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Abstract. A new and effective direct method to determine the nu-
merical solution of linear and nonlinear differential-algebraic equations
(DAESs) is proposed. The method consists of expanding the required ap-
proximate solution as the elements of Chebyshev cardinal functions. The
operational matrices for the integration and product of the Chebyshev
cardinal functions are presented. A general procedure for forming these
matrices is given. These matrices play an important role in modelling of
problems. By using these operational matrices together, a differential-
algebraic equation can be transformed to a system of algebraic equa-
tions. Illustrative examples are included to demonstrate the validity and
applicability of the technique.
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1. Introduction

Differential-algebraic equations (DAEs) can be found in a wide vari-
ety of scientific and engineering applications, including circuit analy-
sis, computer-aided design and real-time simulation of mechanical sys-
tems, power systems, chemical process simulation, optimal control atc.
Also, many important mathematical models can be expressed in terms of
differential-algebraic equations. In resent years, much research has been
focused on the numerical solution of systems of differential-algebraic
equations. The numerical approaches include the backward differentia-
tion formulae (BDF) [6, 8], Runge-Kutta method [2], specialized Runge-
Kutta method, which is a modification of the classic Runge-Kutta method
to solve index-2 DAEs [17] and Krylov deffered correction (KDC) method
[16]. Recently, tau method [21], the Adomian decomposition method
[14, 15], the Variational iteration method (VIM) [23] and Homotopy
perturbation method (HPM)[22] have been used to solve the linear and
nonlinear DAEs. A system of DAEs is characterized by its index, which
is the number of differentiations required to convert it into a system of
ODEs. DAEs with index > 2 are generally hard to solve and are still
under active research. In this paper we apply the Chebyshev cardinal
function bases to solve linear and nonlinear differential-algebraic equa-
tion. The method consists in reducing the differential-algebraic equa-
tion to a set of algebraic equations by expanding the current system as
Chebyshev cardinal functions with unknown coefficients. The proper-
ties of Chebyshev cardinal functions are then utilized to evaluate the
unknown coefficients.

The outline of this paper is as follows. In Section 2., we briefly present
the main steps of reducing index method for linear semi-explicit DAEs.
In Section 3., we describe the basic properties of the Chebyshev cardinal
functions required for our subsequent development. In Section 4., the
operational matrices of the integration and the product of Chebyshev
cardinal functions are presented. Section 5. is devoted to the solution of
differential-algebraic equations. Some numerical illustrations are given
in Section 6. to show the efficiency of the proposed method. Finally, a
brief conclusion is drawn in Section 7.
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2. DAEs and Reducing Index

A system of DAEs is one that consists of ordinary differential equa-
tions (ODESs) coupled with purely algebraic equations,on the other hand,
DAEs are everywhere singular implicit ODEs. The general form of DAEs
is

F(z(t),2'(t),t) =0, FeCYR* ' R™), t&lto,tf], (1)

where F/0z' is singular on R?*™t1[24]. Most DAEs arising in appli-
cations are in semi-explicit form and many are in the further restricted
Hessenberg form([6].

The index-1 semi-explicit DAEs is given by:

o' (t) = f(z(t),y(t),t), feCHR™HFLR™), teto,ts],
0 :g(x(t)vy(t)at)v g€ Cl(Rm+k+17Rk)a
(2)
where dg/0y is non-singular.
The index-2 Hessenberg DAEs is given by:

() = f(z(t),y(t),t), feCHR™H L R™), e lto,ty],
0= g(xz(t),t), g € C*(R™! RF),

where (9g/0x)(0f/0y) is non-singular[24].

Now, we briefly review the reducing index method for semi-explicit
DAEs, which mentioned in [4, 13].

