0, ET (R2 − Y33)E ≥ 0 From the above discussion,
it follows that all of those conditions, i.e., (23) and (24), hold. In this
case, we can conclude the zero solution of the system (1) is exponen-
tially stable. Consequently, since the system (1) is regular, impulse free
and exponentially stable, and it is exponentially admissible. This result
completes the proof of Theorem 2.2.

4 Numerical Applications

In this section, for the particular cases of the considered equations, we
give two examples to show the satisfaction of our assumptions
Example 3.1. For the particular case of the system (1), we consider
the following nonlinear singular system with two constant delays:

d

dt

([
2 0
0 0

] [
x1(t)
x2(t)

])
=

[
−7.885 0
−5.95 −6.125

] [
x1(t)
x2(t)

]
+

[
−1.2085 0
−1.245 −1.2095

]
×
[
x1(t− 0.105)
x2(t− 0.105)

]
+

[
−1.1025 −1.135

0 −1.1035

] [
x1(t− 0.125)
x2(t− 0.125)

]
+

[
x1(t)e

−x21(t)

x2(t)e
−x22(t)

]

+

[
x1(t− 0.105)e−x

2
1(t−0.105)

x2(t− 0.105)e−x
2
2(t−0.105)

]

+

[
x1(t− 0.125)e−x

2
1(t−0.125)

x2(t− 0.125)e−x
2
2(t−0.125)

]

where



22 A. YİG̃İT AND C. TUNÇ

E =

[
2 0
0 0

]
, A =

[
−7.885 0
−5.95 −6.125

]
,

Bh =

[
−1.2085 0
−1.245 −1.2095

]
,

Bd =

[
−1.1025 −1.135

0 −1.1035

]
,

F0(t, x(t)) =

[
x1(t)e

−x21(t)

x2(t)e
−x22(t)

]

F1(t, x(t− h)) =

[
x1(t− 0.105)e−x

2
1(t−0.105)

x2(t− 0.105)e−x
2
2(t−0.105)

]
,

F2(t, x(t− d)) =

[
x1(t− 0.125)e−x

2
1(t−0.125)

x2(t− 0.125)e−x
2
2(t−0.125)

]

and

h1 = h3 = 0.105, h2 = h4 = 0.125.

It is clear that the system in Example 3.1 is regular and impulse free.
Let ε0 = 8.25, ε1 = 8.45, ε2 = 8.65 and choose

X11 =

[
9.305 −0.125
−0.125 9.365

]
, X12 =

[
1.225 0

0 1.252

]
,

X13 =

[
1.215 0.65
0.65 1.485

]
,

X22 =

[
4.625 1.25
1.25 5.105

]
, X23 =

[
1.125 1.225
1.225 1.985

]
,

X33 =

[
1.235 1.265
1.265 1.505

]
,
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Y11 =

[
8.105 −0.165
−0.165 8.125

]
, Y12 =

[
0.125 0

0 0.235

]
,

Y13 =

[
1.125 0.5
0.5 1.265

]
,

Y22 =

[
3.325 0.75
0.75 3.845

]
, Y23 =

[
1.627 1.325
1.325 2.895

]
,

Y33 =

[
2.685 1.215
1.215 2.578

]
,

P =

[
8.65 0

0 7.85

]
, Q1 =

[
4.1 3.85
3.85 4.2

]
,

Q2 =

[
3.2 3.063

3.063 3.5

]
,

R1 =

[
1.245 0

0 0.106

]
, R2 =

[
2.695 0

0 0.103

]
,

Z =

[
0

2.45

]
, S =

[
−1.25
−1.35

]
,

U0 =

[
−0.05 0

0 −0.05

]
, U1 =

[
−0.03 0

0 −0.03

]
,

U2 =

[
−0.04 0

0 −0.04

]
.

Under the above assumptions, all eigenvalues in the special case of the
LMI defined by Ξ satisfy λmax(Ξ) ≤ −0.4722. Consequently, it is clear
that all conditions of Theorem 2.1 can be satisfied. Thus, the system
(1) is asymptotically admissible.

Example 3.2. As a special case of the system (1), we consider the
following nonlinear singular system with two constant delays:
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Figure 1: Trajectories of the solution of x(t) of the system in Example
3.1, when h = hmax = 0.125.

d

dt

([
2 0
0 0

] [
x1(t)
x2(t)

])
=

[
−7.885 0
−3.95 −8.125

] [
x1(t)
x2(t)

]
+

[
−1.2085 0
−1.245 −1.2095

]
×
[
x1(t− 0.105)
x2(t− 0.105)

]
+

[
−1.1025 −1.135

0 −1.1035

]
×
[
x1(t− 0.125)
x2(t− 0.125)

]
+

[
x1(t)e

−x21(t)

x2(t)e
−x22(t)

]

+

[
x1(t− 0.105)e−x

2
1(t−0.105)

x2(t− 0.105)e−x
2
2(t−0.105)

