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Abstract. In this paper, we study the existence and multiplicity of
solutions for the following fractional problem

(−∆)spu+ a(x)|u|p−2u = f(x, u),

with the Dirichlet boundary condition u = 0 on ∂Ω where Ω is a
bounded domain with smooth boundary, p ≥ 2, s ∈ (0, 1) and a(x)
is a sign-changing function. Moreover, we consider two different as-
sumptions on the function f(x, u), including the cases of nonnegative
and sign-changing function.
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1 Introduction and Preliminaries

The topics related to the existence and multiplicity of solutions for fractional elliptic
problems have been investigated widely. Also, fractional problems naturally arise
in many different branches of science such as optimization [30], conservation laws
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[16], water waves [26, 27], quantum mechanics [32], finance [25], minimal surfaces
[20, 21], phase transitions [33, 53], virus transmission [43, 47] and other sciences (see
also [1–4,6–12,14,15,19,23,24,34,36–42,49–52,54]).

In this paper, we investigate the existence and multiplicity of solutions for the
following fractional problem{

(−∆)spu+ a(x)|u|p−2u = f(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1)

where Ω is a bounded subset of Rn, n > ps with s ∈ (0, 1), p ≥ 2, a(x) ∈ L∞(Ω) is a
sign-changing function and

(−∆)spu(x) := 2 lim
ε→0

∫
Rn\Bε(x)

|u(y)− u(x)|p−2
(
u(y)− u(x)

)
|x− y|n+ps

dy.

In addition, one of the following assumptions is satisfied:

(f1) f(x, u) = b(x)|u|q−2u, where b(x) ∈ L∞(Ω), b(x) ≥ 0 a.e. in Ω and p < q < p∗s
where p∗s = np

n−ps is the fractional Sobolev exponent,

(f2) f(x, u) = b(x)|u|q−2u+ λg(x, u)− h(x)|u|r−2u, where λ > 0, 2 ≤ r ≤ p < q <
p∗s , b(x) ∈ L∞(Ω) which may change sign and h(x) ∈ C(Ω̄) is a nonnegative
function.

Recently a great deal of attention has been focused on the study of existence
and multiplicity of solutions for fractional differential equations. In particular, in the
case of f(x, u) = λb(x)uq, the problem (1) has been studied by some authors and
the existence of multiple positive solutions has been established. For instance, Brown
and Wu in [18] considered the following problem

−∆pu = λa(x)|u|q + b(x)up, x ∈ Ω,

with Dirichlet boundary condition, where Ω ⊂ Rn is a bounded domain with smooth
boundary ∂Ω, λ > 0, q < 1 < p < n+2

n−2
and a, b : Ω→ R are smooth functions which

may change sign on Ω. They proved the existence of at least two positive solutions by
using the Nehari manifold and fibering maps. Also, Barrios et al. in [13] obtained the
existence and multiplicity of solutions for the following fractional differential equation

(−∆)su = λuq + u2∗s−1, x ∈ Ω,

with Dirichlet boundary condition, where Ω ⊂ Rn is a regular bounded domain,
λ > 0, 0 < s < 1, n > 2s and (−∆)s denotes the fractional Laplace operator defined
by

−(−∆)su(x) = 2

∫
Rn

u(x+ y) + u(x− y)− 2u(x)

|y|n+2s
dy, x ∈ Rn.

Moreover, Ning et al. in [46] proved the existence, multiplicity and bifurcation
results for the following problem with Dirichlet boundary condition

(−∆)su = λ|u|q−2u+
|u|p

∗
s,α−2u

|x|α , x ∈ Ω,
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where p ∈ (1,∞), 0 < s < 1, Ω is a bounded domain containing the origin in Rn

with Lipschitz boundary, 0 ≤ α < ps < n and p∗s,α = (n−α)p
n−ps is the fractional Hardy-

Sobolev exponent. As well as in [48] Saiedinezhad, by using the Nehari manifold with
variational arguments, the existence of solutions for the following semilinear elliptic
equation was studied

∆2u− a(x)∆u = b(x)|u|p−2u,

with Navier boundary condition ∆u = u = 0 on ∂Ω, where Ω is a bounded domain
in Rn with smooth boundary and 2 < p < 2∗ = 2n

n−2
. In this paper, the author

considered two different assumptions on the potentials a(x) and b(x) including the
case of sign-changing weights. Recently in [45] Nhan and Truong studied a class
of logarithmic fractional Schrdinger equations with possibly vanishing potentials as
follows

−∆s
pu+ V (x)|u|p−2u = λK(x)|u|p−2u+ µ|u|q−2u log |u|, x ∈ Rn,

where λ, µ > 0, 0 < s < 1 and n > 2s. They obtained the existence of at least one
nontrivial solution by using the fibrering maps and the Nehari manifold.

