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1 Introduction

The calculus of fractional derivative was proposed more than three cen-
turies ago. This subject has improved by many mathematicians such as
Letnikov, Grunwald, Liouvill, Fourier, Euler up to now and furthermore,
some researchers could define newer fractional operators [22, 1, 6, 7, 17].

Numerous scientists have successfully investigated the fractional cal-
culus to describe many phenomena in different fields such as the optimal
control of tumor invasion, human liver [17], hearing loss [21], the optimal
strategy of thermal treatment in cancer therapy, anthrax disease model
in animals [36], and the medical image analysis and physics [5, 13, 10, 30].

Many studies have been focused on finding the numerical solutions of
fractional partial differential equations (PDEs). For instance, authors in
[2] derived an existence criterion for a Caputo conformable hybrid multi-
term integro-differential equation equipped with initial conditions, and
by applying the lower solution property, the existence and successive
approximation of solutions for the mentioned hybrid initial problem are
investigated. Rezapour and et.al [35] established some necessary condi-
tions to check the uniqueness-existence of solutions for a general multi-
term ψ-fractional differential equation via generalized ψ-integral bound-
ary conditions with respect to the generalized asymmetric operators by
employing the fixed-point theory. In [18], the dynamical behaviors of a
linear triatomic molecule is studied. Then, a classical Lagrangian ap-
proach is followed which produces the classical equations of motion, and
the generalized form of the fractional Hamilton equations (FHEs) is for-
mulated in the Caputo sense and in order to solve it, a numerical scheme
based on the Euler convolution quadrature rule is introduced. Authors
in [11] studied a general form of fractional optimal control problems
involving the fractional derivative with singular or non-singular kernel.
The necessary conditions for the optimality of the problem are derived
and then the solution is generated by using an iterative technique.

Burgers equation or Bateman-Burgers equation is a fundamental par-
tial differential equation occurring in various areas of applied mathe-
matics, such as fluid mechanics, nonlinear acoustics, gas dynamics, and
traffic flow. Many studies have been done on the classical Burgers equa-
tion, numerical results have been successfully obtained. Applications of
the fractional calculus idea have been developed to study Burgers equa-
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tion, and many researchers have shown great interest to find an efficient
numerical technique for solving this type of problems. For instance,
Momani [34] proposed a domain decomposition method to solve the
Burgers equation with fractional derivative in space and time. Yildirim
[14] used a homotopy analysis method to achieve the numerical solution
and analytical solution of Burgers equation with space and time frac-
tional derivative. A perturbation method and generalized differential
transform method is used in [31] to solve the coupled Burgers equation
and time fractional Burgers equation. Yokus [15] applied a Cole-Hopf
transformation method and expansion method to obtain the exact and
numerical solution of Burgers equation. Tasbozan used a cubic B-spline
finite element method [9] and B-spline Galerkin method [8] to obtain
the numerical solution of time fractional Burgers equation.

The Lagrange method is an option for dealing with polynomial inter-
polations. The main point is that it must manipulate Lagrange polyno-
mials through barycentric interpolation formulas [25]. When the nodes
have a uniform distribution, the weight functions become very large,
leading to a Runge phenomenon and undermining the advantages of
Lagrange interpolation. But if the nodes obey the density proportion
(1−x2)−

1
2 , the interpolation has a good numerical stability, and the eas-

iest collocation points are some types of Chebyshev points [26, 23, 24].
Barycentric method has recently been developed to solve partial differ-
ential equations (PDE) and ordinary differential equations such as the
problems of high 1D boundary and initial values and nonlinear PDEs
[32, 33]. But, there are few reports about the application of barycen-
tric Lagrange interpolation in the literature especially for the fractional
order problems.

This paper studies the following one-dimensional non-linear time
fractal-fractional Burgers equation

FFM

0D
α,β
t u(x, t) + u(x, t)ux(x, t)− γuxx(x, t) = f(x, t), inQ,

u(., t) = ρ(x, t), on Σ, (1)

u(x, 0) = g(x), in Ω,

where Ω = [0, 1] is the spatial domain and ∂Ω is the boundary of Ω. Let

Q = Ω × (0, 1], Σ = ∂Ω × (0, 1] and 0 < α < 1.
FFM

0D
α,β
t u(x, t) is the
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fractal fractional derivative of u(x, t) of order (α, β) in the Atangana-
Riemann-Liouville concept with Mittag-Leffler non-singular kernel. The
interested reader may see more models defined by this new fractional
derivative operator in [27, 28, 29] and references therein.