]

+

[
x1(t− 0.125)e−x

2
1(t−0.125)

x2(t− 0.125)e−x
2
2(t−0.125)

]

where
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E =

[
2 0
0 0

]
, A =

[
−7.885 0
−3.95 −8.125

]
,

Bh =

[
−1.2085 0
−1.245 −1.2095

]
,

Bd =

[
−1.1025 −1.135

0 −1.1035

]
,

F0(t, x(t)) =

[
x1(t)e

−x21(t)

x2(t)e
−x22(t)

]
,

F1(t, x(t− h)) =

[
x1(t− 0.105)e−x

2
1(t−0.105)

x2(t− 0.105)e−x
2
2(t−0.105)

]
,

F2(t, x(t− d)) =

[
x1(t− 0.125)e−x

2
1(t−0.125)

x2(t− 0.125)e−x
2
2(t−0.125)

]

and

h1 = h3 = 0.105, h2 = h4 = 0.125.

It is clear that the system given in Example 3.2 is regular and im-
pulse free. For the considered special case, let α = 0.2, ε0 = 8.25, ε1 =
8.45, ε2 = 8.65,

X11 =

[
9.305 −0.125
−0.125 9.365

]
, X12 =

[
1.225 0

0 1.252

]
,

X13 =

[
1.215 0.65
0.65 1.485

]
,

X22 =

[
4.625 1.25
1.25 5.105

]
, X23 =

[
1.125 1.225
1.225 1.985

]
,

X33 =

[
1.235 1.265
1.265 1.505

]
,
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Y11 =

[
8.105 −0.165
−0.165 8.125

]
, Y12 =

[
0.125 0

0 0.235

]
,

Y13 =

[
1.125 0.5
0.5 1.265

]
,

Y22 =

[
3.325 0.75
0.75 3.845

]
, Y23 =

[
1.627 1.325
1.325 2.895

]
,

Y33 =

[
2.685 1.215
1.215 2.578

]
,

P =

[
8.5 0
0 7

]
, Q1 =

[
4.1 3.85
3.85 4.2

]
,

Q2 =

[
3.2 3.063

3.063 3.5

]
,

R1 =

[
1.245 0

0 0.106

]
, R2 =

[
2.695 0

0 0.103

]
,

Z =

[
0

2.45

]
, S =

[
−1.25
−1.35

]
,

U0 =

[
−0.05 0

0 −0.05

]
, U1 =

[
−0.03 0

0 −0.03

]
,

U2 =

[
−0.04 0

0 −0.04

]
.

Hence, it can be shown that the all eigenvalues of the LMI defined by Ψ
satisfies λmax(Ψ) ≤ −0.05.

Consequently, it is clear that all conditions of Theorem 3.2 hold.
Thus, the system (1) is exponentially admissible.
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Figure 2: Trajectories of the solution of x(t) of the system in Example
3.2, when h = hmax = 0.125 and α = 0.20.

5 Conclusion

In this paper, we consider a class of nonlinear singular systems with
multiple constant delays. Defined a new Lyapunov-Krasovskii func-
tional, using LMI and integral inequality matrix, we investigate asymp-
totic admissibility and exponential admissibility of the considered sys-
tem. Two numerical examples are also given with their simulations to
demonstrate the applicability of the main results of this paper. The
obtained results include and generalize some recent results in the liter-
ature. As for proper future studies, instead of considered systems, their
fractional model can be investigated for the problems of this paper.
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30 A. YİG̃İT AND C. TUNÇ
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[23] C. Tunç, A. Yiğit, On the asymptotic stability of solutions of nonlin-
ear delay differential equations. Nel̄ın̄ı̆ın̄ı Koliv. 23 (2020) 418-432.

[24] P. Wang, J. Zhang, Stability of solutions for nonlinear singular sys-
tems with delay. Appl. Math. Lett. 25 (2012) 1291-1295.

[25] H. Wang, A. Xue, R. Lu, Absolute stability criteria for a class
of nonlinear singular systems with time delay. Nonlinear Anal. 70
(2009), no. 2, 621-630.

[26] S. Xu, J. Lam, Robust Control and Filtering of Singular Systems.
Lecture Notes in Control and Information Sciences, 332. Springer-
Verlag, Berlin, (2006).

[27] S. Xu, J. Lam, Y. Zou, An improved characterization of bounded
realness for singular delay systems and its applications. Internat. J.
Robust Nonlinear Control 18 (2008) 263-277.

[28] A. Yiğit, C. Tunç, On the stability and admissibility of a singular
differential system with constant delay. Int. J. Math. Comput. Sci.
15 (2020) 641-660.

Abdullah Yig̃it

Department of Mathematics

PhD of Applied Mathematics

Faculty of Sciences

Van Yuzuncu Yil University

65080-Campus, Van-Turkey

E-mail: a-yigit63@hotmail.com

Cemil Tunç
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