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Abstract. In this paper we shall first introduce the Pascal-like trian-
gle, using a generalization of the recurrence relation for arrays of Pascal
triangle. Then we define the Pascal-like functional and Fermat-like ma-
trices and investigate their algebraic properties. Finally, we obtain some
binomial identities, using these matrices.
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1. Introduction

The Pascal functional matrices for one, two and three variables have
been introduced in [12]. Another generalization of these matrices as the
Pascal k-eliminated functional matrices has been presented in [5]. Fur-
thermore, considering the sequence {fn(x)}n>1 which satisfy the follow-
ing recurrence relation

fn(x + y) =
n∑

i=0

fi(x)fn−i(y),
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and boundary condition
f0(x) = 1,

another interesting generalization has been made in [15]. There are many
interesting applications of the Pascal matrices in the literature [4]. Fur-
thermore, several interesting triangular arrays are defined based on Pas-
cal like recurrence relations.
Therefore introducing new kind of Pascal matrices using a generalization
of the Pascal triangle is an impotent task.
In this paper we first proceed by generalizing the recurrence relation for
the entries of the Pascal triangle. Then we define Pascal-like functional
and the Fermat-like matrices and present their properties. Finally, us-
ing the linear algebra ideas, we obtain several interesting combinatorial
identities.

2. Pascal-Like Triangle

Definition 2.1. It is well-know that the Pascal triangle is obtained by
the following two dimensional linear recurrence relation:

pn+1,m+1 = pn,m + pn,m+1 (n > m > 0)

and boundary conditions,

pn,0 = 1 (n > 0), and pn,n = 1 (n > 1).

The above recurrence relation forms the following triangular array of
numbers:

Table 1. Pascal triangle

↓ n \m → 0 1 2 3 4 · · ·
0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
? ? ? ? ? ? ?
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A natural generalization of the above triangular array of numbers is
described in Figure 1.

u• v•
w•

Figure 1. w = u + λv (λ ∈ Z)

Clearly, in this case we have the following two dimensional linear recur-
rence relation: (It is important to note that we haven’t lost the linearity
yet):

p̃n+1,m+1 = p̃n,m + λp̃n,m+1 (n > m > 0, λ ∈ Z),

p̃n,0 = 1 (n > 0), and p̃n,n = 1 (n > 1) (1)

For example, in the case λ = 2, we have the following array of numbers

Table 2. Pascal-like triangle for λ = 2

↓ n \m → 0 1 2 3 4 · · ·
0 1
1 1 1
2 1 3 1
3 1 7 5 1
4 1 15 17 7 1
? ? ? ? ? ? ?

In general case λ, we call the above triangle the Pascal-like triangle
associated with the parameter λ.
Also, on may, one may assume that λ ∈ R − {0}. But the case λ ∈ Z,
for obtaining some combinatorial identities is very useful.

3. Main Properties

Lemma 3.1. The ordinary horizontal generating function of {p̃n,k},

Bn(x) =
∑
k>0

p̃n,kx
k (n > 0) (2)
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satisfies the difference equation,

Bn+1(x) = (x + λ)Bn(x) + 1− λ (3)

where n = 0, 1, 2, . . .; and B0(x) = 1.

Proof. The property B0(x) = 1, is obvious from (1). Now making use
of definition, we have∑

k>0

p̃n+1,k+1x
k =

∑
k>0

p̃n,kx
k + λ

∑
k>0

p̃n,k+1x
k.

This may be rewritten in the form,∑
k>1

p̃n+1,kx
k−1 =

∑
k>0

p̃n,kx
k + λ

∑
k>0

p̃n,kx
k−1,

which is identical to the following:∑
k>1

p̃n+1,kx
k = xBn(x) + λ

∑
k>1

p̃n,kx
k

∑
k>0

p̃n+1,kx
k − p̃n+1,0 = xBn(x) + λ

(∑
k>0

p̃n,kx
k − p̃n,0

)
or equivalently,

Bn+1(x) = xBn(x) + λBn(x) + 1− λ,

and finally,
Bn+1(x) = (x + λ)Bn(x) + 1− λ.

