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Abstract. Theory of zeta functions and fractional calculus plays an im-
portant role in the statistical problems and Shannon’s entropy. There is
a close relationship between the maximum entropy values and fractional
equations. Estimation of Shannon’s entropies of information sources
from numerical simulation of long orbits is difficult. Our aim within
this paper is to present a strong upper bound for the Shannon’s en-
tropy of information sources and estimate the numerical entropy value
by figuring out entropy-fitted bounds.
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1 Introduction

In the last years we witnessed an increasing interest in the generalization
of the concepts of fractional calculus and of entropy [1, 2, 3, 6, 16]. We
provide a brief introduction to entropy and fractional calculus in the
following: If s > 1, then Riemann function is defined as

ζ(s) =

∞∑
n=1

1

ns
.
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The subject of fractional calculus has emerged as a powerful mathemat-
ical instrument during the past years, and is used in every branch of
the statistics, engineering, and in other fields. S. Golomb showed that
Riemann’s zeta function ζ induces a probability distribution π(n) = n−s

ζ(s)

on the positive integers, for every s > 1 [12]. In Guiasu [14], the author
proved that the probability distribution mentioned above is the unique
solution of an entropy-maximization problem. Fractional calculus of zeta
functions can also be used to maximize

H = −
∑
n

π(n) log π(n),

where {π(n) : n ∈ N} is a probability distribution on N [13].

Theorem 1.1. [13] Let α ∈ R\Z, π(n) > 0 and
∑

n π(n) = 1. The
maximization of Shannon entropy H = −

∑
n π(n) log π(n) and∑

n∈N
π(n) logDα

f n
−x = χα, x > 1 + α,

has a solution given by

π(n) =
Dα
f n
−x

ζ(α)(x)
, n ∈ N.

where the forward Grunwald-Letnikov fractional derivative of f is defined
as follows:

Dα
f f(x) = lim

h→0+

∑∞
m=0

(
α
m

)
(−1)mf(x−mh)

hα
.

In differential equations, fractional equations are used to model the
behavior of diseases [7, 8, 18] and fraction equations are used in optimiza-
tion too [15]. In [19], the authors introduced a new mathematical model
for the transmission of Zika virus between humans as well as between
humans and mosquitoes by the use of fractional-order Caputo derivative.
In [9], the authors give the numerical simulations of the fractional model,
a new model which is based on Caputo fractional derivative. There is a
close relationship between the maximum entropy values and fractional
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equations [10, 12, 13, 14]. Entropy and mutual information for random
variables play important roles in dynamical systems and information
theory. The entropy actually measures the degree of irregularities of a
dynamic system, and researchers have done so much to calculate this
concept, which is often successful [4, 11, 21, 22], but numerical calcula-
tions of entropy are still difficult. Tapus and Popescu presented a strong
upper bound for the classical Shannon entropy [24]. In [24, 20, 21, 23],
the authors presented a strong upper bound for the classical Shannon
entropy. In [17], the authors presented the algebraic and Shannon en-
tropies for hypergroupoids and commutative hypergroups, respectively,
and studies their fundamental properties. In [20], the author applying
Jensen’s inequality in information theory and obtained some results for
the Shannon’s entropy of random variables and Shannon’s entropy of in-
formation sources. Our purpose within this work is to present a strong
upper bound for the Shannon entropy of information sources, refining
recent results from the literature.

Let X be a non-empty set, F is an σ-algebra of subsets of X, µ
is a measure on X and µ(X) = 1, then (X,F , µ) is called measure
probability space. A finite set of measurable sets α = {A1, . . . , An} is
called a finite partition if the following properties are fulfilled [25]:

n⋃
i=1

Ai = X, and Ai ∩Aj = ∅ for every i, j(1 ≤ i 6= j ≤ n).