Consider a linear (or linearized) semi-explicit DAEs:

{ x(m) — Z;”Zl AjX(j_l) + BY +gq, n

0=CX +r,

where A;, B and C' are smooth functions of ¢, tg <t < ty, A;(t) € R™",
j=1,2,---m, B(t) € R™* C(t) € RF*", n>2,1<k<nand OB is
non-singular (DAE has indix m + 1) except possibly at a finite number
of isolated points of ¢, which in this case, the DAEs (4) have constraint
singularity. The inhomogeneities are ¢(t) € R™ and r(t) € R*.
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Now suppose that C'B is nonsingular, from (4), we can write
Y = (CB)~'c | xm — Em:AjXU—U —ql|, tE€ltoty]. (5)
j=1
Substituting (5) into (4) implies that
[I —B(CB)™'C] | x™ — i A;xU=D gl =0, (6)
j=1

so, problem (4) transforms to the overdetermined system:

I — B(CB)~LC] [x(™) -y | A, XU - q] =0, teltoty],

0=CX +r.
(7)
Now, system (7) can be transformed to a full-rank DAE system with n
equations and n unknowns with index m [4, 13]. Here, for simplicity, we
consider problem (4) when m = 1 (problem has index 2), n = 2,3 and
k =1,2. Also, if we suppose that DAE is nonsingular, i.e.

CB() #0, € [to.t7); (8)

then by the following theorems, the given index-2 problem will transform
to index-1 DAE. This discussion can be extended to general form of (4).

Theorem 2.1. Consider problem (4) with indez-2, n = 2 and k = 1.
This problem is equivalent to the following index-1 DAE system.:

Ei X'+ EoX = g, (9)
such that
o [ bi(t)azi(t) — ba(t)arr(t) bi(t)age(t) — ba(t)aia(t) ]
0 c1(?) ca(t) ’

_ | ba(t) —bu(t) | b2(t)ar(t) — bi(t)qa(t)
B = [ 20 (1) }, G = [ 2(0)q1 _r(t)l q2 ]7 (10)
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and
y=(CB)"'C[X' — AX —q]. (11)

proof. this theorem is presented in [4]. O

Theorem 2.2. Consider problem (4) with indez-2, n = 3 and k = 2.
This problem is equivalent to the following index-1 DAE system.:

e[ ]

such that

M = [b21(¢)b3a(t) — baa(t)b31(t)b12(¢)b31(t) — b11(¢)bs2(t)b11(¢)ba2(t)]

[=b12(t)b21(t)]; 13 » (13)

and
Y = (CB)"'C[X' — AX —q]. (14)

proof. It is presented in [13]. O

3. Chebyshev Cardinal Functions

Chebyshev cardinal functions of order N in [—1,1] are defined as [5]

() Tnt1()
Cj(a) TN i10(x))(z —25)

j=1,2,...,N+1, (15)

where T11(x) is the first kind Chebyshev function of order N + 1 in
[—1, 1] defined by

Tni1(x) = cos((N + 1) arccos(z)), (16)

subscript x denotes z-differentiation and x;, j = 1,2,..., N +1, are the
zeros of Ty 1(x) defined by cos((gjj\;i);), j=12,...,N+1.
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Lemma 3.1. The functions Cj(x), j =1,2,--- ,N + 1 are orthogonal
with respect to w(x) = \/1177 on [—1,1] and satisfy the orthogonality

condition

L o\t o ifi=i,
(Cle). Gyt = | %dﬂ?:{ AN

proof. See [19]. O

to use these functions on

We change the variable ¢t = 2 ;tox + w

[to,t¢]. Now any function g(t) on [a,b] can be approximated as
N+1
g(t) = > g(t;)Ci(t) = GTON(t), (18)
j=1
wheret;, j = 1,2,..., N+1, are the shifted pointsof zj, j = 1,2,..., N+

ty—t ty+t
f 0.1‘+f 0

1, by transforming ¢t = - 3

o < < tN+1),
G =[g(t1),g(t2), ..., g(tn+1)]", (19)

(here we choose t; so that, t; <

and

On(t) = [C1(t),Ca(t),...,Cnia (D). (20)

The differentiation of vector © () defined in (20) can be expressed as
18]