Hence the lemma is proved. �

Theorem 3.2. The Pascal-like triangle entries p̃n,k’s have the ordinary
horizontal generating function,

∑
k>0

p̃n,kx
k =

x(x + λ)n

x + λ− 1
+

λ− 1
x + λ− 1

(n > 0). (4)



PASCAL-LIKE TRIANGLE AND PASCAL-LIKE FUNCTIONAL ... 71

Moreover, we have the following explicit formula for p̃n,k’s:

p̃n,k =
n∑

l=k

(
l − 1
k − 1

)
λl−k (n > k > 1). (5)

Proof. Let the right hand side (RHS) of (2) be denoted by Φn(x). No-
tice that (2) has the unique solution Φn(x) under the condition Φ0(x) =
1. Thus it suffices to show that Φn(x) is the unique solution of (2), such
that Φn(x) = Bn(x). Evidently, Φ0(x) = 1. Moreover, using elementary
algebraic computations, we can verify that

Φn(x) = (x + λ)Φn−1(x) + 1− λ.

To prove formula (5), since Bn(x) is equal to

x(x + λ)n + λ− 1
x + λ− 1

=
x((x + λ)n − 1) + x + λ− 1

x + λ− 1
,

then by division algorithm, we have

Bn(x) = x(x + λ)n−1 + x(x + λ)n−2 + · · ·+ x(x + λ)0 + 1.

Finally, using the Newton’s binomial expansion, we obtain

p̃n,k =
(

n− 1
k − 1

)
λn−k+

(
n− 2
k − 1

)
λn−k−1+· · ·+

(
k − 1
k − 1

)
λ0 (n > k > 1),

or equivalently,

p̃n,k =
n∑

l=k

(
l − 1
k − 1

)
λl−k (n > k > 1). �

Now, we intend to define the Pascal-like functional matrix, for one vari-
able, using the Pascal-like triangle as we have done it for the Pascal
functional matrix [4].
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4. Pascal-Like Functional Matrix

Definition 4.1. Suppose n is a natural number let λ > 0 be a real
positive number. Let x be an element of also a real number. We define a
Pascal-like functional matrix of order (n+1)× (n+1) with one variable
x, as follows:

(PLn[x;λ])i,j =
{

p̃i,jx
i−j if i > j > 0,

0 if j > i,

in which p̃i,j is the (i, j)-entry of the Pascal-like triangle.

Example 4.2. The Pascal-like functional matrix of order 4 × 4 and
λ = 2 is,

PL3[x; 2] =


1 0 0 0
x 1 0 0
x2 3x 1 0
x3 7x2 5x 1

 .

Remark 4.3. Consider the properties of the Pascal-like triangle, we are
able to present the Pascal-like functional matrix by the following explicit
formula

(PLn[x;λ])i,j =


xi if i > 0, j = 0,

xi−j(
∑i

l=j

(
l−1
j−1

)
λl−j

)
if i > j > 1,

0 if j > i.

Remark 4.4. Using the identity
∑n

t=0

(
t+a
a

)
=
(
n+a+1

a+1

)
(see [8]), in the

special case λ = 1, we have the following simple formula for PLn[x; 1]

(Pn[x; 1])i,j =
{ (

i
j

)
xi−j if i > j > 0,

0 if j > i,

the above matrix is also called the Pascal functional matrix and is de-
noted by Pn[x](see [4]).
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5. Main Results

In [7] the authors have shown that the matrix Pn[x] has an exponential
property, i.e.

Pn[x]Pn[y] = Pn[x + y].

Unfortunately in general case (λ 6= 1), we have never an exponential
property, but we have another interesting property. Indeed, these ma-
trices are factored into the Pascal functional matrices.
Before starting to present our main theorem, we need to state the fol-
lowing lemma.

