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Abstract. Let R be a commutative ring with identity and R[[x]] be
the ring of formal power series with coefficients in R. In this article
we consider sufficient conditions in order that P [[x]] is a minimal prime
ideal of R[[x]] for every minimal prime ideal P of R and also every
minimal prime ideal of R[[x]] has the form P [[x]] for some minimal
prime ideal P of R. We show that a reduced ring R is a Noetherian
ring if and only if every ideal of R[[x]] is nicely-contractible (we call an
ideal I of R[[x]] a nicely-contractible ideal if (I ∩R)[[x]] ⊆ I). We will
trivially see that an ideal I of R[[x]] is a z-ideal if and only if we have
I = (I, x) in which I is a z-ideal of R and also we show that whenever
every minimal prime ideal of R[[x]] is nicely-contractible, then I[[x]] is
a z◦-ideal of R[[x]] if and only if I is an ℵ0-z

◦-ideal.
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1. Introduction

Throughout the paper R denotes a commutative ring with identity and
R[[x]] denotes the ring of formal power series over R. Whenever f =∑∞

n=0 anxn ∈ R[[x]], then we usually use fn instead of an. Supposing
S ⊆ R[[x]], we denote by C(S) the set of all coefficients of elements of S
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and use C(f) instead of C({f}). By Min(R) (resp. Max(R)) we mean
the set of all minimal prime (resp. maximal) ideals of R. If I is an
ideal of R, then Min(I) denotes the set of all minimal prime ideals of
I. For each S ⊆ R let Ann(S) = {r ∈ R : rs = 0, for all s ∈ S},
< S >R be the ideal generated by S in R and PS (resp. MS) be the
intersection of all minimal prime (resp. maximal) ideals containing S.
Clearly, if there is no minimal prime (resp. maximal) ideal containing
S, then PS = R (resp. MS = R). We use Pa (resp. Ma) instead of P{a}
(resp. M{a}) and rad(R) (resp. Jac(R)) instead of P0 (M0); when we
deal with rings of formal power series, we use PS (resp. MS) instead
of PS (resp. MS) where S ⊆ R[[x]]. An ideal I of a ring R is called a
z◦-ideal (resp. z-ideal) if for each a ∈ I we have Pa ⊆ I (resp. Ma ⊆ I).
By Iz (resp. Iz) we mean the smallest z-ideal (resp. the largest z-ideal,
if there exists) containing (resp. contained in) I.
By C(X) we mean the ring of continuous functions on a Tychonoff topo-
logical space X, Z(f) = f−1{0}, Coz(f) = X\Z(f) where f ∈ C(X),
and Op(X) denotes the set {f ∈ C(X) : p ∈ intβXclβXZ(f)}, where βX

is the Ston-Čech compactification of X and p ∈ βX. If p ∈ X, then we
usually use Op(X) instead of Op(X). The reader is referred to [3] and
[11] for more information about the rings of formal power series, to [6]
and [7] for more information about topological spaces and rings of con-
tinuous functions and to [9], [1], [4], [10], [5] and [2] for more information
about z-ideals and z◦-ideals.
In Section 1, we give preliminary statements about rings of formal power
series. In Section 2, we characterize z-ideals of rings of formal power
series. We show that an ideal I is a z-ideal if and only if I = (I, x),
where I is a z-ideal of R. Section 3 is devoted to z◦-ideals of R[[x]]. To
consider z◦-ideals, we need some facts about minimal prime ideals and
so we investigate some conditions under which P [[x]] is a minimal prime
ideal in R[[x]], where P ∈ Min(R). Also, we seek sufficient conditions
so that every minimal prime ideal of R[[x]] has the form P [[x]], where
P ∈ Min(R). Considering this, we introduce some new concepts such as
“λ-annihilator exclusion property”, “λ-z◦-ideal”, where λ is a cardinal
number and “nicely-contractible”. We conclude that R is a Noetherian
ring if and only if every ideal of R is nicely-contractible. Also, we show
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that if every minimal prime ideal of R[[x]] is nicely-contractible then
I[[x]] is a z◦-ideal of R[[x]] if and only if I is a ℵ0-z◦-ideal.
The proof of the following proposition is straightforward and is omitted.