O (t) = DON(1), (21)

where D is the (IV 4+ 1) x (IV 4 1) operational matrix of derivative for
Chebyshev cardinal functions and given by

Ci(t1) - Ciltns1)
Dy = : : : (22)
Chii(ty) - Cyii(tnvy)
where
N+1 1 )
, Zizl,i;éj Gt i =k,
Cj(tr) = 8 N+1 .
Ty L=tz (e =), J#F
92N+1 (23)
and ﬁ = W
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4. Operational Matrices of Chebyshev Cardinal
Functions

Recently Heydari et al. [11, 12] derived the operational matrices of
Chebyshev cardinal functions. In this section, we review the operational
matrices of integration and product which mentioned in [11, 12].

Lemma 4.1. The integration of the vector ©n(t) defined in (20) can
be approximated as

t
On(s)ds ~ PyOn(t), (24)
to
where Py is the (N + 1) x (N 4 1) operational matriz of integration as
follows

a1 Q2 T Q1(N+1)
a a DY a
Pv=1| ” AR (25)
QN+ QN+1)2 T QN4 (N+1)
where
th the N—+1
to Invrs(ti) Jio ;1

jk=1,2,...,N+1.
Proof. See [11, 12]. O

Lemma 4.2. Assume On(t) in (20) and F = [f1, f2, ..., fn+1]T as the
column vectors, then

ON()OL(t)F ~ FNON(1), (27)
where Fy is a (N + 1) x (N + 1) product operational matriz as follows
fi 0 .- 0

Fy =

R )

0 0 - fyn
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proof. See [11,12]. O

5. Direct Method to Solve DAEs

In this section, by using results obtained in previous section about
Chebyshev cardinal functions, an effective and accurate direct method
for solving linear and nonlinear differential-algebraic equations is pre-
sented. Here, the implementation of this method is presented for DAEs
system (4), when m = 1,k = 1 and n = 2. This discussion can simply
be extended to general form (4) (with and without singularities). Now
consider the DAEs system,

{ X'=AX +By+gq, to<t<ty,
(29)
0=CX +r(t),
where
_ | w(®) _ | en(t) axa(t) _ | i@
X = [ (1) ] A= [ an(t) an(t) ] B= [ ba(1) }
o= | B0 ] e=lat ao ).
with initial condition,
z1(to) = a1, xa(ty) = . (30)
Let
1 (t) = X1 On (), (31)
y(t) = XzT@N( t), (32)
y(t) =YTOn(t), (33)
where O (t) is defined in (20), and X7, X2 and Y are vectors with N +1

unknowns as follows

w
=~
N

X1 = [711, 212, - .- ,$1(N+1)]T7 (

w
t
Na?

XQ = [1’21, T22y ... ,$2(N+1)]T, (
Y = [?/1,3/27"-,yN+1]T- (

w
D
=
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By expanding z1(a) and z2(a) in terms of Chebyshev cardinal functions
we get
£1(t0) = o, ..., O (1) = L ON (1), (37)
o(to) = [, a2, . .., 0] O (t) = €3 On (). (38)

Integrating (31) and (32) from a to ¢ and using (37) and (38), we obtain

z1(t) 2 (X{ Py + e1)On(t) = B1 O (#), (39)
932(75) ~ (X2TPN + eg)@N(t) = Eg@N(t), (40)
where Py is the operational matrix of integration given in (24). Also

using (18) the functions a;;(t),b;(t), ¢;(t),ci(t) and r(t), i,j = 1,2 can
be expanded as:

N+1
aij(t) ~ Z aij(tk)Ck(t) = Az;-@N(t), 1,5 =1,2, (41)
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where

Aij = [a;(t1), aij(t2), - >aij(tN+1)]T, i,j=1,2,
= [bj(t1), bj(t2), ---7bj(tN+1)]T, 7 =12,
= [g;(t1), qj(t2), ..., q;(tns)]", G =1,2,
[ci(t1), ci(t2), . 7Ci(tN+1)]T, i=1,2,
(t1),r(t2), '--77"(tN+1)]T-
Using (31)-(33),(39),(40) and (41)-(45) in (29), we get

