Journal of Mathematical Extension Vol. 7, No. 2, (2013), 15-24

The Submodule-Based Zero-Divisor Graph with Respect to Some Homomorphism

M. Baziar^{*}

Yasouj University

N. Ranjbar

Yasouj University

Abstract. Let M be an R-module and $0 \neq f \in M^* = \operatorname{Hom}(M, R)$. The graph $\Gamma_f(M)$ is a graph with vertices $Z^f(M) = \{x \in M \setminus \{0\} \mid xf(y) = 0 \text{ or } yf(x) = 0 \text{ for some non-zero } y \in M\}$, in which non-zero elements x and y are adjacent provided that xf(y) = 0 or yf(x) = 0, which introduced and studied in [3]. In this paper we associate an undirected submodule based graph $\Gamma_N^f(M)$ for each submodule N of M with vertices $Z_N^f(M) = \{x \in M \setminus N \mid xf(y) \in N \text{ or } yf(x) \in N \text{ for some } y \in M \setminus N\}$, in which non-zero elements x and y are adjacent provided that $xf(y) \in N$ or $yf(x) \in N$ for some $y \in M \setminus N\}$, in which non-zero elements x and y are adjacent provided that $xf(y) \in N$ or $yf(x) \in N$. We observe that over a commutative ring R, $\Gamma_N^f(M)$ is connected and $diam(\Gamma_N^f(M)) \leq 3$. Also we get some results about clique number and connectivity number of $\Gamma_N^f(M)$

AMS Subject Classification: 05C25; 05C38; 05C40; 16D10; 16D4 **Keywords and Phrases:** Zero-divisor graph of modules, diameter, cut-point, clique number

1. Introduction

All rings in this paper are commutative with identity and modules are unitary right modules. Let M be an R-module, following [9] all Rhomomorphism from M to R will be denoted by M^* .

In recent decades, the zero-divisor graphs of commutative rings have been extensively studied by many authors and become a major field of

Received: August 2012; Accepted: April 2013

^{*}Corresponding author

research. S. P. Redmond replaced zero (ideal) in the definition of zero divisor graph by an arbitrary ideal (see [7]) to get a nice generalization of the zero-divisor graph of a commutative ring. The zero divisor graph for modules over commutative rings, introduced by M. Behboodi in [4], was one of the first attempts to generalize the zero-divisor graphs in module theoretic context. In [2] and [3] the authors gave a new interpretation of zero-divisor graph for modules, which in some cases, coincide with the zero-divisor graph of commutative rings.

In this paper, we extend Redmond's findings to see if additional information about the structure of commutative rings is hidden in ideal-divisor graphs.

Let G be a (undirected) graph. We say that G is *connected* if there is a path between any two distinct vertices. For distinct vertices x and y in G, the *distance* between x and y, denoted by d(x, y), is the length of a shortest path connecting x and y (d(x, x) = 0 and $d(x, y) = \infty$ if no such path exists).

The diameter of G is diam $(G) = \sup\{d(x, y) \mid x \text{ and } y \text{ are vertices of } G\}$. A cycle of length n in G is a path of the form $x_1 - x_2 - x_3 - \cdots - x_n - x_1$, where $x_i \neq x_j$ when $i \neq j$. We define the girth of G, denoted by $\operatorname{gr}(G)$, as the length of a shortest cycle in G, provided G contains a cycle; otherwise, $\operatorname{gr}(G) = \infty$. A graph is complete if any two distinct vertices are adjacent. By a complete subgraph we mean a subgraph which is complete as a graph. In this article all subgraphs are induced subgraphs, where a subgraph G' of a graph G is an induced subgraph of G if two vertices of G' are adjacent in G' if and only if they are adjacent in G. A complete subgraph of G is called a clique. The clique number of G, denoted by $cl(G) = \sup\{|G'| : \text{ where } G' \text{ is a complete subgraph of } G\}$. Unexplained terminology and standard results may be found in [8] and [9].