Lemma 5.1. Suppose α, α′, β, β′ are four real numbers. Also let A =
[aij ], B = [bij ] be two lower triangular matrices, where defined by the
following recurrence relations respectively,

an,k = αan−1,k−1 + βan−1,k, (n > k > 1),
an,0 = 1 n > 0,
an,k = 0 k > n,

(6)


bn,k = α′bn−1,k−1 + β′bn−1,k, (n > k > 1),

bn,0 = 1 n > 0,
bn,k = 0 k > n.

(7)

If AB = [cij ] then, there exist real numbers α′′ = αα′ and β′′ = β +αβ′,
such that

cn,k = α′′cn−1,k−1 + β′′cn−1,k, (n > k > 1),
cn,0 =

∑n
i=0 an,i n > 0,

cn,k = 0 k > n.
(8)

Proof. Considering the uniqueness of the solution of (1), it suffices to
show that

αα′cn−1,k−1 + (β + αβ′)cn−1,k = cn,k
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but using the definition of the matrix product and relations (6)-(8), we
have

αα′cn−1,k−1 + (β + αβ′)cn−1,k

= αα′
n−1∑
l=0

an−1,lbl,k−1 + (β + αβ′)
n−1∑
l=0

an−1,lbl,k

=
n−1∑
l=0

[αα′an−1,lbl,k−1 + αβ′an−1,lbl,k + βan−1,lbl,k]

=
n−1∑
l=0

[αan−1,l(α′bl,k−1 + β′bl,k) + βan−1,lbl,k]

=
n−1∑
l=0

[αan−1,lbl+1,k + βan−1,lbl,k]

=
n−1∑
l=0

αan−1,lbl+1,k +
n−1∑
l=0

βan−1,lbl,k

=
n∑

l=1

αan−1,l−1bl,k +
n∑

l=1

βan−1,lbl,k

=
n∑

l=1

(αan−1,l−1 + βan−1,l)bl,k =
n∑

l=1

an,lbl,k

=
n∑

l=0

an,lbl,k = cn,k. �

Now, we are at the position to state our main theorem.

Theorem 5.2. For any positive integer λ 6= 1, we have

Pn[−x]PLn[x;λ] = P̄1[(λ− 1)x],

where Pn[x] is the Pascal functional matrix and P̄k(x) is defined by

P̄k(x) =
[

In−k O
O Pk(x)

]
.
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Proof. Put Cij(x) = (Pn[−x]PLn[x;λ])i,j . Considering the well-known
identity

i
l=0(−1)i−l

�
i
l


= δi,0, we obtain that Ci,0(x) = δi,0. Thus it

is necessary to show that Pn,1[−x]PLn,1[x;λ] = Pn[(λ − 1)x] in which
Pn,1[x] and PLn,1[x;λ] are the Pascal 1-eliminated and the Pascal-like
1-eliminated functional matrices which are obtained from Pn[x] and
PLn[x;λ] by omitting their first row and column respectively. Now, ap-
plying Lemma 5, since the entries of Pn,1[x;−1] and PLn,1[x;λ] satisfy
the following recurrence relations respectively

an,k = an−1,k−1 − 1an−1,k (n  k  1)

bn,k = bn−1,k−1 + λbn−1,k.

Thus, α = 1 and β = 1− λ, we obtain

cn,k = cn−1,k−1 + (1− λ)cn−1,k.

Finally, using the definition of the Pascal-like triangle and the uniqueness
of the solution of the above difference equation under the mentioned
boundary conditions, the proof is complete. 

Considering the Pascal functional matrix property [4], we have immedi-
ately the following results:

Corollary 5.3.

PLn[x;λ] = Pn[x]P̄n,1[(λ− 1)x].

Corollary 5.4.