Proposition 1.1. Let R be a ring, then the following statements hold.
(a) f =

∞
n=0 fnx

n is unit in R[[x]] if and only if f0 is a unit in R.
(b) Let I be an ideal of R. Then the map ϕ : R[[x]] −→ R

I [[x]] given
by ϕ(

∞
n=0 fnx

n) =
∞
n=0(fn + I)xn is an epimorphism with kernel

I[[x]] and R[[x]]I[[x]] 
R
I [[x]].

(c) P [[x]] is a prime ideal of R[[x]] if and only if P is a prime ideal
of R.

(d)

α∈A(Iα[[x]]) = (


α∈A Iα)[[x]] and so I is a semiprime ideal of

R if and only if I[[x]] is a semiprime ideal of R[[x]].
(e)


I[[x]] ⊆

√
I[[x]] and so rad(R[[x]]) ⊆ rad(R)[[x]].

(f) If R is a reduced ring, then so is R[[x]]; i.e., if f =
∞
n=0 fnx

n

is a nilpotent element in R[[x]], then fn is a nilpotent element in R for
n = 0, 1, ....

(g) M ∈ Max(R[[x]]) if and only if there exists M ∈ Max(R) such
that M = (M,x).

(h) Jac(R[[x]]) = (Jac(R), x). But since x ∈ Jac(R[[x]])\rad(R[[x]]),
we always have rad(R[[x]])  Jac(R[[x]]).
It is well-known that the converse of the part (f) of Proposition 1.1 is
not true. We show this fact, in another way, in Example 3.15.

Definition 1.2. An ideal I of R is said to be a strongly z◦-ideal, or
briefly sz◦-ideal, (resp. strongly z-ideal, or briefly sz-ideal) if PS ⊆ I
(resp. MS ⊆ I) for every finite subset S of I. Clearly, any intersection
of sz◦-ideals (resp. sz-ideals) is a sz◦-ideal (resp. sz-ideal). Hence, the
smallest sz◦-ideal (resp. sz-ideal) containing I exists and we denote it
by Isz◦ (resp. Isz), see [1] and [2].
It is easy to see that every minimal prime ideal is sz◦-ideal. Also, if I is
a sz◦-ideal (resp. z◦-ideal) and P ∈ Min(I), then P is a sz◦-ideal (resp.
z◦-ideal). This fact also holds for sz-ideal (resp. z-ideal), see [7], [2] and
[5].
The following is a general form of Proposition 2.9 in [2].
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Proposition 1.3. The following statements are equivalent in any ring
R.

(a) Jac(R) = rad(R).
(b) Every minimal prime ideal of R is a sz-ideal.
(c) PS is a sz-ideal of R for every finite subset S of R.
(d) PS is a z-ideal of R for every finite subset S of R.
(e) Pa is a z-ideal of R for every a ∈ R.
(f) Every minimal prime ideal of R is a z-ideal.
(g) Every z◦-ideal of R is a z-ideal.
(h) Every sz◦-ideal of R is a sz-ideal.
(i) Pa is a sz-ideal of R for every a ∈ R.

Proof. (a) ⇒ (b). Suppose that Q ∈ Min(R) and S is a finite subset
of Q. Thus, there exists a /∈ Q such that aS ⊆ rad(R), so aS ⊆ Jac(R).
Therefore

Ma ∩MS = MaS ⊆ Jac(R) = rad(R) ⊆ Q.