For a partition α = {A1, . . . , An} , the entropy of α is defined by

Hµ(α) := −
n∑
i=1

µ(Ai) log(µ(Ai)). (1)

Definition 1.2. [5] Let S be a random variable on X with discrete finite
state space A = {a1, ..., aN}. We define p : A → [0, 1] by p(s) = µ{ω ∈
X : S(ω) = s}. The Shannon’s entropy of S is defined by

Hµ(S) := −
∑

s∈A, p(s)6=0

p(s) log p(s). (2)

An information sources S is a sequence (Sn)∞n=1 of the random vari-
ables Sn : X −→ A, where n ∈ N. For given L ≥ 1 we define a mapping
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p : AL → [0, 1] by p(sL1 ) = µ{ω ∈ X : S1(ω) = s1, ..., SL(ω) = sL}. The
Shannon entropy of order L and the Shannon entropy of source S are
respectively defined by

Hµ(SL1 ) = − 1

L

∑
sL1 ∈AL

p(s1, ..., sL) log p(s1, ..., sL),

and hµ(S) = limL→∞Hµ(SL1 ), where the the summation is taken over
the collection {sL1 ∈ AL : p(sL1 ) 6= 0}. In this paper we use the symbol
sL1 instead of notation (s1, ..., sL) and Let p(sL1 ) 6= 0 for every L ∈ N.

Theorem 1.3. [20] Let I = [a, b] be an interval, H : AL −→ I be a
function, and f : I −→ R be a convex function, then

∑
sL1 ∈AL

p(sL1 )f(H(sL1 ))− f(
∑

sL1 ∈AL

p(sL1 )H(sL1 ))

≥ max{p(rL1 )f(H(rL1 )) + p(tL1 )f(H(tL1 ))

− (p(rL1 ) + p(tL1 ))f(
p(rL1 )H(rL1 ) + p(tL1 )H(tL1 )

p(rL1 ) + p(tL1 )
)}, (3)

where the maximum is taken over all rL1 6= tL1 ∈ AL.

2 Main results

In this section, we continue with a refinement of Theorem 1.3, as follows:

Theorem 2.1. Let I = [a, b] be an interval, H : AL −→ I be a function,
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and f : I −→ R be a convex function. Then∑
sL1 ∈AL

p(sL1 )f(H(sL1 ))− f(
∑

sL1 ∈AL

p(sL1 )H(sL1 ))

≥ max{p(rL1 )f(H(rL1 )) + p(tL1 )f(H(tL1 )) + p(uL1 )f(H(uL1 ))

− (p(rL1 ) + p(tL1 ) + p(uL1 ))×

f(
p(rL1 )H(rL1 ) + p(tL1 )H(tL1 ) + p(uL1 )H(uL1 )

p(rL1 ) + p(tL1 ) + p(uL1 )
)},

≥ max{p(rL1 )f(H(rL1 )) + p(tL1 )f(H(tL1 )) + p(uL1 )f(H(uL1 ))}
− (p(rL1 ) + p(tL1 ) + p(uL1 ))×

f(
p(rL1 )H(rL1 ) + p(tL1 )H(tL1 ) + p(uL1 )H(uL1 )

p(rL1 ) + p(tL1 ) + p(uL1 )
)},

where the maximum is taken over all distinct rL1 , t
L
1 , u

L
1 ∈ AL.

Proof. Choose arbitrary tL1 , r
L
1 , u

L
1 ∈ AL. So,

f(
∑

sL1 ∈AL

p(sL1 )H(sL1 )) = f(
∑

sL1 6=rL1 ,tL1 ,uL1 ∈AL

p(sL1 )H(sL1 ))

+ (p(rL1 ) + p(tL1 ) + p(uL1 ))(
p(rL1 )H(rL1 ) + p(tL1 )H(tL1 ) + p(uL1 )H(uL1 )

p(rL1 ) + p(tL1 ) + p(uL1 )
)

≤
∑

p(sL1 )f(H(sL1 ))