In this paper, motivated by the above achievements and due to the widespread use
of fractional differential equations we will use variational methods to study of existence
and multiplicity of solutions for problem (1) and for this purpose, we consider the
fractional Sobolev space W s,p

0 (Ω) with the norm

‖u‖ := ‖u‖Ws,p
0 (Ω) =

(∫
Ω×Ω

|u(x)− u(y)|p

|x− y|n+ps
dxdy

) 1
p

. (2)

For the convenience of the reader we repeat the relevant material from [22] without
proofs. Assume

X =

{
u|u : Rn → R, u|Ω ∈ Lp(Ω),

∫
Q

|u(x)− u(y)|p

|x− y|n+ps
dxdy <∞

}
,

with the norm ‖u‖X =

(∫
Q

|u(x)−u(y)|p
|x−y|n+ps dxdy

) 1
p

, where Q := R2n\(CΩ × CΩ) and

CΩ = Rn\Ω.
Also set X0 denotes the closure of C∞0 (Ω) in X. By the results in [29] the space

X0 is a Hilbert space with the scalar product defined for any u, v ∈ X0 as

〈u, v〉 =

∫
Q

|u(x)− u(y)|p−1(v(x)− v(y))

|x− y|n+ps
dxdy,

and the norm

‖u‖X0 :=

(∫
Q

|u(x)− u(y)|p

|x− y|n+ps
dxdy

) 1
p

,

which is equivalent to the equation defined in (2). Moreover, based on the results
found in [29,35], it can be said that the embedding X0 ↪→ Lq(Ω) is continous for any
q ∈ [1, p∗] and compact whenever q ∈ [1, p∗). Thus, there exists a positive constant
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Sp such that ‖u‖Lp(Ω ≤ Sp × ‖u‖X0 . Indeed, the sharp constant Sp is equal to 1
µp

,

where

µp := inf{ ‖u‖X0

‖u‖Lp(Ω)

: 0 6= u ∈ X0}. (3)

This paper is organized into 4 sections. Section 2 is devoted to some notations and
preliminaries which, will be used in the sequel. In Section 3 we consider and solve
problem (1) by assuming condition (f1) . Finally in Section 4, we prove the existence
and multiplicity of positive solutions of problem (1) under condition (f2).

2 Main Results

The main results of this paper are in two parts. In the third section through presup-
posing condition (f1) we did our best to resolve problem (1). Therefore, according
to the basic variational arguments, we know that the weak solutions of (1) under
assumption (f1), is corresponding to the local minimizer of

I(u) =
1

p
M(u) +

1

p
A(u)− 1

q
B(u), (4)

where I : X0 → R is the associated Euler-Lagrange functional, M(u) := ‖u‖pX0
,

A(u) :=
∫

Ω
a(x)|u|pdx and B(u) :=

∫
Ω
b(x)|u|qdx.

Also in Section 4, where condition (f2) is satisfied, we have the following problem{
(−∆)spu+ a(x)|u|p−2u = b(x)|u|q−2u+ λg(x, u)− h(x)|u|r−2u, x ∈ Ω,

u = 0, x ∈ ∂Ω.
(5)

The Euler-Lagrange functional associated with this problem is Ĩ : X0 → R such that

Ĩ(u) =
1

p

(
M(u) +A(u)

)
− 1

q
B(u)− λ

∫
Ω

G(x, |u|)dx+
1

r
H(u), (6)

where G(x, u) :=
∫ u

0
g(x, s)ds and H(u) :=

∫
Ω
h(x)|u|rdx. Also we know that if Ĩ(u)

denotes the energy functional corresponding to a problem, then all of the critical
points of Ĩ(u) must lie in the set N := {u; 〈Ĩ ′(u), u〉 = 0}, which is known as the
Nehari manifold (see [44,55]). On the other hand, the fibering map

