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Abstract. Let M be an R-module and 0 # f € M* = Hom(M, R).
The graph T';(M) is a graph with vertices Z/(M) = {x € M \ {0} |
zf(y) = 0 or yf(z) = 0 for some non-zero y € M}, in which non-zero
elements = and y are adjacent provided that zf(y) = 0 or yf(z) = 0,
which introduced and studied in [3]. In this paper we associate an undi-
rected submodule based graph F{\, (M) for each submodule N of M with
vertices Z{, (M) = {x € M\ N | zf(y) € N or yf(x) € N for some y €
M\ N}, in which non-zero elements x and y are adjacent provided that
zf(y) € N or yf(z) € N. We observe that over a commutative ring R,
I (M) is connected and diam(T',,(M)) < 3. Also we get some results
about clique number and connectivity number of T'% (M)
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1. Introduction

All rings in this paper are commutative with identity and modules are
unitary right modules. Let M be an R-module, following [9] all R-
homomorphism from M to R will be denoted by M™*.

In recent decades, the zero-divisor graphs of commutative rings have
been extensively studied by many authors and become a major field of
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research. S. P. Redmond replaced zero (ideal) in the definition of zero
divisor graph by an arbitrary ideal (see [7]) to get a nice generalization of
the zero-divisor graph of a commutative ring. The zero divisor graph for
modules over commutative rings, introduced by M. Behboodi in [4], was
one of the first attempts to generalize the zero-divisor graphs in module
theoretic context. In [2] and [3] the authors gave a new interpretation of
zero-divisor graph for modules, which in some cases, coincide with the
zero-divisor graph of commutative rings.

In this paper, we extend Redmond’s findings to see if additional informa-
tion about the structure of commutative rings is hidden in ideal-divisor
graphs.

Let G be a (undirected) graph. We say that G is connected if there is
a path between any two distinct vertices. For distinct vertices x and y
in G, the distance between x and y, denoted by d(x,y), is the length of
a shortest path connecting x and y (d(z,x) = 0 and d(z,y) = oo if no
such path exists).

The diameterof G is diam(G) = sup{d(z,y) | x and y are vertices of G}.
A cycle of length n in G is a path of the form xy — a9 —x3—- - — 2, — 271,
where z; # x; when i # j. We define the girth of G, denoted by gr(G),
as the length of a shortest cycle in G, provided G contains a cycle; oth-
erwise, gr(G) = co. A graph is complete if any two distinct vertices are
adjacent. By a complete subgraph we mean a subgraph which is com-
plete as a graph. In this article all subgraphs are induced subgraphs,
where a subgraph G’ of a graph G is an induced subgraph of G if two
vertices of G are adjacent in G’ if and only if they are adjacent in G.
A complete subgraph of G is called a clique. The clique number of G,
denoted by cl(G) = sup{|G’| : where G’ is a complete subgraph of G}.
Unexplained terminology and standard results may be found in [8] and
9].

2. Definition and Some Preliminary Results

We begin with the definition of the submodule-based zero-divisor graph
of modules and then give some clarifications of the relation between this
definition and those appeared in the literature.
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Definition 2.1. Let R be a commutative ring, M an R-module, f €
M* = Hompg(M, R) and N a submodule of M. We define an undirected
graph with vertices

Z]{,(M):{xEM\N | f(y) € N oryf(z) € N for somey € M\ N},

where distinct vertices x and y are adjacent if and only if xf(y) € N or
yf(z) € N, and will be denoted by I‘{V(M)

The following proposition shows that the graph in Definition 2.1 is a
direct generalization of ideal-based zero-divisor graph introduced in [6].

Proposition 2.2. Let M be an R-module and N be a submodule of M.
(a) If N = (0), then TX,(M) = T'f(M)

(b) If N is a non-zero proper submodule of M then I’{V(M) =0 if and
only if N is a prime submodule of M and Z]{,(M) #M\ N

Proof. (a) It is clear.

(b) Let N be a prime submodule of M and Z]{,(M) #M\N. If F{V(M)
# () then there exists = € Z]{,(M) and y € Z]{,(M) such that zf(y) € N
or yf(z) € N, since x ¢ N an N is a prim submodule, M f(y) C N
and so for all m € M \ N, mf(y) € N and hence Z]{,(M) =M\N, a
contradiction.