Cz

=r

X{On(t) — A, On(1)OF (1) E1 — AT,ON(1)OK (1) Er
-Bfoyt)eL#)Y —QTey(t) =0

X ON(t) — A5, ON(1)OF (1) E1 — ALON(HON(HE2  (46)
-Bfoyt)eL )Y —Qley(t) =0
clTont)0L(t)E, + CTon(t)0% () By + RTON(t) = 0.
Using (27) we have
ON(t)OR(DE) = EjOn(1), j=1.2, (47)
ONt)OL ()Y ~ YON(1). (48)

where E1,Ey and Y can be calculated similar to matrix Fy in (27).
From Equations (46), (47) and (48) we obtain

X{ - Aflil - A{2E2 - B{f/ - Q,iF =
;‘F - A%El - A2T2E2 - BzTY/ - Q2T =
CTE, +CIEy,+ RT = 0.

(49)
This is a system of algebraic equations with 3N +3 unknowns and 3N +3
equations, which can be solved by Newton’s iteration method to obtain
the unknown vectors X1, Xs and Y .

Remark 5.1. In case F(x(t),2'(t),t) in (1) is strongly nonlinear, the
Taylor series for several variables can be used to approximate F(x(t),z'(t),t)
as a polynomial in x(t) and 2'(t). Then the above method can be applied
easily by using operational matrices of integration and product.
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6. Numerical Examples

The direct method, presented in this article, is applied to five examples.
These examples are selected from different references, so the numerical
results obtained here can be compared with both the exact solution and
other numerical results. The computations associated with the examples
were performed using MAPLE 13 with 64 digits precision on a personal
computer.

Example 6.1. Consider the linear index-2 semi-explicit DAE problem
(23, 22]:

(50)

X'=AX+By+gq, 0<t<20,
0=CX +r,

where

=[5 3] o] o0 e[

and r(t) = —(e~! + sin(t)) with 21(0) = 1 and 22(0) = 0. The exact
solutions of this problem are

)=t wm) =sn),  y(H) = 0

From Theorem 2.1, problem (50) can be converted to the index-1 DAE:

{ T9 = —x1 + e~ +sin(t), (51)

x) = xg — 1 — sin(t),

with 21(0) = 1 and 22(0) = 0. By solving this problem and using (11),
we can obtain y(t).

Figures 1 and 2 show the plot of error with N = 25 using presented
method For this example without and with index reduction, respec-
tively. From the above example it is evident that in the solution of the
problem without index reduction a system of order 3N +3 of equations is
obtained, but by using index reduction we obtain a system of equations
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of order 2N + 2 in which the results for x;(x) and zo(x) are as well as
before, but the result for y(¢) from (11) is much better than before.

Example 6.2. Consider the linear index-2 problem [23, 22]:

X'=AX +By+gq, 0<t<14,
(52)
0=CX +r,
where
. 2 t B 1 B et(l—t—tsin(t)—l%%) oF —
Lo L P e [T sin(0) 1\ | T
T+t e (sm(t) + cos(t) — 17_”)

and r(t) = —te'(1 + sin(¢)) with z1(0) = 0 and 22(0) = 0. The exact
solutions of this problem are

€t

14t

By Theorem 2.1, the index-2 DAE (52) transforms to the following
index-1 DAE:

r1(t) =te!, xo(t) =e'sin(t), y(t)

{ x1 = —txe + g1(1), (53)

;1;’2 = tx’l — 2tz + QQ(t)xQ + 93(t)7

with 21(0) = 22(0) = 0, when g1(t) = te!(1 + sin(t)), g2(t) = 1_1'51?3
and

gs(t) = et <cos(t) — i+t + # sin(t)). Similar to Example 1, by
solving this problem and using (11), we can obtain y(t). Figures. 3 and
4 show the plot of error with N = 36 using presented method for this ex-
ample without and with index reduction, respectively. It is easily found

that the present approximations with index reduction (proposed in Sec-
tion 2.) is more efficient.