PL−1n [x;λ] = P̄n,1[−(λ− 1)x]Pn[−x].

Example 5.5.

PL3[x; 2] =





1 0 0 0
x 1 0 0
x2 3x 1 0
x3 7x2 5x 1



 =





1 0 0 0
x 1 0 0
x2 2x 1 0
x3 3x2 3x 1









1 0 0 0
0 1 0 0
0 x 1 0
0 x2 2x 1



 .
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6. Generalization of the Pascal-Like Functional
Matrix for Three Variables

Using the same idea which is used in the definition of the Pascal function
matrix for three variables, we generalize the Pascal-like functional matrix
as follows:

Definition 6.1. Suppose n is a natural number and x, y, z, are real
numbers. Then we define the matrix PLn[x, y, z;λ] by

(PLn[x, y, z;λ])i,j =


zn−ixi if i > 0, j = 0,∑i

l=j

(
l−1
j−1

)
λl−ixi−jyjzn−i if i > j > 1,

0 if j > i.

Example 6.2.

PL3[x, y, z; 2] =


z3 0 0 0
xz2 yz2 0 0
x2z 3xyz y2z 0
x3 7x2y 5xy2 y3

 .

Remark 6.3. In special case λ = 1, PLn[x, y, z; 1] is called the Pascal
functional matrix for three variables and we denote it by Pn[x, y, z]. As
an immediate consequence of the above definition, we have the following
lemma.

Lemma 6.4. The matrix PLn[x, y, z;λ] can be factored as:

PLn[x, y, z;λ] = diag(zn, · · · , z, 1)PLn[x;λ]diag(1, y, · · · , yn).

Lemma 6.5.

Pn[x, y, z] = diag(zn, · · · , z, 1)Pn[x]diag(1, y, · · · , yn).

Considering the property of the Pascal functional matrix for three vari-
ables [12], we get the following result:
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Theorem 6.6. For any positive integer λ 6= 0, we have

PLn[x, y, z;λ] = PLn[x, y, z]P̄n,1

[
(λ− 1)

x

y

]
.

Proof. By Lemma 11 and Theorem 6 , we have

PLn[x, y, z;λ] = diag(zn, · · · , z, 1)PLn[x;λ]diag(1, y, · · · , yn)

= diag(zn, · · · , z, 1)Pn[x]P̄n,1[(λ− 1)x]diag(1, y, · · · , yn),

but it can be easily seen that

P̄n,1[x, y;λ]diag(1, y, · · · , yn) = diag(1, y, · · · , yn)P̄n,1

[
(λ− 1)

x

y

]
.

Thus, using the Lemma 11, we get

PLn[x, y, z;λ] = diag(zn, · · · , z, 1)Pn[x]diag(1, y, · · · , yn)P̄n,1

[
(λ− 1)

x

y

]
= Pn[x, y, z]P̄n,1

[
(λ− 1)

x

y

]
. �

New, considering properties of the Pascal functional matrix of three
variables [12], we obtain the following result:

Corollary 6.7.

PL−1
n [x, y, z;λ] = P̄n,1

[
−(λ− 1)

x

y

]
PLn

[
−xy−1z−1, y−1, z−1

]
.

Unfortunately, since the Pascal functional matrix and the Pascal Block
functional matrix are not commuted, we are not able to compute the m-
th power of the Pascal-like functional matrix by means of Corollary 7 of
our main theorem.
In the next section, we move to define another interesting matrix which
is closely related to the Pascal-like functional matrix.

7. The Fermat-Like Matrix

The Fermat matrix Fn is defined by [5],

(Fn)i,j =
(

i + j

j

)
(i, j = 0, 1, · · · , n).
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We have the following well-known Cholesky factorization of Fn (see [5]),

Fn = Pn[1]P T
n [1],

in which Pn[1] is a Pascal functional matrix.

Example 7.1.

F3 =


1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20

 =


1 0 0 0
1 1 0 0
1 2 1 0
1 3 3 1




1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1

 .