2. Definition and Some Preliminary Results

We begin with the definition of the submodule-based zero-divisor graph of modules and then give some clarifications of the relation between this definition and those appeared in the literature. **Definition 2.1.** Let R be a commutative ring, M an R-module, $f \in M^* = \operatorname{Hom}_R(M, R)$ and N a submodule of M. We define an undirected graph with vertices

$$Z_N^f(M) = \{x \in M \setminus N \mid xf(y) \in N \text{ or } yf(x) \in N \text{ for some } y \in M \setminus N\},\$$

where distinct vertices x and y are adjacent if and only if $xf(y) \in N$ or $yf(x) \in N$, and will be denoted by $\Gamma_N^f(M)$.

The following proposition shows that the graph in Definition 2.1 is a direct generalization of ideal-based zero-divisor graph introduced in [6].

Proposition 2.2. Let M be an R-module and N be a submodule of M. (a) If N = (0), then $\Gamma_N^f(M) = \Gamma_f(M)$

(b) If N is a non-zero proper submodule of M then $\Gamma_N^f(M) = \emptyset$ if and only if N is a prime submodule of M and $Z_N^f(M) \neq M \setminus N$

Proof. (a) It is clear.

(b) Let N be a prime submodule of M and $Z_N^f(M) \neq M \setminus N$. If $\Gamma_N^f(M) \neq \emptyset$ then there exists $x \in Z_N^f(M)$ and $y \in Z_N^f(M)$ such that $xf(y) \in N$ or $yf(x) \in N$, since $x \notin N$ an N is a prim submodule, $Mf(y) \subseteq N$ and so for all $m \in M \setminus N$, $mf(y) \in N$ and hence $Z_N^f(M) = M \setminus N$, a contradiction.

Conversely, suppose that $mr \in N$ and $m \notin N$, for some $r \in R$ and $m \in M$. If $Ma \notin N$, then there exists $m_0 \in M$ such that $m_0a \notin N$ and hence $mf(m_0a) \in N$. Thus $\Gamma_N^f(M) \neq \emptyset$, a contradiction. \Box

Theorem 2.3. Let N be a submodule of M. Then $\Gamma_N^f(M)$ is a connected graph with $diam(\Gamma_N^f(M)) \leq 3$.

Proof. Let x and y be distinct vertices of $\Gamma_N^f(M)$. The following cases may be hold.

Case 1. If $xf(y) \in N$ or $yf(x) \in N$, then x - y is a path of $\Gamma_N^f(M)$. **Case 2.** If $xf(y) \notin N$ but $xf(x) \in N$ and $yf(y) \in N$, then x - xf(y) - yis a path of $\Gamma_N^f(M)$ since $xf(xf(y)) = xf(x)f(y) \in N$ and $yf(xf(y)) = y(f(x)f(y)) \in N$.

Case 3. If $xf(y) \notin N$ and $yf(y) \notin N$ but $xf(x) \in N$, then there exists $z \in \mathbb{Z}$ such that $yf(z) \in N$ or $zf(y) \in N$. If $yf(z) \in N$, then

x - xf(z) - y is a path of $\Gamma_N^f(M)$. If $zf(y) \in N$, then x - zf(x) - y is a path of $\Gamma_N^f(M)$.

Case 4. If $xf(y) \notin N$ and $xf(x) \notin N$ but $yf(y) \in N$, then the proof is the same as case 3.

Case 5. If $xf(y) \notin N$ and $yf(y) \notin N$ and $xf(x) \notin N$, then there exists $z, t \in \mathbb{Z}$ such that $xf(z) \in N$ or $zf(x) \in N$ and $yf(t) \in N$ or $tf(y) \in N$. If $tf(z) \in N$ or $zf(t) \in N$ then x - z - t - y is a path in $\Gamma_N^f(M)$ else $tf(z) \notin N$ and $zf(t) \notin N$. If $xf(z) \in N$ then x - tf(z) - y is a path of $\Gamma_N^f(M)$. If $zf(x) \in N$ and $yf(t) \in N$ then x - zf(t) - y is a path in $\Gamma_N^f(M)$. If $zf(x) \in N$ and $tf(y) \in N$ then x - zf(t) - tf(x) - y is a path in $\Gamma_N^f(M)$. If $zf(x) \in N$ and $tf(y) \in N$ then x - zf(t) - tf(x) - y is a path in $\Gamma_N^f(M)$ thus $\Gamma_N^f(M)$ is connected and $diam(\Gamma_N^f(M)) \leqslant 3$. \Box