Our idea of finding the numerical solution is based on using a new
barycentric Lagrange interpolation method for expanding the spatial
derivatives of one-dimensional generalized Burgers equation, and then
apply Legendre polynomials to simplify the time derivatives. Conse-
quently, we obtain the operational matrix of Legendre polynomial for
time fractal-fractional derivative. The main advantage of Legendre poly-
nomials is that by using only a few Legendre foundations, we achieve
satisfactory results. Also, the advantages of the barycentric interpola-
tion method are accurate, fast, simple and easy to implement boundary
conditions in order to prevent singularity. Moreover, the barycentric
interpolation method requires O(n) operations while the classical La-
grange interpolation method needs O(n2) operations. These benefits
make the presented method effective for solving the identified problem.

The paper is organized as follows: Some definitions and explanation
of fractal-fractional derivative are provided in Section 2. In Section 3,
some properties of Legendre polynomials are explained. Barycentric in-
terpolation method is given in Section 4. Section 5 is devoted to reduce
the problem (1) by barycentric interpolation method and Legendre poly-
nomials. Finally, multiple numerical examples are provided to show the
effectiveness of the suggested method in Section 6.

2 Fractal-fractional Derivative

In this section, we summarize the important issues in the field of fractal-
fractional calculus.

Definition 2.1. [22]The Mittag-Leffler function Eα,β(t) is a function
which depends on two parameters α and β and can be defined as

Eα,β(t) =
∞∑
k=0

tk

Γ(kα+ β)
, α ∈ R+, t ∈ R,

where Γ(·) is the Gamma function. If β = 1, Eα,1(t) is called one
parameter Mittag-Leffler function and can be written as Eα(t). This
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type of function is an essential function in fractional calculus.

Definition 2.2. [3, 4]Let h(t) is a continuous function on open inter-
val (a, b), and (α, β) ∈ (0, 1). The fractal-fractional differentiation of
order (α, β) in the type of Atangana-Riemann-Liouville sense with the
generalized Mittag-Leffler kernel is given as follows

FFM

0D
α,β
t h(t) =

C(α)t(1−β)

β(1− α)

d

dt

∫ t

0
Eα

(
−α(t− s)α

1− α

)
h(s)ds,

where C(α) = 1− α+ α
Γ(α) .

Lemma 2.3. Suppose that α, β ∈ (0, 1) are real constants. Then, for
j ∈ N ∪ {0} we have

FFM

0D
α,β
t tj =

C(α)j!tj−β+1

β(1− α)
Eα,j+1

(
−αtα

1− α

)
.

3 Legendre Polynomials

Orthogonal Legendre polynomials on interval [−1, 1] are defined as fol-
lows

Lm+1(x) =
2m+ 1

m+ 1
xLm(x)− m

m+ 1
Lm−1(x), m = 1, 2, · · · ,

where L0(x) = 1 and L1(x) = x. By change of variable x = 2t − 1, we
have the shifted Legendre variable on interval [0, 1] as

p
′
m+1(x) =

2m+ 1

m+ 1
(2t− 1)Lm(t)− m

m+ 1
Lm−1(t), m = 1, 2, · · · ,

where p
′
0(t) = 1 and p

′
1(t) = 2t − 1. Set pi(t) =

√
2i+ 1p

′
i(t). Then for

pi(t) we have ∫ 1

0
pi(t)pj(t)dt =

{
1, i = j,

0 i 6= j.

pi(t) can be rewritten as the series of power functions as:

pi(t) =
√

2i+ 1
i∑

k=0

(−1)i+k
(i+ k)!tk

(i− k)!(k!)2
. (2)
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Let Tm(t) = [1, t, · · · , tm]T and Ψm(t) = [p0, p1, · · · , pm]T . Then, Ψm(t)
can be written as

Ψm(t) = ATm(t), (3)

where

A =


1 0 · · · 0

−
√

3 2
√

3 · · · 0
...

...
. . .

...

(−1)m
√

2m+ 1 (−1)m+1
√

2m+ 1
(m+1)!
(m−1)!

· · · (−1)2m
√

2m+ 1
(2m)!

(m!)2

 .