Example 6.3. Consider the following problem with initial value [3, 1,
20]:

HEIE P e E R R
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The exact solutions are, z1(t) = tsin(t) + (14 ut)e ™ and xo(t) = pe ™t +
sin(¢). Although, this problem has index-1, but Ascher showed that in
1989, for p > 0 symmetric methods solving numerically encounter with
difficulty [1]. In 1994 Amodio solved it by techniques of boundary values
[3]. Recently Saravi et al. [20] solved it by pseudo-spectral method. Here
we solved it by presented method for p = 200 and the results are given
in Table 1. In this table ey, eps and e4 mean maximum error between
z1(t) and x2(t) using presented method in Section 5., pseudo-spectral
method in [20] and Adams method [20], respectively.Table 2 shows the
maximum error between z1(t) and x2(t) using presented method for
different values of N and pu.

Example 6.4. Consider the following problem with initial condition as
8, 3,9, 7]:
t

R O RS AR ETCE I R B
with exact solution, x1(t) = et + pt(e’ — t?) and z2(t) = t? — e!. This
problem has global index-2 and was considered in several papers such as
8, 3,9, 7]. Gear and Petzold in 1984 shown that, when p < —%, then
recurrence Euler method is unable to solve it numerically [8], and in [10],
numerical methods based on finite differences encounter with difficulty.
In 1994 Amodio [3], solve it by techniques of boundary values, but the
rate of convergency for pu < —% is very low. We solved it for p = —2,
and examined it with different values of N. The results are given in
Table 3 and Table 4 shows the maximum error between () and x2(t)
using presented method for different values of N and p.

Example 6.5. In this example, consider the nonlinear index-1 semi-
explicit DAE problem [23, 22]:
Y =y—zw+gl(t),
Z=tw+y*+go(t), 0<t<1, (56)
0=y —w+gs(t),

with initial conditions y(0) = 2(0) = w(0) = 0, when ¢;(¢) = sin(t) +
tcos(t), ga(t) = sec?(t) —t2(cos(t) +sin?(t)) and gs(t) = t(cos(t) —sin(t))
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and the exact solutions are y(t) = tsin(t), z(t) = tan(t) and w(t) =
tcos(t). Tables 5-7 show the absolute errors using presented method
with N = 5,10 and 15.

7. Conclusion

The Chebyshev cardinal functions and the associated operational ma-
trices of integration Py and product Fn were applied to solve the lin-
ear and nonlinear differential-algebraic equations. The method is based
upon reducing the system into a set of algebraic equations. The obtained
results showed that this approach can solve the problem effectively and
needs few computations. The merit of this method is that the system of
equations obtained for the solution does not need to consider collocation
points; this means that the system of equations is obtained directly. In
addition this method can be employed over large intervals with suffi-
cient accuracy. The method of Chebyshev cardinal functions proposed
in this paper can be extended to solve the linear and nonlinear ordinary
differential equations.
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Figure 1: Plot of error for x;(t)(left), x2(t)(right) and y(¢)(Bottom)
with N = 25, without index reduction for Example 1.
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Figure 2: Plot of error for x;(t)(left), x2(¢)(right) and y(t)(Bottom)
with N = 25, with index reduction for Example 1.
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with NV = 36, with index reduction for Example 2.
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Table 1: Maximum error between x1 and z9 for Example 3 with

w = 200.
N epm eps[21] h ea [21]
6 2.16 x 107 1.73 x 1014 2.0x 1072 1.22 x 10~°
10 1.64 x 10~11 1.29 x 10710 5.0 x 1073 1.92 x 1077
14 2.64 x 10718 6.21 x 10714 2.5 x 1073 2.41x 1078

Table 2: Maximum error between x1 and z9 for Example 3 with
different values of NV and pu.