+ (p(rL1 ) + p(tL1 ) + p(uL1 ))f(
p(rL1 )H(rL1 ) + p(tL1 )H(tL1 ) + p(uL1 )H(uL1 )

p(rL1 ) + p(tL1 ) + p(uL1 )
),

where sL1 6= rL1 , t
L
1 , u

L
1 ∈ AL. Therefore,∑

sL1 ∈AL

p(sL1 )f(H(sL1 ))− f(
∑

sL1 ∈AL

p(sL1 )H(sL1 ))

≥ p(rL1 )f(H(rL1 )) + p(tL1 )f(H(tL1 )) + p(uL1 )f(H(uL1 ))

− (p(rL1 ) + p(tL1 ) + p(uL1 ))f(
p(rL1 )H(rL1 ) + p(tL1 )H(tL1 ) + p(uL1 )H(uL1 )

p(rL1 ) + p(tL1 ) + p(uL1 )
).
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Since sL1 , t
L
1 ∈ AL, u1L are arbitrary,∑

sL1 ∈AL

p(sL1 )f(H(sL1 ))− f(
∑

sL1 ∈AL

p(sL1 )H(sL1 ))

≥ max{p(rL1 )f(H(rL1 )) + p(tL1 )f(H(tL1 )) + p(uL1 )f(H(uL1 ))}

− (p(rL1 ) + p(tL1 ) + p(uL1 ))f(
p(rL1 )H(rL1 ) + p(tL1 )H(tL1 ) + p(uL1 )H(uL1 )

p(rL1 ) + p(tL1 ) + p(uL1 )
)},

where the maximum is taken over all distinct rL1 , t
L
1 , u

L
1 ∈ AL. On the

other hand,

f(
p(rL1 )H(rL1 ) + p(tL1 )H(tL1 ) + p(uL1 )H(uL1 )

p(rL1 ) + p(tL1 ) + p(uL1 )
)

= f(
p(rL1 ) + p(tL1 )

p(rL1 ) + p(tL1 ) + p(uL1 )

p(rL1 )H(rL1 ) + p(tL1 )H(tL1 )

p(rL1 ) + p(tL1 )

+
p(uL1 )H(uL1 )

p(rL1 ) + p(tL1 ) + p(uL1 )
)

≤ p(rL1 ) + p(tL1 )

p(rL1 ) + p(tL1 ) + p(uL1 )
f(
p(rL1 )H(rL1 ) + p(tL1 )H(tL1 )

p(rL1 ) + p(tL1 )
)

+
p(uL1 )

p(rL1 ) + p(tL1 ) + p(uL1 )
f(H(uL1 )).

So,

(p(rL1 ) + p(tL1 ) + p(uL1 ))f(
p(rL1 )H(rL1 ) + p(tL1 )H(tL1 ) + p(uL1 )H(uL1 )

p(rL1 ) + p(tL1 ) + p(uL1 )
)

≤ (p(rL1 ) + p(tL1 ))f(
p(rL1 )H(rL1 ) + p(tL1 )H(tL1 )

p(rL1 ) + p(tL1 )
) + (p(uL1 ))f(H(uL1 )).

Thus,

p(rL1 )f(H(rL1 )) + p(tL1 )f(H(tL1 )) + p(uL1 )f(H(uL1 ))

− (p(rL1 ) + p(tL1 ) + p(uL1 ))f(
p(rL1 )H(rL1 ) + p(tL1 )H(tL1 ) + p(uL1 )H(uL1 )

p(rL1 ) + p(tL1 ) + p(uL1 )
)

≥ p(rL1 )f(H(rL1 )) + p(tL1 )f(H(tL1 ))}

− (p(rL1 ) + p(tL1 ))f(
p(rL1 )H(rL1 ) + p(tL1 )H(tL1 )

p(rL1 ) + p(tL1 )
),
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which completes the proof. �

In order to present the generalization, we define some notation, as
follows:

Tk := max{
k∑
i=1

p(ri
L
1 )f(H(ri

L
1 ))− (

k∑
i=1

p(ri
L
1 ))f(

∑k
i=1 p(ri

L
1 )H(ri

L
1 )∑k

i=1 p(ri
L
1 )

)}

where 2 ≤ k ≤ NL−1, the maximum is taken over all distinct ri
L
1 ∈ AL.