ϕu(t) := Ĩ(tu) =
tp

p

(
M(u) +A(u)

)
− tq

q
B(u)− λ

∫
Ω

G(x, t|u|)dx+
tr

r
H(u), (7)

is closely linked to the Nehari manifold, i.e., ϕ′u(1) = 0 if and only if u ∈ N , (see [17,
28]). So it is reasonable to divide the Nehari manifold into three parts corresponding
to local minima, local maxima and inflction points of the critical points of ϕ′u(t),
and hence we define N+ := {u ∈ N,ϕ′′u(1) > 0}, N− := {u ∈ N,ϕ′′u(1) < 0} and
N0 := {u ∈ N,ϕ′′u(1) = 0}.

Besides, we set
a+ := ess sup{a(x), x ∈ Ω},
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Ã(u) := M(u) +A(u) = ‖u‖pX0
+

∫
Ω

a(x)|u|pdx.

In the sequel we need the following lemma:

Lemma 2.1. If a+ < µp, then there exists δ1 > 0 such that for every u ∈ X0,
Ã(u) ≥ δ1‖u‖pX0

.

Proof. If
∫

Ω
a(x)|u|pdx ≥ 0, then the lemma is obvious; otherwise, it would be

proved by contradiction, supposing that
∫

Ω
a(x)|u|pdx < 0. If for every δ > 0, there

exists u ∈ X0 such that Ã(u) < δ‖u‖pX0
, it can be deduced that

(1− δ)‖u‖pX0
<

∫
Ω

−a(x)|u|pdx < a+

∫
Ω

|u|pdx.

Now, by taking δ < 1− a+

µp
we get a+

1−δ < µp which leads to a contradiction with (3).�

Remark 2.2. According to lemma 2.1 we know that if a+ < µp then Ã(u) ≥ δ1‖u‖pX0

for δ1 > 0; on the other hand Ã(u) ≤ ‖u‖pX0
+‖a‖∞Spp‖u‖pX0

. Therefore, in the sequel

for a+ < µp, we consider X0 with the following norm:

‖u‖Ã :=
(
Ã(u)

) 1
p =

(
‖u‖pX0

+

∫
Ω

a(x)|u|pdx
) 1
p

. (8)

The main results in this paper are the following theorems.

Theorem 2.3. Suppose that f(x, u) satisfies condition (f1) and a+ < µp, then prob-
lem (1) admits at least one weak solution in X0.

Theorem 2.4. Assume a+ < µp, then:
(i). If f(x, u) satisfies condition (f2), then there exists λ∗ such that for 0 < λ < λ∗,
Ĩ admits a minimizer on N+ which is a nontrivial weak solution of problem (5).
(ii). If f(x, u) satisfies condition (f2), then there exists λ∗∗ such that for 0 < λ < λ∗∗,
there exists a minimizer of Ĩ on N− which is a nontrivial weak solution of problem
(5).

3 Proof of Theorem 2.3

In this section, we consider problem (1) such that f(x, u) satisfies condition (f1), using
(4) for every u 6= 0, I(tu) ↪→ −∞ as t ↪→∞. Thus, I(u) is not bounded below and so
the minimizing process on the hole space X0 may not be possible. If for every α ∈ R,
we let

Bα := {u ∈ X0 :

∫
Ω

b(x)|u|qdx = α},

then, for every u ∈ Bα, by using Remark 2.2 we have I(u) = 1
p
‖u‖p

Ã
− 1
q
α. Thus, I|Bα

is certainly bounded below and the minimizing approach of I(u) on Bα is equivalent
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to the minimizing approach of ‖u‖p
Ã

on Bα. Set infu∈Bα ‖u‖
p

Ã
=: mα, we will show

that mα is obtained by a function, and a multiple of this function is a minimizer of
I(u) and as a result, weak solution of (1).

Lemma 3.1. For every α > 0, there exists a nonnegative function uα ∈ Bα such
that ‖u‖p

Ã
= mα.