For an *R*-module *M* the graph $\Gamma_{\{0\}}^f(M)$ will be denoted by $\Gamma^f(M)$. The next results show the relation between $\Gamma_N^f(M)$ and $\Gamma^f(\frac{M}{N})$.

Theorem 2.4. Let M be an R-module, N a submodule of M and f a non-zero homomorphism in $(\frac{M}{N})^*$.

(a) If x + N - y + N in $\Gamma^{f}(\frac{M}{N})$, then x - y in $\Gamma_{N}^{f\pi}(M)$ (where $\pi : M \to M/N$ is the natural projection map).

(b) If x-y in $\Gamma^g(M)$ for some non-zero homomorphism $g \in M^*$, $x+N \neq y+N$ and $N \subseteq ker(g)$, then x+N-y+N in $\Gamma^{\bar{g}}(\frac{M}{N})$ for some \bar{g} in $(\frac{M}{N})^*$.

(c) If x - y in $\Gamma^{g}(M)$ for some non-zero homomorphism $g \in M^{*}$ and x + N = y + N, then $xg(x) \in N$ or $yg(y) \in N$.

Proof. (a) Since x + N - y + N, then $(x + N)f(y + N) = 0_{\frac{M}{N}}$ or $(y+N)f(x+N) = 0_{\frac{M}{N}}$. Suppose $(x+N)f(y+N) = 0_{\frac{M}{N}} = N$, therefore $xf\pi(y) \in N$ and hence x - y in $\Gamma_N^{f\pi}(M)$.

(b) Let x - y in $\Gamma^{g}(M)$ for some non-zero homomorphism $g \in M^{*}$ and $x + N \neq y + N$ and $N \subseteq ker(g)$. Now suppose $xg(y) \in N$. Then for all $n_{1}, n_{2} \in N$ we have $(x + n_{1})g(y + n_{2}) = xg(y) + n_{1}g(y + n_{2}) + xg(n_{2}) \in N$, which implies that $(x + N)\overline{g}(y + N) = 0$, for $\overline{g} \in (\frac{M}{N})^{*}$ with $\overline{g}(m + N) = g(m)$.

(c) Let x - y and $xg(y) \in N$. Since x + N = y + N thus xg(y) + N = yg(y) + N and so we have $yg(y) \in N$. In the same way we can show if

 $yg(x) \in N$ then $xg(x) \in N$. \Box

Using the notation as in the above construction, we call the subset x+N a column of $\Gamma_N^f(M)$. If $xf(x) \in N$, then we call x+N a connected column of $\Gamma_N^f(M)$.

Corollary 2.5. Let M be an R-module, N a submodule of M and $f \in M^*$. If x - y in $\Gamma_N^f(M)$ and $N \subseteq ker(f)$, then all(distinct) elements of x + N and y + N are adjacent in $\Gamma_N^f(M)$.

If $xf(x) \in N$, then all distinct elements of x+N are adjacent in $\Gamma_N^f(M)$. For a graph G, we say $\{G_{\delta}\}_{\delta \in \Delta}$ is a collection of disjoint subgraphs of G if all the vertices and edges of G_{δ} are contained in G and no two of these G_{δ} contain a common vertex.

Proposition 2.6. Let N be a submodule of R-module M. Then the graph $\Gamma_N^f(M)$ contains |N| disjoint subgraphs isomorphic to $\Gamma^f(\frac{M}{N})$.

