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Abstract. An effective modification of the Picard iteration method
(PIM) is presented for solving linear and nonlinear fractional optimal
control problems (FOCP) in the Caputo sense. Here, the control func-
tion is first approximated by a finite series with unknown coefficients.
Then the modified PIM is utilized to simulate the resulting fractional
equations. Finally, the unknown coefficients could be computed by ap-
plying an optimization procedure. Some test examples are given to show
the accuracy and validity of the method.
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1 Introduction

The classical calculus provides a powerful tool for modeling many im-
portant dynamical processes of sciences. However, there are many com-
plex systems in real world with anomalous dynamics, which their dy-
namics could not be characterized by classical derivative models [8, 7].
Also, it has been shown that the fractional order derivatives can provide
more accurate models for many applied systems than integer order ones
[14, 9, 11].
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The numerical simulations for such problems have been investigated
in, for example, [3, 5, 13, 4]. In the present article, we consider an FOCP
with the following general performance index [6]:

J(u) =

∫ b

a
f (y(t), u(t), t) dt, (1)

subject to the dynamical system with the Caputo fractional derivative
[2]

C
aD

α
t y(t) = g (y(t), u(t), t) , (2)

and the condition

y(a) = ya. (3)

Here we assume that f and g are two continuously differentiable
functions w.r.t the time t, the state variable y(t) and the control variable
u(t). We intend to directly solve (1)-(3) without using Hamiltonian
formulas. Our tools for this purpose are the Taylor expansion for the
control variable and the PIM.

Here we present some basic definitions. The left fractional R–L in-
tegral operator of order α of a function z(t) can be defined as below
[10]:

aI
α
t z(t) =

1

Γ(α)

∫ t

a
(t− τ)α−1z(τ)dτ, α > 0, (4)

and also the definition of the left fractional derivative of z(t) in the
Caputo sense is as [10]:

C
aD

α
t z(t) =

1

Γ(k − α)

∫ t

a
(t− τ)k−α−1z(k)(τ)dτ, k − 1 < α < k.

Some properties of them could be listed here as [10]:

aI
α
t

[
C
aD

α
t z(t)

]
= z(t)−

k−1∑
i=0

z(i)(a)
ti

i!
, k − 1 < α ≤ k,

C
aD

α
t [aI

α
t z(t)] = z(t). (5)
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2 Main Results

The method we would like to introduce here is based upon expanding
u(t) by the Taylor finite series with some unknown coefficients, i.e.,

uN (t) =

N∑
k=0

dkt
k + O(tN+1), (6)

where dk are the unknown coefficients to be determined. Then a frac-
tional version of the PIM for (2) can be utilized to approximate the state
variable y(t). Finally, by substituting the above approximations of y(t)
and u(t) in (2), we will have an optimization problem. It could be then
solved by means of any classical optimization algorithm.

The relations of (2) and (3), in view of (5), can be expressed as
below:

y(t) = y(a) + aI
α
t [g (y(t), u(t), t)] ,

and, therefore, the fractional version of the PIM for solving the equation
(2) and (3) can be resulted as:

yn+1(t) = ya + aI
α
t [g (yn(t), u(t), t)] ,

or, according to (6),

yn+1(t) = ya + aI
α
t

[
g

(
yn(t),

N∑
k=0

dkt
k, t

)]
,

where y0(t) = ya is the initial guess. Accordingly, having determined the
initial approximation, the approximations yn+1(t), n ≥ 0, of the solution
y(t) can be readily gained. So we will have:

y(t) = lim
n→∞

yn(t).

Now, according to (4), we will have the following iterative procedure
for solving (2) and (3):

yn+1(t) = ya +
1

Γ(α)

∫ t

a
(t− τ)α−1g

(
yn(τ),

N∑
k=0

dkτ
k, τ

)
dτ. (7)
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Now, a betterment of the PIM (7) can be given by using the Taylor
series around a of the integrand as:

yn+1(t) = ya +
1

Γ(α)

∫ t

a
Gn (t, τ) dτ,

where

(t− τ)α−1 g

(
yn(τ),

N∑
k=0

dkτ
k, τ

)
= Gn (t, τ) + O

(
(τ − a)n+1

)
.

By using the above iterative relation, we gain yM (t), which depends
on d0, d1, ..., dN i.e., yM (t) := φ(t; d0, d1, ..., dN ). Therefore, by substi-
tuting yM (t) and uN (t) into the cost functional (1), we will have:

J (d0, d1, ..., dN ) =

∫ b

a
f

(
φ(t; d0, d1, ..., dN ),

N∑
k=0

dkt
k, t

)
dt,

which J can be minimized in a satisfactory manner. Thus, we can get
the approximations of yM (t) ' y(t) and uN (t) ' u(t) by substituting
the determined coefficients d0, d1, ..., dN .