It follows that MS ⊆ Q.
(b) ⇒ (c) ⇒ (d) ⇒ (e) ⇒ (f) ⇒ (g) are trivial.
(g) ⇒ (a). Clearly rad(R) is a z◦-ideal and so is a z-ideal. Since

Jac(R) is the smallest z-ideal in R, we have Jac(R) ⊆ rad(R).
(b) ⇒ (h). Let I be a sz◦-ideal and S is a finite subset of I. Since

every minimal prime ideal is a sz-ideal, it follows that MS ⊆ PS ⊆ I.
(h) ⇒ (i). It is clear.
(i) ⇒ (g). Suppose that I is a z◦-ideal and a ∈ I. Since Pa is a

sz-ideal and consequently a z-ideal, Ma ⊆ Pa ⊆ I. �

2. z-Ideals of the Rings of Formal Power Series

We have studied z◦-ideals of R[x], see [2]. But it seems (at least to us)
that the z-ideals of R[x] are, in general, difficult object to be dealt with.
In this section, we will characterize the class of z-ideals of R[[x]] in terms
of those of R.

Lemma 2.1. Assuming that R and S are two rings and φ : R −→ S

are an onto homomorphism, if J is a z-ideal (resp. sz-ideal) of S, then
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φ−1(J) is a z-ideal (resp. sz-ideal) of R.

Proof. Since φ−1(M) ∈ Max(R) for every M ∈ Max(S), it follows that
Ma ⊆ φ−1(Mφ(a)) ⊆ φ−1(J) (resp. MS ⊆ φ−1(Mφ(S)) ⊆ φ−1(J)) for
every a ∈ φ−1(J) (resp. finite subset S of φ−1(J)). �

Henceforth, by φ we mean the homomorphism from R[[x]] onto R with
φ(f) = f(0) = f0.

Lemma 2.2. The following statements hold in any ring R.
(a) φ−1(I) = (I, x) for any ideal I of R.
(b) If S ⊆ R[[x]] and S0 = φ(S) = {f0 : f ∈ S}, then MS =

(MS0 , x). In particular, Mf = (Mf0 , x) for every f ∈ R[[x]].

Proof. (a) It is obvious.
(b) By part (a) and definition of φ, clearly, MS ⊆ φ−1(MS0) = (MS0 , x).
Conversely, suppose that M = (M,x) is a maximal ideal of R[[x]] con-
taining S. It is easily seen that S0 ⊆ M . Thus, (MS0 , x) ⊆ MS and so
the equality holds. �

Theorem 2.3. An ideal I in R[[x]] is a z-ideal (resp. sz-ideal) of R[[x]]
if and only if I = (I, x) where I is a z-ideal (resp. sz-ideal) of R.

Proof. Suppose that I is a z-ideal in R[[x]]. By Lemma 2.2, M0 =
(Jac(R), x) ⊆ I and so x ∈ I. It follows that there exists an ideal I in
R such that I = (I, x). Now we show that I is a z-ideal of R. To see
this, let a ∈ I. If we put f = a + x, then (Ma, x) = Mf ⊆ I = (I, x)
and consequently Ma ⊆ I. The converse is obvious, by Lemma 2.1. The
case of sz-ideal is similar. �

Note that if F is a field, then < x > is the only maximal ideal of F [[x]].
Therefore, < x > is the only z-ideal (resp. sz-ideal) of F [[x]].
In view of Theorem 2.3, we infer that whenever I is a proper ideal of R,
then I[[x]] is never a z-ideal. Finally, we conclude this section, by con-
sidering the concept of the smallest (resp. greatest) z-ideal containing
(resp. contained in) an ideal I of R[[x]] in terms of the same properties
in R.

Proposition 2.4. The following statements hold for any ring R.
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(a) For every ideal I of R[[x]] we have Iz = (J, x) where J = (φ(I))z.
(b) (I[[x]])z = (Iz, x) for any ideal I of R.
(c) If I is an ideal of R[[x]], then Iz exists if and only if x ∈ I and

J = (I ∩R)z exists. In this case we have Iz = (J, x).

Proof. (a) Clearly, if we take J = (φ(I))z, then J is a z-ideal of
R. Moreover, I ⊆ (J, x); since whenever we take f = f0 + xg ∈ I,
then f0 ∈ J and consequently f ∈ (J, x). Therefore, (J, x) is a z-ideal
containing I. Now, let K = (K, x) be a z-ideal containing I. Obviously,
J = (φ(I))z ⊆ K and so (J, x) ⊆ (K, x) = K.