Theorem 3.1. [19] Suppose H is an inner product space and Y ⊂ H
a complete subspace. Let {e0, e1, · · · , en} is an orthogonal basis for H .
Then, for every f ∈ H the best approximation f0 of f in Y is given by

f0 =

n∑
i=0

< f, ei > ei,

such that

∀y ∈ Y ‖f − f0‖2 6 ‖f − y‖2,

where ‖f‖2 =
√
< f, f >.

So, we can approximate f as

f(t) '
m∑
j=0

cjpj(t) = CTΨm(t),

where cj can be calculated as follows

cj =< f(t), pj(t) >,

and we have

CT = [c0, · · · , cm], ΨT
m = [p0, · · · , pm].

For more detail about Legendre polynomials, see [12]
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3.1 Operational matrix

In this section, the operational matrix of Legendre polynomial for the
fractal-fractional derivative will be obtained.

Theorem 3.2. Suppose that (α, β) ∈ (0, 1), and Ψm(t) is the vector of
Legendre polynomials up to m degree. The fractal-fractional derivative
of Ψm(t) of order (α, β) can be written as

FFM

0D
α,β
t Ψm(t) ' Dα,βΨm(t),

where Dα,β is (m+ 1)× (m+ 1) matrix whose elements are given by

Dα,β
ij =

C(α)

β(1− α)

m∑
k=0

m∑
r=0

k!aikajrwkr, i, j = 0, 1, · · · ,m.

Proof. Using equations (2) and (3), pi(t)’s can be written as

pi(t) =

m∑
k=0

aikt
k.

Then

FFM

0D
α,β
t pi(t) =

C(α)

β(1− α)

m∑
k=0

k!aikt
k−β+1Eα,k+1

(
−αtα

1− α

)
.

Using Legendre polynomials and Theorem 3.1, we can approximate

tk−β+1Eα,k+1

(
−αtα
1−α

)
as follows

tk−β+1Eα,k+1

(
−αtα

1− α

)
'

m∑
j=0

bkjpj(t).

where

bkj =

∫ 1

0
tk−β+1Eα,k+1

(
−αtα

1− α

)
pj(t)dt,

or

bkj =

m∑
r=0

ajr

∫ 1

0
Eα,k+1

(
−αtα

1− α

)
tk+r−β+1dt =

m∑
r=0

ajrwkr,



8 A. REZAZADEH, A.M. NAGY AND Z. AVAZZADEH

where

wkr =

∫ 1

0
Eα,k+1

(
−αtα

1− α

)
tk+r−β+1dt.

Then

Dα,β
ij =

C(α)

β(1− α)

m∑
k=0

m∑
r=0

k!aikajrwkr.

�
We can approximate wkr as

wkr =

∫ 1

0
Eα,k+1

(
−αtα

1− α

)
tk+r−β+1dt

=

∞∑
z=0

(−α)z

(1− α)zΓ(zα+ k + 1)(αz + k + r − β + 2)
.

By taking (n+ 1)-terms, we can approximate wkr as follows

wkr =
n∑
z=0

(−α)z

(1− α)zΓ(zα+ k + 1)(αz + k + r − β + 2)
,

If we define

M =


1! 0 · · · 0
0 2! · · · 0
...

...
. . .

...
0 0 · · · m!

 , W =


w00 w01 · · · w0m

w10 w11 · · · w1m
...

...
. . .

...
wm0 wm1 · · · wmm

 ,
we can express Dα,β in a matrix form as follows

Dα,β =
C(α)

β(1− α)
AMW TAT .

Setting n = 4, and (α, β) =
(

1
2 ,

3
4

)
, one can obtain the following form of

Dα,β

D( 1
2
, 3
4
) =


0.8893050 0.0272249 −0.0376262 0.0267639 −0.0187959
0.4189647 1.1353605 0.0768211 −0.0561239 0.0371724
0.0130113 0.4451404 1.2249472 0.1049496 −0.0644275
0.0713947 0.0011382 0.4388556 1.2758877 0.1240585
−0.0034177 0.0845659 −0.0090849 0.4314818 1.3099623

 .
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4 Barycentric Interpolation Method

Suppose the data f0, f1, · · · , fN corresponding to nodes x0, x1, · · · , xN ,
and they sampled from a function f, i.e., f = f(xi), i = 0, 1, · · · , N.
Suppose ΠN is the space of polynomial of degree at most N . If fi, i =
0, 1, · · · , N are sampled from a linear polynomial f(x) ∈ ΠN , then
barycentric interpolant of this data can be defined as

f(x) =

N∑
i=0

fiϕi(x).