Proof. Let $\{m_{\alpha}\}_{\alpha}$ be a set of coset representatives of the vertices of $\Gamma^{f}(\frac{M}{N})$ that is, $\bigcup_{\alpha}(m_{\alpha}+N) = Z(\frac{M}{N})$, and if $\alpha \neq \beta$, then $m_{\alpha}+N \neq m_{\beta}+N$. For each $n \in N$, define a graph G_{n} with vertices $\{m_{\alpha}+n \mid n \in N\}$, where $m_{\alpha}+n$ is adjacent to $m_{\beta}+n$ in G_{n} whenever $m_{\alpha}+N$ is adjacent to $m_{\beta}+N$ in $\Gamma^{f}(\frac{M}{N})$; i.e., whenever $m_{\alpha}f(m_{\beta}) \in I$. By the above theorem, G_{n} is a subgraph of $\Gamma^{f}_{N}(M)$. Also, for each $n, n_{1}, n_{2} \in N, G_{n} \cong \Gamma^{f}(\frac{M}{N})$, and $G_{n_{1}}$ and $G_{n_{2}}$ contain no common vertices if $n_{1} \neq n_{2}$. \Box

3. Cut-Points and Clique Number

A vertex x of a connected graph is a cut-point of G if there are vertices u and w of G such that $x \neq u$ and $x \neq w$ and x lies in every path from u to w.

Theorem 3.1. Let N be a non-zero proper submodule of an R-module M. Then the graph $\Gamma_N^f(M)$ has no cut-point.

Proof. Let x be a cut-point of $\Gamma_N^f(M)$. Then there exist u and w in $\Gamma_N^f(M)$ such that x lies in every path from u to w. By Theorem 2.4, the shortest path from u to w is of length 2 or 3.

Case 1. The path from u to w is of length 2. Let u - x - w is the shortest path from u to w, then we have $uf(x) \in N$ or $xf(u) \in N$ and $xf(w) \in N$ or $wf(x) \in N$ and these cases may compose in 4 way,

- 1. $xf(u) \in N$ and $xf(w) \in N$;
- 2. $xf(u) \in N$ and $wf(x) \in N$;
- 3. $uf(x) \in N$ and $xf(w) \in N$;
- 4. $uf(x) \in N$ and $wf(x) \in N$.

If all elements xf(u), xf(w), wf(x) and uf(x) are zero, then u-x+n-w, which n is a non-zero element of N, a contradiction.

If y is one of non-zero element xf(u), xf(w), wf(x) or uf(x), then there exists a path u - x + y - w, a contradiction.

Case 2. The path from u to w is of length 3. Let u - x - y - w be the shortest path from u to w, which implies that shortest path from u to y be the path u - x - y. Now similar case 1 we can find another path from u to y, which shows that x is not cut-point. \Box

The connectivity of a graph G, denoted by k(G), is defined to be the minimum number of vertices which is necessary to remove from G in order to produce a disconnected graph. We provide bounds on $k(\Gamma_N^f(M))$ for a given module M, non-zero homomorphism f in M^* and submodule N of M. Recall that if M is the regular module R, f a monomorphism in M^* and N = I, then $\Gamma_N^f(M) = \Gamma_I(R)$.

Theorem 3.2. Let N be a proper submodule of M, $f \in \left(\frac{M}{N}\right)^*$ and $\pi: M \to \frac{M}{N}$ be the natural projection map and $\bar{f} = f\pi$. (a) If $\Gamma^f(\frac{M}{N})$ is the graph on one vertex, then $k(\Gamma_N^{\bar{f}}(M)) = |N| - 1$; (b) If $\Gamma^f(\frac{M}{N})$ has at least two vertices, then $2 \leq k(\Gamma_N^{\bar{f}}(M)) \leq |N| \cdot k(\Gamma^f(\frac{M}{N}))$; (c) $|N| - 1 \leq k(\Gamma_N^{\bar{f}}(M))$

Proof. (a) If $\Gamma^f(\frac{M}{N})$ has only one vertex. Then x+N is connect to itself, thus for all $n_1, n_2 \in N$, $(x+n_1)\bar{f}(x+n_2) = x\bar{f}(x)+n_1\bar{f}(x+n_2)+x\bar{f}(n_2) \in N$. So that $x\bar{f}(x) \in N$ and hence $\Gamma^{\bar{f}}_N(M)$ completed graph with |N| vertices. Thus $k(\Gamma_N^{\bar{f}}(M)) = |N| - 1$.