(b) By part (a), it is evident.
(c) By Theorem 2.3, there exists a z-ideal contained in I if and only

if there exists a z-ideal K of R such that (K, x) ⊆ I. Now, supposing
that there exists a z-ideal contained in I, we show that Iz = (J, x). It
is clear that (J, x) is a z-ideal contained in I. Let (K, x) be a z-ideal
contained in I, then K ⊆ I ∩ R and so K ⊆ (I ∩ R)z = J . Therefore,
(K, x) ⊆ (J, x). �

3. z◦-Ideals of Rings of Formal Power Series

It is easy to see that to investigate z◦-ideals of a ring R, we need some
information about minimal prime ideals of R. So we must first consider
the set of minimal prime ideals of R[[x]]. In particular, if we want to
find a close relation between the set of z◦-ideals of R[[x]] and the set
of z◦-ideals of R, it is natural to investigate the conditions under which
any minimal prime of R[[x]] is of the form P [[x]] where P is a minimal
prime ideal of R.
First we need a new definition.

Definition 3.1. Supposing that λ is a cardinal number and P a mini-
mal prime ideal of a ring R, we say that P has λ-annihilator exclusion
property if for every S ⊆ P with |S| 6 λ, there exist n ∈ N and c /∈ P

such that (cS)n = {0}.
It is easily seen that if P is minimal prime ideal of a reduced ring R,
then P has λ-annihilator exclusion property if and only if Ann(S) * P
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for any S ⊆ P with |S| 6 λ. Also, it is obvious that every minimal prime
ideal P has n-annihilator exclusion property for every n ∈ N. Moreover,
if a minimal prime ideal P has λ-annihilator exclusion property, then it
has α-annihilator exclusion property for every α 6 λ.

Lemma 3.2. Let R be a reduced ring. Then the following statements
hold.

(a) Assuming f, g ∈ R[[x]], we have fg = 0 if and only if fngm = 0
for m,n = 0, 1, ... .

(b) f ∈ R[[x]] is zero divisor if and only if there exists 0 6= c ∈ R

such that cf = 0.
(c) For any f ∈ R[[x]] and any ideal I of R, we have Ann(f) * I[[x]]

if and only if there exists c /∈ I such that cf = 0.

Proof. The proof is straightforward. �

Corollary 3.3. Suppose that R is a reduced ring. If P ∈ Min(R[[x]]),
then P ⊆ (P ∩R)[[x]].

Proof. Assume that f =
∑∞

n=0 fnxn ∈ P. By hypothesis, there exists
g /∈ P such that fg = 0 and so by Lemma 3.2, fng = 0 for n = 0, 1... .
Therefore, fn ∈ P ∩R for n = 0, 1, ... and so P ⊆ (P ∩R)[[x]]. �

Theorem 3.4. Suppose that R is a reduced ring and P ∈ Min(R) such
that P is an infinite set. Then the following statements are equivalent.

(a) P has ℵ0-annihilator exclusion property.
(b) P [[x]] is a minimal prime ideal of R[[x]] and has ℵ0-annihilator

exclusion property.
(c) P [[x]] is a minimal prime ideal of R[[x]].

Proof. (a) ⇒ (b). Let S ⊆ P [[x]] be countable and T = C(S). Since
T is countable, there exists c /∈ P such that cT = {0} and therefore,
cS = {0}.

(b) ⇒ (c). It is clear.
(c) ⇒ (a). Let S ⊆ P be countable. Taking f ∈ R[[x]] such that

S = C(f), clearly, f ∈ P [[x]] and thus, there exists g /∈ P [[x]] such that
fg = 0. Obviously, by Lemma 3.2, fngm = 0 for every n ∈ N, and
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gm /∈ P for some m ∈ N. Clearly, if we put c = gm, then c /∈ P and
cS = {0}. �

Corollary 3.5. Suppose that R is a reduced ring and P is a prime ideal
R[[x]]. Then the following statements are equivalent.