Conversely, suppose that mr € N and m ¢ N, for some r € R and
meM. If Ma g N, then there exists my € M such that mga ¢ N and
hence mf(moa) € N. Thus F{V(M) # (), a contradiction. O

Theorem 2.3. Let N be a submodule of M. Then F{V (M) is a connected
graph with diam(I‘{V(M)) < 3.

Proof. Let x and y be distinct vertices of T’ {V(M ). The following cases
may be hold.

Case 1. If 2 f(y) € N or yf(z) € N, then x — y is a path of I‘{V(M)
Case 2. Ifzf(y) ¢ Nbut zf(z) € Nandyf(y) € N, thenz—zf(y)—y
is a path of ' (M) since zf(xf(y)) = xf(2)f(y) € N and yf(zf(y)) =

y(f(x)f(y)) € N.
Case 3. If zf(y) ¢ N and yf(y) ¢ N but zf(z) € N, then there

exists z € Z such that yf(z) € N or zf(y) € N. If yf(z) € N, then
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x —xf(z) —y is a path ofF{V(M). If zf(y) € N, then  — zf(z) —y is
a path of F{V(M)

Case 4. If f(y) ¢ N and zf(x) ¢ N but yf(y) € N, then the proof is
the same as case 3.

Case 5. If zf(y) ¢ N and yf(y) ¢ N and zf(x) ¢ N, then there exists
z,t € Z such that xf(z) € N or zf(x) € N and yf(t) € Nortf(y) € N.
Iftf(z) € Nor zf(t) € N then z — z —t — y is a path in I‘{V(M) else
tf(z) ¢ N and zf(t) ¢ N. If zf(z) € N then  — tf(z) — y is a path
of I‘{V(M) If zf(z) € N and yf(t) € N then x — zf(t) — y is a path in
F{V(M) If zf(x) € N and tf(y) € N then x — 2f(t) — tf(z) —y is a
path in F{V(M) thus F{V(M) is connected and diam(F{V(M)) <3 0O
For an R-module M the graph F{O}(M) will be denoted by T'/ (M). The
next results show the relation between F{V(M ) and I'/ ().

Theorem 2.4. Let M be an R-module, N a submodule of M and f a
non-zero homomorphism in (3)*.

(a) If =+ N —y+N inD/ (&), then x—y in T4T(M) (where w: M —
M/N is the natural projection map).

(b) If z—y in T9(M) for some non-zero homomorphism g € M*, x+N #
y+ N and N C ker(g), then x + N —y + N in Fg(%) for some g in
(M)

(¢) If z —y in T9(M) for some non-zero homomorphism g € M* and

x4+ N=y+ N, then zg(x) € N or yg(y) € N.

Proof. (a) Since x + N —y + N, then (x + N)f(y + N) = 0% or
(y+N)f(x+N) = 0%. Suppose (z+N)f(y+N) = 0% = N, therefore
2fr(y) € N and hence & — y in T4 (M).

(b) Let  — y in I'9(M) for some non-zero homomorphism g € M* and
x4+ N #y+ N and N C ker(g). Now suppose zg(y) € N. Then for
all ni,ng € N we have (x + n1)g(y + n2) = zg(y) + n1g(y + n2) +
zg(n2) € N, which implies that (z+ N)g(y+N) =0, for g € (45)* with
g(m+ N) = g(m).

(c) Let  — y and zg(y) € N. Since z + N = y + N thus zg(y) + N =
yg(y) + N and so we have yg(y) € N. In the same way we can show if
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yg(x) € N then zg(z) € N. O

Using the notation as in the above construction, we call the subset z+ N
a column of F{V(M) Ifxf(xz) € N, then we call z+N a connected column
of T4, (M).

Corollary 2.5. Let M be an R-module, N a submodule of M and
feM* Ifx—yin F{V(M) and N C ker(f), then all(distinct) elements
of x + N and y + N are adjacent in I‘{V(M)

Ifxf(x) € N, then all distinct elements of x+N are adjacent in F{V(M)
For a graph G, we say {Gs}sea is a collection of disjoint subgraphs of
G if all the vertices and edges of Gg are contained in G and no two of
these G contain a common vertex.

Proposition 2.6. Let N be a submodule of R-module M. Then the
graph F{V(M) contains |N| disjoint subgraphs isomorphic to T'/(4L).