Proof. By the coercivity of I(u) on Bα, there exists a bounded minimizer se-

quence {u(α)
n } for χ(u) := ‖u‖p

Ã
on Bα. Therefore, {|u(α)

n |} is a minimizer sequence

in Bα, so we can suppose that u
(α)
n (x) ≥ 0 a.e. on Ω. By the reflexivity of X0, there

exists a subsequence of {u(α)
n }, for simplicity is denoted by {u(α)

n }, which is weakly

convergent to uα ∈ X0 (u
(α)
n ⇀ uα). So by compact embedding X0 ↪→ Lq(Ω), {u(α)

n }
is strongly convergent in Lq(Ω), and hence

limn→∞

∫
Ω

b(x)|u(α)
n |qdx =

∫
Ω

b(x)|uα|qdx,

which means uα ∈ Bα. If u
(α)
n 6→ uα in X0, then ‖uα‖pÃ < lim inf ‖un‖pÃ = mα which

is a contradiction with uα ∈ Bα. So un → uα in X0 and mα = infu∈Sα ‖u‖
p

Ã
= ‖uα‖pÃ.

�
Proof of Theorem 2.3. Let χ(u) = ‖u‖p

Ã
, now if uα is a minimizer of χ(u)

under the condition B(u) = α, then by Lagrange multiplier theorem, there exists
λ ∈ R such that χ′(uα) = λB′(uα), and hence for every v ∈ X0 we have

〈χ′(uα), v〉 = qλ

∫
Ω

b(x)|uα|q−2uαvdx.

By taking uα = Cwα we get

Cp−1

∫
Q

|wα(x)− wα(y)|p−2(wα(x)− wα(y))(v(x)− v(y))

|x− y|n+ps
dxdy

+ Cp−1

∫
Ω

a(x)|wα|p−2wαvdx =
qλ

p
Cq−1

∫
Ω

b(x)|wα|q−2wαvdx.

Now, by assuming C = ( p
qλ

)
1
q−p we have∫

Q

|wα(x)− wα(y)|p−2(wα(x)− wα(y))(v(x)− v(y))

|x− y|n+ps
dxdy

+

∫
Ω

a(x)|wα|p−2wαvdx =

∫
Ω

b(x)|wα|q−2wαvdx,

consequently, wα is a weak solution of (1) under assumption (f1). �

Lemma 3.2. For α 6= β the minimizers of χ(u) on Bα and Bβ give the same weak
solution of (1).
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Proof. For α 6= β, we have

Bα =
{
u ∈ X0 :

∫
Ω

b(x)|u|qdx = α
}

=
{(α
β

)1/q
v : v ∈ X0,

∫
Ω

b(x)|v|qdx = β
}
.

Therefore,

mα = inf
u∈Bα

‖u‖p
Ã

=
(α
β

)p/q
mβ .

So uα minimizes ‖u‖p
Ã

on Bα if and only if ( β
α

)1/quα minimizes ‖u‖p
Ã

on Bβ . Indeed,

by substituting Cα = ( α
mα

)
1
q−p we have

wα =
1

Cα
uα = (

mα

α
)

1
q−p
(α
β

)1/q
uβ = (

mβ

β
)

1
q−p uβ =

uβ
Cβ

= wβ .�

4 Proof of Theorem 2.4

In this section, where condition (f2) is satisfied, we study the existence and multiplic-
ity results for problem (5). One of the main difficulties in this problem will be the
nonlinearity of g(x, u). To overcome this difficulty we need to restrict g(x, u) to the
following conditions:

(g1) g(x, u) ∈ C1(Ω×R) such that g(x, 0) ≥ 0, g(x, 0) 6≡ 0 and there exists ḡ1(x) ∈
L∞(Ω) such that, |gu(x, u)| ≤ ḡ1(x)up−2 where (x, u) ∈ Ω× R+.

(g2) For u ∈ Lp(Ω),
∫

Ω
gu(x, t|u|)u2dx has the same sign for every t ∈ (0,∞).

A typical example of g(x, u) is given by g(x, u) = 4
√

(1 + u2)p, for other examples,
please refer to [5].

Remark 4.1. If g(x, u) satisfies (g1), then there exists ḡ2(x) ∈ Lp(Ω) such that
g(x, u) ≤ ḡ2(x)(1 + up−1) and G(x, u) ≤ 2ḡ2(x)(1 + up), for all (x, u) ∈ Ω × R+.
Moreover, based on the compactness of the embedding X0 ↪→ Lr(Ω) for 1 ≤ r < p∗

and the fact that the operator u 7−→ g(x, u) is continuous, we conclude that the
functional J(u) =

∫
Ω
G(x, u)dx is weakly continuous, i.e., if un ⇀ u, then J(un) →

J(u) and moreover the operator J ′(u) =
∫

Ω
g(x, u)udx is weak to strong continuous,

i.e., if un ⇀ u, then J ′(un)→ J ′(u).