3 Two Test Examples

Here, two test examples of the FOCPs are given to show the proficiency
of the scheme. The Maple software was applied for the implementation
of the two examples.

Example 3.1. For the first test problem, we give the following FOCP
[12]:

J =
1

2

∫ 1

0

[
y2(t) + u2(t)

]
dt, (8)

with

0D
α
t y(t) = −y(t) + u(t), y(0) = 1 0 < α ≤ 1.

The true solution (8), i.e., J∗ = 0.1929092981 for α = 1 could be

observed in [12]. Now, if we put uN (t) =
N∑
k=0

dkt
k, we will have the
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following fractional initial value problem:

0D
α
t y(t) = −y(t) +

N∑
k=0

dkt
k.

By using the formula (7), we will have the following iterative formula:

yn+1(t) = 1− 1

Γ(α)

∫ t

0
(t− τ)α−1

[
yn(τ)−

N∑
k=0

dkτ
k

]
dτ,

with the initial approximation y0(t) = 1. Hence, by choosing α = 1 and
N = 1, 2, 3, we obtain the following approximations for y(t):

y1(t) = 1 + (d0 − 1)t,

y2(t) = 1 + (d0 − 1)t+
1

2
(−d0 + d1 + 1)t2,

y3(t) = 1 + (d0 − 1)t+
1

2
(−d0 + d1 + 1)t2 +

1

3
(d2 +

1

2
d0 −

1

2
d1 −

1

2
)t3.

At this point, by using the Maple optimization toolbox, we can com-
pute the unknown coefficients dk. Table 1 indicates the optimal values
J∗ for the different approximations of the control function.

Table 1: The calculated optimal values of J∗ for Example 3.1 for α = 1
with different N

N d0 d1 d2 d3 d4 J∗

0 -0.17103818 0.1990804741
1 -0.35260048 0.37360123 0.1929833162
2 -0.37926750 0.53202950 -0.15856636 0.1929119841
3 -0.38539435 0.60519094 -0.34127799 0.12180922 0.1929093060
4 -0.38576842 0.61265211 -0.37482378 0.17397843 -0.02608461 0.1929092982

Besides, in Table 2, we listed J∗ for the different values of α.

The numeric consequences of Tables 1 and 2 display obviously that
the present modified PIM is accurate for investigating the FOCPs.

Example 3.2. For the second test problem, consider the following
FOCP [12]:
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Table 2: Comparisons of J∗ with different choices of α for Example 3.1

α Method of [1] Method of [2] Present method

1 0.192909 0.192909 0.1929092982
0.99 0.19153 0.19153 0.1915476611
0.9 0.17952 0.17953 0.1796176899
0.8 0.16729 0.16711 0.1674021655

J =

∫ 1

0

[
y2(t)− 2t

3
2 y(t) + u2(t)− 3

√
π

4
e−tu(t) + e−t+t

3
2 u(t)

+ t3 +
9π

64
e−2t − 3

√
π

8
e−2t+t

3
2 +

1

4
e−2t+2t

3
2 + e2t

]
dt, (9)

with

0D
1.5
t y(t) = ey(t) + 2etu(t), (10)

and the initial conditions:

y(0) = ẏ(0) = 0. (11)

The true solution (9)-(11), i.e., J∗ = 3.194528049 was reported in
[12]. Proceeding as before, we can calculate the approximate solution
for (10) and (11) using the following iterative relation:

yn+1(t) =
1

Γ(1.5)

∫ t

0
(t− τ)0.5

[
eyn(τ) + 2eτ

(
N∑
k=0

dkτ
k

)]
dτ,

y0(t) = 0. (12)

In Table 3, by implementing the present modified PIM of (12), we
have listed the resulted optimal values of J∗ for the different values N .
From Table 3, one can notice that with increasing N , the obtained J∗

approaches to the exact solution.

4 Conclusions

We established a beneficial PIM for a class of the FOCPs. By employing
the polynomial basis for the control function and the modification of the
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Table 3: Different values of J∗ for Example 3.2

N d0 d1 d2 d3 d4 J∗

0 0.00352472 3.21240284
1 0.17628828 -0.42058649 3.19430483
2 0.15814969 -0.31103621 -0.11202805 3.19421192
3 0.15933296 -0.16383197 -0.68840731 0.47167339 3.19389048
4 0.15951084 -0.27885032 -0.32954128 0.34548036 -0.15425972 3.19453623

PIM, we diminished the primary optimal problem to the one of solving
an initial value problem. Two test problems were given to express the
superiority of the modified method to the PIM. The main advantage of
the presented approach is the ability to reduce the computational work
and to overcome the difficulty that arising in calculating integrals.
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