Proof. Let {mq}. be a set of coset representatives of the vertices of
Ff(%) that is, |J,(ma + N) = Z(%), and if o # 3, then mqo+N # mg+
N. For each n € N, define a graph G,, with vertices {mq +n |n € N},
where m,+n is adjacent to mg+n in G, whenever mq+ NN is adjacent to
mg+ N in Ff(%); i.e., whenever m f(mg) € I. By the above theorem,
Gy, is a subgraph of F{V(M) Also, for each n,n1,n0 € N, G, = Ff(%),
and Gy, and Gj, contain no common vertices if n; # no. 0O

3. Cut-Points and Clique Number

A vertex x of a connected graph is a cut-point of G if there are vertices
u and w of G such that z # u and x # w and x lies in every path from
u to w.

Theorem 3.1. Let N be a non-zero proper submodule of an R-module
M. Then the graph I‘{V(M) has no cut-point.

Proof. Let x be a cut-point of F{V(M ). Then there exist v and w in
F{V(M ) such that z lies in every path from u to w. By Theorem 2.4, the
shortest path from u to w is of length 2 or 3.
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Case 1. The path from u to w is of length 2. Let u — z — w is the
shortest path from u to w, then we have uf(x) € N or zf(u) € N and
zf(w) € N or wf(z) € N and these cases may compose in 4 way,

1. zf(u) € N and zf(w) € N;

3

2. zf(u) € N and wf(x) € N;
. uf(zr) € N and zf(w) € N;

(
(
(
4. uf(zr) € N and wf(z) € N.

If all elements = f (u), x f(w), wf(x) and uf(x) are zero, then u—zr+n—w,
which n is a non-zero element of IV, a contradiction.

If y is one of non-zero element x f(u), zf(w), wf(x) or uf(x), then there
exists a path v — x + y — w, a contradiction.

Case 2. The path from u to w is of length 3. Let u — z — y — w be the
shortest path from w to w, which implies that shortest path from u to
y be the path u — x — y. Now similar case 1 we can find another path
from u to y, which shows that x is not cut-point. [

The connectivity of a graph G, denoted by k(G), is defined to be the
minimum number of vertices which is necessary to remove from G in or-
der to produce a disconnected graph. We provide bounds on k(F{V(M )
for a given module M, non-zero homomorphism f in M* and submodule
N of M. Recall that if M is the regular module R, f a monomorphism
in M* and N = I, then T'{ (M) = T';(R).

Theorem 3.2. Let N be a proper submodule of M, f € (%)* and

T M — % be the natural projection map and f ffﬂ.

(a) If D/ (%) is the graph on one vertex, then k(I‘{y(M)) =|N|-1;

(b) IfFf(%) has at least two vertices, then2 < k(F{V(M)) < |N|.k(I‘f(%));
(c) IN| =1 < k(T4 (M))

Proof. (a) If T'/(4%) has only one vertex. Then z+N is connect to itself,
thus for all ny, ne € N, (z+n1) f(x+n2) = zf(z)+n1f(z+n2)+xf(ng) €

N. So that #f(x) € N and hence F{V(M) completed graph with |N|
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vertices. Thus k(I'} (M)) = [N| — 1.

(b) Since F{V(M ) is connected and by Theorem 3.1 has no cut-point, so
that 2 < k(T4 (M)). Let ko = k(Y (X)) and let ay + N, ..., ap, + N be
vertices of T/ (%) witch, once removed, give a disconnect graph and let G
be the graph obtained from F{V(M ) by removing columns corresponding
to a1 + N,...,ag, + N (this means to remove ko.|N| vertices). If we
show that G is disconnected, it means k(F{V(M)) < IN[ETY(3E)). By
the choice of a; + N, ..., ax, + N, there exist vertices b+ N and ¢+ N
of Ff(%) such that are not connected by removing a1 + N, ..., ax, + N,
then b and c are vertices of G. Suppose b —x1 — ... — x,,, — c is a path
in G. Without loss of generality, x; + N # x;41 + N, for 1 < j < m.
Therefor, b+ N —21+ N — ... — 2y, + N —c+ N is a path in I'(M)
after a; + N,...,ar + N have been removed, this contradicts with the
hypothesis b + N and ¢+ N are disconnected in I'(M). Hence G’ must
be disconnected.