The following lemma shows that minimizers for Ĩ on N are usually critical points
for Ĩ, as proved by Brown and Zhang in [17]

Lemma 4.2. Let u0 be a local minimizer for Ĩ(u) on N such that u0 /∈ N0, then u0

is a critical point of Ĩ(u).

Motivated by the above lemma, we will get conditions for N0 = ∅

Lemma 4.3. If a+ < µp then there exists λ0 > 0 such that for 0 < λ < λ0, we have
N0 = ∅.
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Proof. Suppose the other way round, then for u ∈ N0, using (g1), (7) and the
relation of ϕ′′u(1) = 0, we have (p− 1)‖u‖p

Ã
≤ (q − 1)S̃qq‖b‖∞‖u‖qÃ + ‖ḡ1‖∞S̃ppλ‖u‖pÃ,(

where S̃r denotes the best Sobolev constant for the embedding of X0 with the norm
‖u‖Ã into Lr(Ω)

)
and hence

‖u‖Ã ≥
(p− 1− ‖ḡ1‖∞S̃ppλ

(q − 1)S̃qq‖b‖∞

) 1
q−p

. (9)

On the other hand, from (7), (g1), Remark 4.1 and using the fact that (q−1)ϕ′u(1)−
ϕ′′u(1) = 0, we obtain

(q − p)‖u‖p
Ã
≤ λ

( ∫
Ω

(q − 1)g(x, |u|)|u| − gu(x, |u|)u2)dx+ (r − q)H(u)

≤ 2λ(q − 1)‖ḡ2‖∞|Ω|+ λ(2(q − 1)‖ḡ2‖∞ + ‖ḡ1‖∞)S̃pp‖u‖pÃ,

which concludes

‖u‖Ã ≤
( 2(q − 1)λ‖ḡ2‖∞|Ω|
q − p− λ(2(q − 1)‖ḡ2‖∞ + ‖ḡ1‖∞)S̃pp

) 1
p .

Therefore, using (9) we must have

(p− 1− ‖ḡ1‖∞SS̃ppλ
(q − 1)S̃qq‖b‖∞

) 1
q−p ≤

( 2(q − 1)λ‖ḡ2‖∞|Ω|
q − p− λ(2(q − 1)‖ḡ2‖∞ + ‖ḡ1‖∞)S̃pp

) 1
p ,

which is a contradiction for λ sufficiently small. So there exists λ0 > 0 such that for
0 < λ < λ0, N

0 = ∅. �

Lemma 4.4. If a+ < µp then there exists λ1 > 0 such that for λ < λ1, Ĩ(u) is
coercive and bounded below on N .

Proof. For u ∈ N , using (6) and remark 4.1 we have

Ĩ(u) = (
1

p
− 1

q
)‖u‖p

Ã
− λ

∫
Ω

(G(x, |u|)− 1

q
g(x, |u|)|u|)dx+ (

1

r
− 1

q
)H(u)

≥ (
1

p
− 1

q
)‖u‖p

Ã
− 2λ‖ḡ2‖∞(1 +

1

q
)|Ω| − 2λ‖ḡ2‖∞S̃pp(1 +

1

q
)‖u‖p

Ã
.

As a result, Ĩ is coercive and bounded below on N for 0 < λ < λ1 = q−p
2p(q+1)‖ḡ2‖∞S̃

p
p

.

�

Lemma 4.5. If a+ < µp then there exists λ2 > 0 such that, for 0 < λ < λ2, ϕu(t)
takes on positive values for all non-zero u ∈ X0.