According to the Lagrangian interpolation method, we can define ϕi(x)
in the following form

ϕi(x) =

∏N
k=0,i 6=k(x− xk)∏N
k=0,i 6=k(xi − xk)

. (4)

The barycentric weights can be defined as

wi =
1∏N

k=0, k 6=i(xi − xk)
=

1

ϕ′(xi)
, i = 0, 1, · · · , N.

If we define l(x) = (x− x0)(x− x1) · · · (x− xN ), then

ϕi(x) = l(x)
wi

x− xi
, i = 0, 1, · · · , N. (5)

Inserting equation (5) into equation (4), we have

f(x) = l(x)
N∑
i=0

wi
x− xi

fi. (6)

Through interpolation function f(x) = 1, it can be obtained

1 =
N∑
i=0

ϕi(x) = l(x)
N∑
i=0

wi
x− xi

. (7)

Dividing equation (6) by equation (7) results in

f(x) =

∑N
i=0

wi
x−xi fi∑N

i=0
wi
x−xi

,

which is known as Barycenteric Formula.
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4.1 Differentiation of Polynomial Interpolates

Suppose smooth function f(x) is in the form of barycentric interpolation
method as

f(x) =
N∑
i=0

fiϕi(x),

where

ϕi(x) =

wi
x−xi∑N
k=0

wk
x−xk

.

To approximate the s-order derivative of a smooth function f at point
x = xj , we have the following relation

f (s)(xj) =
N∑
i=0

ϕ
(s)
i (xj)fi =

N∑
i=0

ϕ
(s)
ji fi,

where ϕ
(s)
ji can be achieved as follows

ϕ
(1)
ji =

{
wj
wi

1
xj−xi , i 6= j,

−
∑

l 6=j ϕ
(1)
jl , i = j,

ϕ
(s)
ji =

k(ϕ
(1)
ji ϕ

(k−1)
jj − ϕ

(k−1)
ji

xj−xi ), i 6= j,

−
∑

l 6=i ϕ
(k)
jl , i = j.

For more details, see [20].

5 Expansion Using Barycenteric Interpolation
Method and Legendre Polynomials

In this section, spatial derivative of equation (1) is reduced by barycen-
tric interpolation method, and the time derivative is expanded in terms
of Legendre polynomials. Based on barycentric interpolation method,
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we choose N + 1 interpolation points as {xi}Ni=0 to build basis functions
{ϕi(x)}Ni=0. Then, we can approximate u(x, t) in equation (1) as


u(x, t) =

∑N
i=0 ϕi(x)ui(t),

ux(x, t) =
∑N

i=0 ϕ
(1)
i (x)ui(t).

uxx(x, t) =
∑N

i=0 ϕ
(2)
i (x)ui(t).

(8)

By substituting equation (8) into equation (1), we get

FFM

0D
α,β
t

(
N∑
i=0

ϕi(x)ui(t)

)
+

(
N∑
i=0

ϕi(x)ui(t)

)(
N∑
i=0

ϕ
(1)
i (x)ui(t)

)

− γ
N∑
i=0

ϕ
(2)
i (x)ui(t) = f(x, t), inQ,

with initial and boundary conditions

N∑
i=0

ϕi(x)ui(t0) = g(x), in Ω,

N∑
i=0

ϕi(x0)ui(t) = ρ(x0, t),

N∑
i=0

ϕi(xN )ui(t) = ρ(xN , t).

At x = xj we have the following equations

FFM

0D
α,β
t

(
N∑
i=0

ϕi(xj)ui(t)

)
+

(
N∑
i=0

ϕi(xj)ui(t)

)(
N∑
i=0

ϕ
(1)
i (xj)ui(t)

)

− γ
N∑
i=0

ϕ
(2)
i (xj)ui(t) = f(xj , t), j = 1, · · · , N − 1,
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N∑
i=0

ϕi(xj)ui(t0) = g(xj), j = 1, · · · , N − 1,

N∑
i=0

ϕi(x0)ui(t) = ρ(x0, t),

N∑
i=0

ϕi(xN )ui(t) = ρ(xN , t).

Since
ϕi(xj) = ϕji = δji, ϕ

(2)
i (xj) = ϕ

(2)
ji .