(¢) We define a number d such that d = |[N| —1if |[N| < oo and d is any
positive integer if [N| = co. Let ai,...,aq be some arbitrary vertices
of_I‘{V(M ) and G be the graph obtained by removing ai,...,aq from
I‘{V(M ). We show that G is a connected graph. Let x and y be vertices

of G. If x—y there is nothing to proof. We know that diam(F{V(M)) <3
thus we have two cases. )

Case 1. Let z — w — y be the shortest path from z to y in F{V(M)
If w# a; for j =1,...,d, then x —w — y in G. Supposes there exists
1 < j < dsuch that w = a;j . The column a; + N contains |N| elements,
so we can choose v € a; + N such that v # a; for 1 <7 < d. Since we
have choose d < |N| and = and y are adjacent to w, we have z and y
are adjacent to v and v is in G, thus z —v —y is a path in G.

Case 2. Let x —w — v — y be the shortest path from z to y in F{V(M)
If w € G or v € G then by above proof we have a path from x to y in G.
Suppose w € G and v ¢ G. We can choose a € w+ N (so a = w+n; for
some n; € N) such that a # a; for 1 <7 < d. Since z is adjacent to w, we
have r—a (if zf(w) € N then zf(a) = zf(w+n1) = xf(w)+xf(n1) € N
and if wf(z) € N then af(z) = (w + n)f(z) = wf(x) + nf(x) € N)
and a is in G, thus ¢ — a is a path in G and like this we can choose
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b e G (b= v+ ny for some ny € N) such that b —y. Now we prove
that a — b is a path. If wf(v) € N, then af(b) = (w + ny)f(v+ ng) =
wf(v) + wf(nz) + nif(v+n2) € N and if vf(w) € N then bf(a) =

(v+n2)f(w+n1) =vf(w) +vf(n) +nof(w+mny) € N. O

Corollary 3.3. If N is a proper non-zero submodule of M that is not
prime and f and f be as above theorem, then |N| -1< k(F{V(M)) <

(IN|.k(D(M)). Moreover, if N is infinite, then k(F{V(M))) =00
We recall that for a graph G, a complete subgraph is called a clique. The

clique number, w(G), is the greatest integer n > 1 such that K™ C G,
and w(G) = oo if K™ C G for alln > 1.

Proposition 3.4. Let N be a submodule of an R-module M and f €
M*. If I’{V(M) has a connected column, then w(F{V(M)) > |NJ|.

Proof. If a+ N is a connected column of I‘{V(M), then a+ N a complete
subgraph of F{V(M) O

Corollary 3.5. Let N be a proper submodule of M, [ € (%)* and
f = fr, where 7 : M — % is the natural projection map. If T'(M)
consists of only one vertex, then w(F{V(M)) = |N|. If N # 0, then
(T (§)) < w(Th (M)).

Corollary 3.6. If M, N, f, f are as above, Ff(%) has at least two ver-
tices and F{V(M) has a connected column, then w(F{V(M)) > |N|+1

Proof. Let a + N be a connected column of F{V(M) There exists
b€ M\ N such that a+ N # b+ N and a + N is adjacent to b + N
in T/ (%) We know that each element of connected column a + N
is adjacent to b and so {a + N}|J{b} forms a complete subgraph of

r{(M). O

Theorem 3.7. Let N be a proper submodule of M, f € %* and f = fr

where m : M — % is the natural projection map. If F{V(M) has no

connected column, then w(I'Y (4L)) = w(F{V(M))
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Proof. By Corollary 3.5, we observed that w(I'V(4})) < w(F{;,(M))
Thus it is sufficient to consider the case where w(lf(A) = d < .

We assume G is the complete subgraph of F{V(M ) on d+ 1 vertices and
provide a contradiction. Let aq,...,aq+1 be the set of (distinct) vertices
of G. Consider the subgraph G* of I'(M) on vertices a1+N, ..., aq+1+N.
G* is a complete graph (since G is a complete graph), and since we
assumed that w(I'/(4)) = d, thus we must have a; + N = aj, + N for
some j # k. Therefore a, = aj+n for some n € N. Since G is complete,

a; is adjacent to ay in I‘{V(M) It follows that either a;f(ax) € N or
arf(aj) € N. Let a;f(ax) € N. Then a;f(a;)+a;f(n) = a;f(a;j+n) =
a;jf(k) € N and therefore a;f(a;) € N (since N C ker(f)). Therefore

a;+N is a connected column in F{V(M ). This contradicts with Corollary
3.6. O
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