Proof. If B(u) ≤ 0, then using (7) and by elementary calculus we can show that
ϕu(t) > 0 for sufficiently large t. Suppose there exists u ∈ X0 such that B(u) > 0,
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through using (7), (8) and by elementary calculus, ψu(t) := tp

p
‖u‖p

Ã
− tq

q
B(u) takes

on a maximum at tmax =
( ‖u‖p
B(u)

) 1
q−p and so

ψu(tmax) = (
1

p
− 1

q
)

{
(‖u‖p

Ã
)q

(B(u))p

} 1
q−p
≥ (

1

p
− 1

q
)

{
1

|b+‖p∞S̃pqq

} 1
q−p

:= δ2 > 0, (10)

where δ2 is independent of u. Moreover, for 1 ≤ α < p∗ we have

(tmax)α
∫

Ω

|u|αdx ≤ S̃αα
(‖u‖p

Ã

B(u)

) α
q−p

(‖u‖p
Ã

)
α
p = S̃αα

{ ‖u‖pq
Ã

(B(u))p

} α
p(q−p)

= S̃αα
( qp)
q − p

)α
p (ψu(tmax)

)α
p = c(ψu(tmax)

)α
p ,

hence using remark 4.1, we conclude that

λ

∫
Ω

G(x, tmax|u|)dx−
1

r
H(tmax|u|) ≤ 2λ‖ḡ2‖∞

∫
Ω

(
1 + |tmaxu|p

)
dx

≤ 2λ‖ḡ2‖∞|Ω|+ c1λ‖ḡ2‖∞ψu(tmax),

where c1 is independent of u. So from (10) we get

ϕu(tmax) = ψu(tmax)− λ
∫

Ω

G(x, tmax|u|)dx+
1

r
H(tmax|u|)

≥ ψu(tmax)

(
1− λ2‖ḡ2‖∞|Ω|

(
ψu(tmax)

)−1 − λc1‖ḡ2‖∞
)

≥ δ2
(

1− δ−1
2 λ2‖ḡ2‖∞|Ω| − λc1‖ḡ2‖∞

)
.

Clearly ϕu(tmax) > ε > 0, for all nonzero u, provided that

λ < λ2 :=
1

2‖ḡ2‖∞|Ω|δ−1
2 + c1‖ḡ2‖∞

.�

Since ϕu(0) ≤ 0, so it is clear that if a+ < µp and 0 < λ < λ2 then there exists
0 < τ < tmax such that ϕ′u(τ) > 0, and so we have the following corollary:

Corollary 4.6. (i). If a+ < µp, 0 < λ < λ1 and B(u) ≤ 0 for u ∈ X0 \ {0}, then
there exists t1 such that t1u ∈ N+ and Ĩ(t1u) < 0.
(ii). If a+ < µp, 0 < λ < min{λ1, λ2} and B(u) > 0 for u ∈ X0 \ {0}, then there
exist t1 < t2 such that t1u ∈ N+, t2u ∈ N− and Ĩ(t1u) < 0.

Proof.(i). From the (7) and (g1), for a fixed u, we know ϕ′u(0) < 0 and using
lemma 4.4, limt→∞ ϕ

′
u(t) = +∞, so by the intermediate value theorem, there exists

t1 > 0 such that ϕ′u(t1) = 0. Now since ϕ′u(t) < 0 for 0 < t < t1 and ϕ′u(t) > 0 for
t1 < t, thus t1u ∈ N+ and Ĩ(t1u) < Ĩ(0) = 0. �

(ii). As in the proof of (i), we obtain ϕ′u(0) < 0, limt→∞ ϕ
′
u(t) = −∞ and by

using lemma 4.5 we get ϕ′u(τ) > 0 for a suitable τ , so the intermediate value theorem
concludes that there exist t1, t2 such that 0 < t1 < τ < t2, ϕ′u(t1) = ϕ′u(t2) = 0,
t1u ∈ N+, t2u ∈ N− and Ĩ(t1u) < Ĩ(0) = 0. �
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Lemma 4.7. There exists λ3 > 0 such that if 0 < λ < λ3, then B(u) > 0 provided
that u ∈ N−.

Proof. Suppose otherwise, that is, −(q − 1)B(u) ≥ 0 and by (7)

ϕ
′′
u(1) = (p− 1)‖u‖p

Ã
− (q − 1)B(u)− λ

∫
Ω

gu(x, |u|)u2dx+ (r − 1)H(u) < 0,

so using (g1), (p− 1)‖u‖p
Ã
< λ‖ḡ2‖∞S̃pp‖u‖pÃ, which is a contradiction for λ < λ3 :=

p−1
‖ḡ2‖∞S

p
p
. �

Proof of Theorem 2.4(i). Assume λ∗ := min{λ0, λ1, λ2}, as in lemma 4.4, Ĩ is
bounded below on N and so on N+. Let {un} be a minimizing sequence for Ĩ on N+,
i.e., limn→∞ Ĩ(un) = infu∈N+ Ĩ(u) = c, and by Ekeland’s variational principle [31] we
may assume 〈Ĩ ′(un), un〉 → 0.