(a) P ∈ Min(R[[x]]) and moreover, there exist P ∈ Min(R) such that
P = P [[x]].

(b) P ∩R is a minimal prime of R and has ℵ0-annihilator exclusion
property.

Proof. (a)⇒ (b). If P ∈ Min(R) and P = P [[x]] ∈ Min(R[[x]]), then by
Theorem 3.4, P∩R is a minimal prime ideal of R and has ℵ0-annihilator
exclusion property.

(b) ⇒ (a). By Theorem 3.4 we have (P ∩ R)[[x]] ∈ Min(R[[x]]).
On the other hand, by Corollary 3.3, P ⊆ (P ∩ R)[[x]] and so P =
(P ∩R)[[x]]. �

In the following two examples, we first show that there exists a ring R

such that the set of the minimal prime ideals of R[[x]] that are of the
form P [[x]] is uncountable. Next we prove that there is a ring R such
that P [[x]] /∈ Min(R[[x]]) for every P ∈ Min(R).

Example 3.6. Assume that D is a uncountable discrete space and
X = D∪{a} is the one point compactification of D. Putting R = C(X),
we know that Od(X) ∈ Min(R) for every d ∈ D. By Theorem 3.4, it is
enough to show that if we take P = Od(X), then P has ℵ0-annihilator
exclusion property. To see this, suppose that fn ∈ P for n = 0, 1, ... .
If we define g : X −→ R with g(d) = 1 and g(x) = 0 for x 6= d, then,
clearly, g ∈ C(X) \ P and gfn = 0 for n = 0, 1, ... .

In the above example, we can show that if we take P ∈ Min(R) such that
Oa(X) ⊆ P , then P [[x]] /∈ Min(R[[x]]). In what follows, we present a
problem for which we have not yet found any answer: Is there a space X

such that every minimal prime ideal of C(X) has ℵ0-annihilator exclusion
property?

Example 3.7. Assume that R = C(R) and P ∈ Min(R). We show
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that P has not ℵ0-annihilator exclusion property. We have two cases
for P . In the first case that Or(X) ⊆ P for some r ∈ R, since R is
first-countable space, for every n ∈ N there exists fn ∈ Or(R) such
that Z =

⋂
n∈N Z(fn) = {r}. If, on the contrary, P has ℵ0-annihilator

exclusion property, then g /∈ P exists such that gfn = 0 for n = 0, 1, ... .

Therefore, Coz(g) ⊆ Z(fn) for n = 0, 1, ... and so ∅ 6= Coz(g) ⊆ Z =
{r}, a contradiction. In the second case that Op(R) ⊆ P for a point
p ∈ βR \ R, we define fn ∈ C(R) so that Z(fn) = (−∞,−n] ∪ [n, +∞),
for every n ∈ N. Then, clearly, fn ∈ Op(R) ⊆ P for every n ∈ N.
Obviously, Z =

⋂
n∈N Z(fn) = ∅ and similar to the first case, we can

find that P has not ℵ0-annihilator exclusion property.
Next, we consider a relation between Min(R) and Min(R[[x]]).

Proposition 3.8. Let R be a ring. Then the following statements hold.
(a) Min(R) ⊆ {P ∩ R : P ∈ Min(R[[x]])} and so |Min(R)| 6

|Min(R[[x]])|.
(b) If the ring R is reduced, then Min(R) is finite if and only if

Min(R[[x]]) is too and in this case we have Min(R[[x]]) = {P [[x]] : P ∈
Min(R)}.

Proof. (a). Supposing P ∈ Min(R), clearly there exists P ∈ Min(R[[x]])
such that P ⊆ P [[x]]. Therefore, P ∩ R ⊆ P [[x]] ∩ R = P and so
P ∩R = P , consequently, Min(R) ⊆ {P ∩R : P ∈ Min(R[[x]])}.
(b). Suppose that Min(R) is finite and P ∈ Min(R[[x]]). Then⋂

P∈Min(R)

P [[x]] = (
⋂

P∈Min(R)

P )[[x]] = (0) ⊆ P.