M N=5 N =10 N=15 N =20

500 1.3x10°3 411 x 10~ 11 1.05 x 10~ 19 5.52 x 1029
1000 2.62 x 1073 8.22 x 1011 2.20 x 1019 1.15 x 10—28
5000 1.31 x 1072 4.11 x 10710 1.10 x 10~ 18 5.75 x 1028
10000 2.63 x 102 8.22 x 1010 2.21 x 1018 1.15 x 10—27

Table 3: Maximum error between z1 and z9 for Example 4 with
different values of N and pu.

N epm eps[21] h ea [21]

6 6.33 x 107 2.58 x 107 1.0x 10~ T 7.06 x 106
10 5.04 x 1013 1.95 x 1012 1.25 x 1072 1.30 x 10~7
14 8.29 x 1020 8.23 x 10717 6.25 x 1073 1.66 x 1078

Table 4: Maximum error between z1 and z9 for Example 4 with
different values of NV and p.

w N=5 N =10 N=15 N =20

—10 7.75 x 10~° 2.56 x 1012 7.01 x 1021 3.69 x 10~30
—50 3.91 x 107* 1.29 x 10~ 11 3.51 x 10720 1.85 x 10~29
—100 7.82 x 1074 2.57 x 1011 7.03 x 1020 3.70 x 10729

—500 3.91 x 1073 1.29 x 10~10 3.51 x 10~1° 1.85 x 10728
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Table 5: Absolute values of errors for y(t).

t N=5 N =10 N =15

0.1 6.43 x 10~ 6 2.92 x 1079 2.04 x 10~ 12
0.2 5.53 x 10~6 4.05 x 1079 5.25 x 10~13
0.3 2.86 x 10~ 2.47 x 10~10 1.00 x 10—12
0.4 8.79 x 10~ 6 1.85 x 107? 9.20 x 10~1%
0.5 5.08 x 10~ 5.57 x 1079 2.84 x 10~12
0.6 7.50 x 10~ 4.64 x 10~9 4.08 x 10~13
0.7 2.05 x 1075 7.16 x 10~10 4.59 x 1012
0.8 2.29 x 1075 5.57 x 109 4.22 x 10713
0.9 1.10 x 10~° 6.59 x 109 4.16 x 1012
1.0 2.54 x 10~ 8.81 x 1079 1.37 x 1012

Table 6: Absolute values of errors for z(t).

t N=5 N =10 N=15

0.1 6.89 x 102 3.86 x 10~ 7 359 x 10~ 10
0.2 2.53 x 10~4 4.49 x 10~7 1.90 x 10—10
0.3 4.98 x 10—+ 4.81 x 1077 3.59 x 1010
0.4 8.35 x 106 2.66 x 10~7 4.27 x 10~10
0.5 5.40 x 10~4 2.45 x 10~7 4.25 x 10~10
0.6 4.82 x 104 5.11 x 107 4.57 x 1010
0.7 1.67 x 10~ 4.17 x 1077 4.73 x 10~10
0.8 5.50 x 10~* 1.24 x 107 4.65 x 1010
0.9 1.69 x 10—4 1.51 x 10~7 1.14 x 10—10
1.0 3.61 x 104 4.24 x 1077 3.95 x 10~ 10

Table 7: Absolute values of errors for w(t).

t N=5 N =10 N =15

0.1 1.06 x 10—° 2.92 x 1079 2.04 x 10~ 12
0.2 1.37 x 10~6 4.05 x 10~9 5.25 x 10~13
0.3 7.21 x 10~ 2.47 x 10~10 1.00 x 1012
0.4 6.80 x 10~6 1.85 x 10—9 9.20 x 10~15
0.5 7.26 x 107 5.57 x 1079 2.84 x 10~12
0.6 9.50 x 10~ 4.64 x 1079 4.08 x 1013
0.7 1.61 x 10~° 7.16 x 10~10 4.59 x 1012
0.8 1.86 x 102 5.57 x 1079 4.22 x 10~13
0.9 1.53 x 10—5 6.59 x 109 4.16 x 1012

1.0 3.14 x 10~ 8.81 x 1079 1.37 x 10—12
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