On the other hand, similar to lemma 4.4, Ĩ(un)− 1
q
〈Ĩ ′(un), un〉 ≥ C‖un‖Ã−K, so

{un} is bounded in X0 and without loss of generality, we may assume that un ⇀ u1

in X0 and un → u1 in Lr(Ω) for 1 ≤ r < p∗ and un(x)→ u1(x), a.e.
By corollary 4.6 for u1 ∈ X0 \ {0} there exists t1 such that t1u1 ∈ N+ and

so ϕ′u1
(t1) = 0. Now we show that un → u1 in X0. Suppose this is false, then

‖u1‖pÃ < lim infn→∞ ‖un‖pÃ. So from (6) and remark 4.1, ϕ′un(t1) > ϕ′u1
(t1) = 0, for

sufficiently large n. Since {un} ⊆ N+, by considering possible maps it is easy to
see that ϕ′un(t) < 0 for 0 < t < 1 and ϕ′un(1) = 0 for all n. Hence we must have
t1 > 1, but t1u1 ∈ N+

λ and so Ĩ(t1u1) < Ĩ(u1) < limn→∞ Ĩ(un) = infu∈N+ Ĩ(un),
which is a contradiction. Therefore un → u1 in X0 and so Ĩ(u1) = limn→∞ Ĩ(un) =
infu∈N+ Ĩ(u). Thus u1 is a minimizer for Ĩ on N+ and by using lemmas 4.2 and 4.3,
u1 is a nontrivial weak solution of (5). �

Proof of Theorem 2.4(ii). Let λ∗∗ := min{λ0, λ1, λ2, λ3}, then by lemma 4.5
for all u ∈ N− we have Ĩ(u) ≥ Ĩ(tmaxu) > ε > 0 i.e., infu∈N− Ĩ(u) ≥ 0. Hence there
exists a minimizing sequence {un} ⊆ N− such that limn→∞ Ĩ(un) = infu∈N− Ĩ(u) ≥
0. Now similarly as in the proof of the pervious theorem we find that, {un} is bounded
in X0, un ⇀ u2 in X0 and un → u2 in Lr(Ω), 1 < r < p∗. Since un ∈ N− so by
lemma 4.7, B(un) > 0 and B(u2) ≥ 0. We claim that B(u2) > 0. Suppose this is
false, thus (p − 1)‖u2‖pÃ < λ‖ḡ2‖∞S̃pp‖u2‖pÃ, which gives a contradiction for λ < λ3.

So by corollary 4.6 there exists t2 > 0 such that t2u2 ∈ N−. We claim that un → u2

in X0; if it is supposed that this is false, so ‖u2‖pÃ < lim infn→∞ ‖un‖pÃ. But un ∈ N−

and so Ĩ(un) ≥ Ĩ(tun) for all t ≥ 0. Therefore, using remark 4.1 we get

Ĩ(t2u2) =
1

p
tp2‖u2‖pÃ −

1

q
tq2B(u2)− λ

∫
Ω

G(x, t2|u2|)dx+
tr2
r
H(u2)

< lim
n→∞

(1

p
tp2‖un‖

p

Ã
− 1

q
tq2B(un)− λ

∫
Ω

G(x, t2|un|)dx+
tr2
r
H(un)

)
= lim
n→∞

Ĩ(t2un) ≤ lim
n→∞

Ĩ(un) = inf
u∈N−

Ĩ(u),

which is a contradiction, hence by lemmas 4.2 and 4.3, u2 is a nontrivial weak solution
of (5) which belongs to N−. �
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Conclusion. This paper has two impotant Theorems; in Section 3, we establish
the existence of a solution for problem(1) by using Lagrange multiplier theorem.
Also in Section 4, by using the Nehari manifold and the fibering maps, we prove the
existence of two distinct weak solutions for problem (5).
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