Therefore, there exists P ∈ Min(R) such that P [[x]] ⊆ P and hence
P [[x]] = P. Thus, Min(R[[x]]) is finite. To complete the proof, it is
enough to show that P [[x]] ∈ Min(R[[x]]) for every P ∈ Min(R). To see
this, suppose that P ∈ Min(R) and Q ⊆ P [[x]] is a minimal prime ideal
of R[[x]]. Hence, similarly, it follows that Q = Q[[x]] for a Q ∈ Min(R).
Therefore, Q[[x]] = Q ⊆ P [[x]] and so Q ⊆ P , consequently Q = P and
hence P [[x]] = Q ∈ Min(R[[x]]). Therefore, Min(R[[x]]) = {P [[x]] : P ∈
Min(R)}. By part (a), the converse is trivial. �
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An immediate consequence of Theorem 3.4 and Proposition 3.8 is that
if R is a reduced ring and Min(R) is finite, then every P ∈ Min(R) has
ℵ0-annihilator exclusion property.

Definition 3.9. An ideal I in R[[x]] is said to be nicely-contractible if
(I ∩R)[[x]] ⊆ I; i.e., C(f) ⊆ I implies that f ∈ I. Also, an ideal I, in
a ring R, in which every countable subset of I is contained in a finitely
generated sub-ideal of I is called a c.f.g-ideal for brevity.

We can easily see that I[[x]] is a nicely-contractible for every ideal I of
R. It is better to note that the inclusion that found in Definition 3.9 may
be strict. For instance, if we take I =< x >, then (I∩R)[[x]] = (0) ( I.

Proposition 3.10. Let I be an ideal in a ring R. Then the following
statements are equivalent.

(a) If I is an ideal of R[[x]] such that I ∩ R = I, then I is nicely-
contractible.

(b) I[[x]] =< I >.
(c) I is a c.f.g-ideal of R.

Proof. (a) ⇒ (b). Clearly < I >⊆ I[[x]] and since < I > ∩R = I, it
follows from (a) that < I > is a nicely-contractible ideal, consequently
I[[x]] = (< I > ∩R)[[x]] ⊆< I >.

(b) ⇒ (c). Let S ⊆ I be countable, then we take f =
∑∞

n=0 fnxn ∈
R[[x]] so that C(f) = S. Therefore, by (b), we have f ∈ I[[x]] =<

I > and this implies that there exist a1, ..., ak ∈ I such that f ∈<

a1, ..., ak >R[[x]]. Hence, S = C(f) ⊆< a1, ..., ak >R.
(c) ⇒ (a). Suppose that I is an ideal of R[[x]] such that I ∩R = I.

Assume that f ∈ I[[x]], then by part (c), there exist a1, ..., ak ∈ I such
that C(f) ⊆< a1, ..., ak >R and so f ∈< a1, ..., ak >R [[x]] ⊆ I. Hence,
(I ∩R)[[x]] ⊆ I; i.e., I is a nicely-contractible ideal. �
In what follows, we see that the concept of nicely-contractible is useful
in the study of finding a relation between Min(R) and Min(R[[x]]).

Proposition 3.11. Suppose that P ∈ Min(R[[x]]). Then the following
statements are equivalent.

(a) P is a nicely-contractible ideal.
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(b) There exists a prime ideal P of R such that P = P [[x]].
(c) There exists P ∈ Min(R) such that P = P [[x]].

Proof. (a) ⇒ (b). Supposing P ∈ Min(R[[x]]), we put P = P ∩ R.
Then, by (a), P [[x]] ⊆ P and so P = P [[x]].

(b) ⇒ (c). Assuming P = P [[x]] ∈ Min(R[[x]]), we must show that
P ∈ Min(R). Let Q ⊆ P be a prime ideal of R. So, Q[[x]] ⊆ P [[x]] and
consequently, Q[[x]] = P [[x]], this implies that Q = P .