Theorem 2.2. Let I = [a, b] be an interval, H : AL −→ I be a function,
|A| = N and f : I −→ R be a convex function, then

0 ≤ T2 ≤ T3 ≤ ... ≤ TNL−1 ≤
∑

sL1 ∈AL

p(sL1 )f(H(sL1 ))

− f(
∑

sL1 ∈AL

p(sL1 )H(sL1 )).

Proof. The proof is similar to the proof of Theorem 2.1. �

3 The sources entropy upper bound

In this section we present a strong upper bound for the Shannon’s en-
tropy of information sources.

Theorem 3.1. Let S be an information source. Then

hµ(S) ≤ logN −max
k
{ lim
L→∞

1

L
log[{ k∑k

i=1 p(ri
L
1 )
}
∑k

i=1 p(ri
L
1 )]

× [

k∏
i=1

{p(riL1 )}p(riL1 )]}.
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Proof. Since

− LHµ(SL1 ) + log(NL) ≥ max
k
{−

k∑
i=1

p(ri
L
1 ) log(

1

p(riL1 )
)

+ (
k∑
i=1

p(ri
L
1 ))× log(

k∑k
i=1 p(ri

L
1 )

)}

= max
k
{log(

k∏
i=1

{p(riL1 )}p(riL1 )) + log[{ k∑k
i=1 p(ri

L
1 )
}
∑k

i=1 p(ri
L
1 )]},

logN −Hµ(SL1 ) ≥ max{ 1

L
log[{ k∑k

i=1 p(ri
L
1 )
}
∑k

i=1 p(ri
L
1 )]

× [
k∏
i=1

{p(riL1 )}p(riL1 )]},

and

Hµ(SL1 ) ≤ logN −max
k
{ 1

L
log[{ k∑k

i=1 p(ri
L
1 )
}
∑k

i=1 p(ri
L
1 )]

× [
k∏
i=1

{p(riL1 )}p(riL1 )]}.

Therefore,

hµ(S)

≤ logN − lim
L→∞

max
k
{ 1

L
log[{ k∑k

i=1 p(ri
L
1 )
}
∑k

i=1 p(ri
L
1 )]

× [

k∏
i=1

{p(riL1 )}p(riL1 )]}

≤ logN − max
2≤k≤NL−1

{ lim
L→∞

1

L
log[{ k∑k

i=1 p(ri
L
1 )
}
∑k

i=1 p(ri
L
1 )]

× [

k∏
i=1

{p(riL1 )}p(riL1 )]},
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which completes the proof. �
Entropy of information sources is very important in synamical sys-

tems and information theory. Let (X,F , µ) me a probability measure
space. For a partition

α = {A0, ..., AN}

and measure-preserving dynamical system f : X −→ X, the maps

Sn : X −→ TN := {0, ..., N},

defined as

Sn(x) = i if and only if fn(x) ∈ Ai

are random variables on the probability measure space X. In this case
we have

p(i) = µ(Ai),

for every i(0 ≤ i ≤ N), and hµ(Sα) = hµ(f, α) where Sα = {Sn} [5].
Since The metric entropy of f is then the supremum of hµ(f, α) over all
finite partitions of (X,F , µ) (i.e.

hµ(f) = sup
α
hµ(f, α) = sup

α
hµ(Sα).) (4)

Thus, an approximation of entropy f is obtained by using 4.

4 Conclusion

In this paper, we have obtained some mathematical inequalities for en-
tropy of information sources. For the entropy of an of information
sources, this paper discovered suitable bounds with the help of which the
Shannon’s entropy value could be approximated. Theorem 3.1, shows
that in general,

logN − 1

L
log[{ k∑k

i=1 p(ri
L
1 )
}
∑k

i=1 p(ri
L
1 )]× [

k∏
i=1

{p(riL1 )}p(riL1 )]

can only be expected to be an upper bound of hµ(S), we will try to
extend it in the future.
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