Then

FFM

0D
α,β
t uj(t) + uj(t)

(
N∑
i=0

ϕ
(1)
ji ui(t)

)
− γ

N∑
i=0

ϕ
(2)
ji ui(t) = f(xj , t), (9)

where j = 1, · · · , N − 1, and

uj(t0) = g(xj), j = 1, · · · , N − 1,

u0(t) = ρ(x0, t),

uN (t) = ρ(xN , t).

Suppose that pr(t) is the Legendre polynomial of degree r. Then, u(xj , t),
j = 1, · · · , N − 1, can be expanded in terms of Legendre polynomials as
follows

uj(t) =
m∑
r=0

ujrpr(t) = [uj0, u
j
1, · · · , u

j
m]Ψm(t) = ujΨm(t).

Therefore, the time derivatives cab be computed as

FFM

0D
α,β
t uj(t) = [uj0, u

j
1, · · · , u

j
m]Dα,βΨm(t) =

ujDα,βΨm(t) =

m∑
r=0

m∑
k=0

ujrD
α,β
rk pk(t).

where
uj = [uj0, u

j
1, · · · , u

j
m].
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It is worth noting that the collocation points can be selected randomly or
uniformly. Here, we choose m nodal points as tk = k4 t, k = 0, 1, · · · ,m
and 4t = 1

m . Then, we substitute points t = tz and x = xj at the
expanded form of equation (9) as follows

m∑
r=0

m∑
k=0

ujrD
α,β
rk pk(tz) +

(
m∑
r=0

ukj pr(tz)

)(
N∑
i=0

m∑
r=0

ϕ
(1)
ji pr(tz)u

i
r

)

− γ
N∑
i=0

m∑
r=0

ϕ
(2)
ji pr(tz)u

i
r = f(xj , tm). j = 1, · · · , N − 1, z = 1, · · · ,m,

with initial and boundary conditions

m∑
r=0

ujrpr(t0) = g(xj), j = 1, · · · , N − 1, z = 0,

u0(tz) = ρ(x0, tz), z = 0, · · · ,m,
uN (tz) = ρ(xN , tz), z = 0, · · · ,m.

The final system only includes algebraic equations which is technically
uncomplicated and can be solved using available mathematical software
such as MATLAB.

6 Numerical Experiments

In this section, some comparative examples are provided to show the
strength of the proposed method in approximating the solution of one-
dimensional fractal fractional Burgers equations with a nonlocal bound-
ary condition. The numerical results are performed in MATLAB 2016b
on an Intel core i5 (6G RAM) Windows Win10 system.

Example 6.1. Consider the nonlinear time fractal-fractional Burgers
equation (1) in [0, 1], and f(x, t) is given as

f =
C(α)2!t2−β+1

β(1− α)
Eα,3(x2 − x) + t4(x2 − x)(2x− 1)− 2γt2,

such that the exact solution is

u = t2(x2 − x).
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The initial and boundary condition can be obtained using the exact
solution.

The proposed method is applied to solve this example. Fig. 1 shows
the numerical solutions obtained by the presented method and the ab-
solute errors between exact and approximate solutions at β = 0.25 and
α = 0.25 respectively. Tables 1 and 2, display the absolute errors with
respect to spatial points N when m = 10 for some values of α and β.
Moreover, we reported the absolute error of the solution for some values
of m, α and β in Table 3 and 4. The reported results illustrate that one
can obtain excellent solution by applying a few number of barycentric
basis and Legendre polynomials.
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Figure 1: The approximate solutions (a) and the absolute error (b) for α =
0.35, β = 0.25 with N = 15,m = 10 and γ = 1, in Example 6.1.
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Table 1: Absolute error with β = 0.75, m = 10, γ = 1 and various
values of N for Example 6.1.

N α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9

5 7.6333e-8 7.5973e-8 9.8691e-8 1.7226e-7 7.6549e-7
10 5.1388e-8 5.2932e-8 6.6592e-8 1.1272e-7 5.0343e-7
15 5.1027e-8 5.2560e-8 6.6126e-8 1.1193e-7 4.9991e-7
20 2.2227e-8 2.0725e-8 2.4510e-8 7.0863e-8 2.1523e-7

Table 2: Absolute error with α = 0.75, m = 10, γ = 1 and various
values of N for Example 6.1.