(c) ⇒ (a). It is clear, since (I[[x]] ∩R)[[x]] = I[[x]] for every ideal I

of R. �

The following result is immediate.

Corollary 3.12. Every minimal prime ideal of R[[x]] is nicely-contractible
if and only if Min(R[[x]]) = {P [[x]] : P ∈ Min(R)}.

The following is an immediate consequence of part (b) of Proposition
1.1, Proposition 3.11 and Corollary 3.12.

Corollary 3.13. Let I be an ideal in R. Then the following statements
hold.

(a) P ∈ Min(I[[x]]) is nicely-contractible if and only if there exists a
prime ideal P containing I such that P = P [[x]].

(b) Every P ∈ Min(I[[x]]) is nicely-contractible if and only if every
P ∈ Min(I[[x]]) is of the form P [[x]] where P ∈ Min(I).

In the following result, we show that the converse of the part (f) of
Proposition 1.1, is also true, if assume that every minimal prime ideal
of R[[x]] is nicely-contractible.

Theorem 3.14. Suppose that every minimal prime ideal of R[[x]] is
nicely-contractible. Then f ∈ R[[x]] is nilpotent in R[[x]] if and only if
fn is nilpotent in R for n = 0, 1, ...; i.e., rad(R[[x]]) = (rad(R))[[x]].

Proof. By Corollary 3.12, we can write

rad(R[[x]]) =
⋂

P∈Min(R)

P [[x]] = (
⋂

P∈Min(R)

P )[[x]] = (rad(R))[[x]]. �

However, in most of textbooks, we can find that the converse of the part
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(f) of Proposition 1.1 is not true, but it seems that the following example
is another simple way of showing this fact, at least for those who are
familiar with C(X).

Example 3.15. Let f ∈ C(R) be the identity map, I =< |f | > and
R = C(R)

I . For every i ∈ N, we define gi = |f |
1
i + I. Clearly, gi is

a nilpotent element of R for every i ∈ N. It is enough to show that
g =

∑∞
i=1 gix

i is not a nilpotent element of R[[x]]. On the contrary,
suppose that h = gm = 0 for an m ∈ N. It is easy to see that there
exists n > m such that hn = |f |ru + I = 0 for some 0 < r < 1 and
some u ∈ C(R) with u(0) = 1. Therefore, |f |ru ∈ I and so v ∈ C(R)
exists so that |f |ru = |f |v. Hence, limx→0 v(x) = limx→0

u(x)
|f |1−r(x)

= ∞,
a contradiction.

Corollary 3.16. Let R be a reduced ring. Then R is a Noetherian ring
if and only if every ideal of R[[x]] is nicely-contractible.

Proof. (⇒). Since R is a Noetherian ring, every ideal of R is finitely
generated and by Proposition 3.10, we are done.

(⇐). It is enough to show that every countable generated ideal of R

is finitely generated, see [8]. To see this, suppose that I is a countably
generated ideal of R. By hypothesis and Proposition 3.10, I is a c.f.g-
ideal and hence it is finitely generated. �

Definition 3.17. Let λ be a cardinal number. An ideal I of a ring
R is said to be a λ-z◦-ideal whenever for every S ⊆ I with |S| 6 λ,
we have PS ⊆ I. Evidently, the concept of sz◦-ideal coincide with the
“λ-z◦-ideal” where λ is a finite cardinal.
Clearly, the ideal (0) in any reduced ring R is a λ-z◦-ideal for every
cardinal number λ. Also, if I is a λ-z◦-ideal and α 6 λ, then I is an
α-z◦-ideal.

Theorem 3.18. Suppose that every minimal prime ideal of R[[x]] is
nicely-contractible. Then the following statements hold.

(a) If S ⊆ R[[x]], then PC(S) = PS = PC(S)[[x]].
(b) If S ⊆ R, then PS = PS [[x]].
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Proof. (a). Clearly, if S ⊆ R[[x]], then we have

C(S) ⊆ P [[x]] ⇔ S ⊆ P [[x]] ⇔ C(S) ⊆ P.