We observe that the diagonals of the Fermat matrix are the rows of the
Pascal triangle. Using, the same idea, we define the Fermat-like matrix
by

(FLn)i,j [λ] =

{
1 if i > 0, j = 0,∑i+j

l=j

(
l−1
j−1

)
λl−j if i > 0, j > 1,

Example 7.2. For λ = 2

FL3 =


1 1 1 1
1 3 5 7
1 7 17 31
1 15 49 111

 .

Now we obtain a multiplicative decomposition for Fermat-like matrices.

Theorem 7.3. The Fermat-like matrix has the following decomposition

FLn[λ] = PLn[1;λ]diag(1, λ, · · · , λn)P T
n [1].

Proof. Clearly, by the definition, (FLn)i,0 = 1 (i > 0). Thus it suffices
to show that,

i+j∑
l=j

(
l − 1
j − 1

)
λi−j = 1 +

i∑
r=1

(
j∑

l=r

(
l − 1
r − 1

)
2l−r

)(
i

r

)
λr
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or equivalently,

i+j∑
l=j+1

(
l − 1
j − 1

)
λl−j =

i∑
r=1

i∑
l=r

(
l − 1
r − 1

)(
j

r

)
λl.

To do this, we have

RHS =
i∑

l=1

l∑
r=1

(
l − 1
r − 1

)(
j

r

)
λl

=
i+j∑

l=j+1

l−j∑
r=1

(
l − j − 1

r − 1

)(
j

r

)
λl−j .

Now, it is necessary to show that

l−j∑
r=1

(
l − j − 1

r − 1

)(
j

r

)
=

l−j−1∑
r=0

(
l − j − 1

r

)(
j

j − r − 1

)
,

but it can be easily proved using the following identity [8]∑
k

(
n

k

)(
p

m− k

)
=
(

n + p

m

)
. �

Now, considering properties of the Pascal-like functional matrix and the
Pascal functional matrix, we immediately get the following results:

Corollary 7.4.

FLn[λ] = Pn[1]P̄n,1[λ− 1]diag(1, λ, · · · , λn)P T
n [1].

Corollary 7.5.

FL−1
n [λ] = P T

n [−1]diag
(
1,

1
λ

, · · · ,
1
λn

)
PBn,1[1− λ]Pn[−1].

Corollary 7.6.
det(FLn[λ]) = λ(n+1

2 ).
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8. Some Combinatorial Identities

Considering the previous discussions and linear algebra ideas, we obtain
some beautiful binomial coefficients identities.

Theorem 8.1. For any positive real number λ (with λ 6= 1) and n >
k > 1, we have

n∑
l=k

(
l − 1
k − 1

)
λl =

n∑
r=k

(
r − 1
k − 1

)(
n

r

)
λk(λ− 1)r−k

= (
λ

λ− 1
)k

n∑
r=k

(
r − 1
k − 1

)(
n

r

)
(λ− 1)r.

Proof. The proof is straightforward by considering the Corollary 16
and the definition of the matrix product. �

Theorem 8.2. For any nonnegative integer n and positive real number
λ 6= 1, we have

n∑
l=0

(
l + n− 1

n− 1

)
λl =

n∑
r=0

λr

(
n

r

)2

.

Proof. Considering the matrix equality of Corollary 16, we have

(PLn)i,j =
(
Pn[1]P̄n,1[λ− 1]diag(1, λ, · · · , λn)P T

n [1]
)

i,j

and the definition of the matrix product, after a simplification, we obtain

2i∑
l=i

(
l − 1
i− 1

)
λl−i =

i∑
r=0

λr

(
i

r

)2

(i = 0, 1, · · · , n),

or equivalently
i∑

l=0

(
l + i− 1

i− 1

)
λl =

i∑
r=0

λr

(
i

r

)2

.

This completes the proof. �
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