N β = 0.1 β = 0.3 β = 0.5 β = 0.7 β = 0.9

5 3.3341e-7 2.4689e-7 2.7782e-7 2.3804e-7 6.3024e-8
10 1.7455e-7 1.6826e-7 2.2806e-7 1.6362e-7 5.6285e-8
15 1.7307e-7 1.6700e-7 2.2641e-7 1.6246e-7 5.5889e-8
20 1.0857e-7 7.7842e-8 1.6780e-7 1.0129e-7 4.8236e-8

Table 3: Absolute error with β = 0.75, N = 15, γ = 1 and various
values of m for Example 6.1.

m α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9

2 2.6187e-4 1.6680e-4 1.5567e-5 2.9822e-4 6.4759e-4
4 7.8026e-6 6.7678e-6 6.1771e-6 2.2074e-6 6.2143e-5
6 1.0703e-6 9.9998e-7 1.1559e-6 1.5901e-6 5.2159e-6
8 2.5217e-7 2.4954e-7 3.1258e-7 5.2400e-7 1.4720e-6

Table 4: Absolute error with α = 0.75, N = 15, γ = 1 and various
values of m for Example 6.1.

m β = 0.1 β = 0.3 β = 0.5 β = 0.7 β = 0.9

2 0.0019 3.8498e-4 1.5988e-4 3.8638e-4 4.5771e-4
4 6.6572e-5 4.2616e-5 2.1335e-5 3.3767e-6 1.9089e-5
6 8.9298e-6 5.5234e-6 4.4299e-6 2.3373e-6 8.6532e-7
8 1.7483e-6 1.2081e-6 1.0407e-6 7.5148e-7 9.8263e-8
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Example 6.2. In this example, we consider the fractal-fractional Burg-
ers equation (1) in [0, 1], and f(x, t) is given by

f =
C(α)3!t3−β+1

β(1− α)
Eα,4 sin(πx) + πt6 sin(πx) cos(πx) + π2γt3 sin(πx).

such that the exact solution is

u = t3 sin(πx).

The initial and boundary conditions can be obtained according to exact
solution.
The established method with some values of N and m is used to solve
this example. Fig. 2 shows the numerical solution and absolute errors at
α = 0.65, β = 0.5 with N = 15, m = 10 and γ = 1. The absolute errors
of the solutions for some values of α, β and N are summarized in Tables
5 and 6 with m = 10. Furthermore, Tables 7 and 8 reports the absolute
values for N = 15 and some different values of m, α and β. Based on
the reports obtained from this example, it is concluded that increasing
the number of Legendre basis and barycentric basis, the approximated
solutions tend to the exact solutions.
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Figure 2: The approximate solution (a) and absolute error (b) α = 0.65, β = 0.50
with N = 15,m = 10 in Example 6.2.
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Table 5: Absolute error with β = 0.5, m = 10, γ = 1 and various
values of N for Example 6.2.

N α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9

5 1.0510e-7 1.0517e-6 1.0463e-6 1.0302e-6 9.7861e-7
10 1.5528e-8 1.6254e-8 2.2557e-8 4.2154e-8 2.2121e-7
15 1.5528e-8 1.6254e-8 2.2557e-8 4.2154e-8 1.6729e-7
20 1.1483e-8 7.1838e-9 1.2300e-8 1.8696e-8 1.6729e-7

Table 6: Absolute error with α = 0.5, m = 10, γ = 1 and various
values of N for Example 6.2.

N β = 0.1 β = 0.3 β = 0.5 β = 0.7 β = 0.9

5 9.8762e-7 1.0314e-6 1.0463e-6 1.0563e-6 1.0659e-6
10 2.7379e-8 2.7376e-8 2.2557e-8 1.4697e-8 4.1775e-9
15 1.4638e-8 2.7376e-8 2.2557e-8 1.4697e-8 4.1775e-9
20 1.4638e-8 1.6602e-8 1.2300e-8 6.5502e-9 2.9158e-9

Table 7: Absolute error with β = 0.5, N = 15, γ = 1 and various
values of m for Example 6.2.

m α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9

2 0.0133 0.0138 0.0174 0.0284 0.0821
4 3.8392e-4 3.0450e-4 2.1106e-4 1.7216e-5 2.8874e-4
6 2.4782e-6 2.5160e-6 3.1605e-6 4.1750e-6 6.1371e-6
8 1.3152e-7 1.3878e-7 1.8948e-7 3.4125e-7 6.4796e-7