Therefore, using Corollary 3.12, we can write

PC(S) = {P [[x]] : P ∈ Min(R), C(S) ⊆ P [[x]]} = PS

=
⋂

C(S)⊆P∈Min(R)

P [[x]] = (
⋂

C(S)⊆P∈Min(R)

P )[[x]] = PC(S)[[x]].

(b). It is obviously followed from (a). �

Proposition 3.19. Assume that every minimal prime ideal of R[[x]] is
nicely-contractible and α is infinite cardinal number. Then the following
statements are equivalent.

(a) I is an α-z◦-ideal of R.
(b) I[[x]] is an α-z◦-ideal of R[[x]].

Proof. (a) ⇒ (b). Suppose that T ⊆ I[[x]] and |T | 6 α. Then, clearly,
|C(T )| 6 α and so we can write

PC(T ) ⊆ I ⇒ PT = PC(T )[[x]] ⊆ I[[x]].

(b) ⇒ (a). Let S ⊆ I and |S| 6 α. Then, clearly, there exists
T ⊆ I[[x]] such that |T | 6 α and C(T ) = S. Therefore, we can write

PC(T )[[x]] = PT ⊆ I[[x]] ⇒ PS = PC(T ) ⊆ I. �

Theorem 3.20. Assume that every minimal prime ideal of R[[x]] is
nicely-contractible. Then I[[x]] is a z◦-ideal of R[[x]] if and only if I is
an ℵ0-z◦-ideal of R.

Proof. (⇒). Let S be a countable subset of I. Clearly, there exists f ∈
R[[x]] such that C(f) = S. Therefore, PS [[x]] = PC(f)[[x]] = Pf ⊆ I[[x]]
and so PS ⊆ I.

(⇐). Suppose that f ∈ I[[x]]. Clearly, C(f) is a countable subset of
I. Thus, PC(f) ⊆ I and so Pf = PC(f)[[x]] ⊆ I[[x]]. �
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Theorem 3.21. Suppose that every minimal prime ideal of R[[x]] is
nicely-contractible and I is an ideal of R[[x]]. Then the following state-
ments hold.

(a) If I is a z◦-ideal, then I ⊆ (I ∩R)[[x]].
(b) If I is an ℵ0-z◦-ideal, then I = (I ∩R)[[x]].

Proof. (a). Suppose that f ∈ I, then PC(f)[[x]] = Pf ⊆ I and so
fn ∈ I ∩R for n = 0, 1, ..., consequently f ∈ (I ∩R)[[x]].

(b). By part (a), it is enough to prove that (I ∩R)[[x]] ⊆ I; i.e., I is
nicely-contractible. To show this, suppose that f ∈ (I ∩R)[[x]]. Hence,
C(f) ⊆ I ∩ R ⊆ I and since C(f) is countable, we can conclude that
Pf = PC(f) ⊆ I and so f ∈ I. �

The following is an immediate consequence of Proposition 3.19 and The-
orem 3.21.

Corollary 3.22. Assume that every minimal prime ideal of R[[x]] is
nicely-contractible, α is an infinite cardinal number and I is an α-z◦-
ideal. Then I ∩R is an α-z◦-ideal.

Recall that R is semisimple if Jac(R) = (0). A ring R is called a z-
radical ring if whenever

√
I is a z-ideal, then it follows that

√
I = I, see

[5].

Corollary 3.23. Suppose that R is a z-radical semisimple ring, ev-
ery minimal prime ideal in R[[x]] is nicely-contractible, I is a nicely-
contractible and

√
I is an ℵ0-z◦-ideal. Then

√
I = I.

Proof. By part (b) of Theorem 3.21, it follows that
√
I = (

√
I ∩R)[[x]]

and by Corollary 3.22,
√
I ∩ R =

√
I ∩R is an ℵ0-z◦-ideal and so is a

z-ideal. Therefore,
√
I ∩R = I ∩R. Hence, we can write

√
I = (

√
I ∩R)[[x]] =

√
I ∩R[[x]] = (I ∩R)[[x]] ⊆ I. �
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