Table 8: Absolute error with α = 0.5, N = 15, γ = 1 and various
values of m for Example 6.2.

m α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9

2 0.0874 0.0345 0.0174 0.0089 0.0051
4 0.0022 6.6576e-4 2.1106e-4 3.1594e-5 4.0335e-5
6 8.1609e-6 5.2489e-6 3.1605e-6 1.3377e-6 1.8409e-7
8 3.1363e-7 2.4858e-7 1.8948e-7 1.0602e-7 5.5803e-9
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Example 6.3. As the last test problem, we consider problem (1) where

f =
C(α)4!t4−β+1

β(1− α)
Eα,5 exp(x) + t8 exp(2x)− γt4 exp(x).

such that the exact solution is given by

u = t4 exp(x).

The proposed method is used to solve this example with some values of
N and m. Fig. 3 displays the approximated solution and the absolute
error in the case N = 15,m = 0, α = 0.85, β = 0.75 and γ = 1. We
summarized the absolute error of the solution for some values of N,α
and β with m = 10 in tables 9 and 10, while Tables 11 and 12 provides
the absolute errors for N = 15 and distinct values of m,β and α. The
achieved results show that this method is efficient for this example with
high order of accuracy.
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Figure 3: The approximate solution (a) and absolute error (b) for N = 15,m = 10
and α = 0.85, β = 0.75, in Example 6.3.



BARYCENTRIC LEGENDRE INTERPOLATION ... 19

Table 9: Absolute error with β = 0.25, m = 10, γ = 1 and various
values of N for Example 6.3.

N α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9

5 1.0344e-6 1.0374e-6 1.0273e-6 1.0031e-6 9.1667e-7
10 1.3795e-8 1.7002e-8 2.4839e-8 5.3223e-8 4.9209e-7
15 1.3795e-8 1.7002e-8 2.4839e-8 5.3223e-8 1.9364e-7
20 2.3281e-9 5.3124e-9 8.4444e-9 3.1851e-8 9.7347e-8

Table 10: Absolute error with α = 0.25, m = 10, γ = 1 and various
values of N for Example 6.3.

N β = 0.1 β = 0.3 β = 0.5 β = 0.7 β = 0.9

5 9.9852e-7 1.0395e-6 1.0519e-6 1.0597e-6 1.0668e-6
10 1.5927e-8 1.7693e-8 1.5980e-8 1.1397e-8 3.8757e-9
15 1.5927e-8 1.7693e-8 1.5980e-8 1.1397e-8 3.8757e-9
20 8.7100e-9 5.0482e-9 7.7647e-9 6.6976e-9 2.3472e-9

Table 11: Absolute error with β = 0.25, N = 15, γ = 1 and various
values of m for Example 6.3.

m α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9

2 0.0347 0.0353 0.0419 0.0592 0.1303
4 0.0013 0.0011 8.7845e-4 5.1882e-4 0.1361
6 3.3109e-6 3.8797e-6 5.8401e-6 1.0090e-5 8.5796e-6
8 1.4346e-7 1.6983e-7 2.5989e-7 5.2499e-7 2.6318e-6

Table 12: Absolute error with α = 0.25, N = 15, γ = 1 and various
values of m for Example 6.3.

m β = 0.1 β = 0.3 β = 0.5 β = 0.7 β = 0.9

2 0.0770 0.0281 0.0134 0.0063 0.0021
4 0.0028 8.5547e-4 3.2420e-4 1.0793e-4 1.1475e-5
6 3.9808e-6 3.4365e-6 2.4554e-6 1.3449e-6 2.8104e-7
8 1.5170e-7 1.5714e-7 1.3377e-7 8.6969e-8 2.2879e-8
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7 Conclusion

In this paper, we presented a technique based on the barycentric in-
terpolation method and Legendre polynomials to obtain the numeri-
cal solution of non-linear time fractal-fractional Burgers equation. The
barycentric interpolation method is accurate, fast, simple and easy to
implement boundary conditions in order to prevent singularity, and also
the main advantage of Legendre polynomials is that by using only a few
Legendre basis functions, we achieve satisfactory results. The fractal-
fractional derivative is defined in the Atangana-Riemann-Liouville sense
with Mittag-Leffler kernel. The matrices obtained from these two meth-
ods converts the given problem to a system of nonlinear algebraic equa-
tions which can be solved numerically. Numerical experiments are given
to show the efficiency and accuracy of the proposed technique.
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