(b) Since $\Gamma_N^{\bar{f}}(M)$ is connected and by Theorem 3.1 has no cut-point, so that $2 \leq k(\Gamma_N^{\bar{f}}(M))$. Let $k_0 = k(\Gamma^f(\frac{M}{N}))$ and let $a_1 + N, \ldots, a_{k_0} + N$ be vertices of $\Gamma^f(\frac{M}{N})$ witch, once removed, give a disconnect graph and let G be the graph obtained from $\Gamma_N^{\bar{f}}(M)$ by removing columns corresponding to $a_1 + N, \ldots, a_{k_0} + N$ (this means to remove $k_0 \cdot |N|$ vertices). If we show that G is disconnected, it means $k(\Gamma_N^{\bar{f}}(M)) \leq |N| \cdot k(\Gamma^f(\frac{M}{N}))$. By the choice of $a_1 + N, \ldots, a_{k_0} + N$, there exist vertices b + N and c + N of $\Gamma^f(\frac{M}{N})$ such that are not connected by removing $a_1 + N, \ldots, a_{k_0} + N$, then b and c are vertices of G. Suppose $b - x_1 - \ldots - x_m - c$ is a path in G. Without loss of generality, $x_j + N \neq x_{j+1} + N$, for $1 \leq j \leq m$. Therefor, $b + N - x_1 + N - \ldots - x_m + N - c + N$ is a path in $\Gamma(M)$ after $a_1 + N, \ldots, a_k + N$ have been removed, this contradicts with the hypothesis b + N and c + N are disconnected in $\Gamma(M)$. Hence G must be disconnected.

(c) We define a number d such that d = |N| - 1 if $|N| < \infty$ and d is any positive integer if $|N| = \infty$. Let a_1, \ldots, a_d be some arbitrary vertices of $\Gamma_N^{\bar{f}}(M)$ and G be the graph obtained by removing a_1, \ldots, a_d from $\Gamma_N^{\bar{f}}(M)$. We show that G is a connected graph. Let x and y be vertices of G. If x - y there is nothing to proof. We know that $diam(\Gamma_N^{\bar{f}}(M)) \leq 3$ thus we have two cases.

Case 1. Let x - w - y be the shortest path from x to y in $\Gamma_N^f(M)$. If $w \neq a_j$ for $j = 1, \ldots, d$, then x - w - y in G. Supposes there exists $1 \leq j \leq d$ such that $w = a_j$. The column $a_j + N$ contains |N| elements, so we can choose $v \in a_j + N$ such that $v \neq a_i$ for $1 \leq i \leq d$. Since we have choose d < |N| and x and y are adjacent to w, we have x and y are adjacent to v and v is in G, thus x - v - y is a path in G.

Case 2. Let x - w - v - y be the shortest path from x to y in $\Gamma_N^f(M)$. If $w \in G$ or $v \in G$ then by above proof we have a path from x to y in G. Suppose $w \notin G$ and $v \notin G$. We can choose $a \in w + N$ (so $a = w + n_1$ for some $n_1 \in N$) such that $a \neq a_j$ for $1 \leq i \leq d$. Since x is adjacent to w, we have x - a (if $x\bar{f}(w) \in N$ then $x\bar{f}(a) = x\bar{f}(w+n_1) = x\bar{f}(w)+x\bar{f}(n_1) \in N$ and if $w\bar{f}(x) \in N$ then $a\bar{f}(x) = (w+n)\bar{f}(x) = w\bar{f}(x) + n\bar{f}(x) \in N$) and a is in G, thus x - a is a path in G and like this we can choose $b \in G$ $(b = v + n_2$ for some $n_2 \in N$) such that b - y. Now we prove that a - b is a path. If $w\bar{f}(v) \in N$, then $a\bar{f}(b) = (w + n_1)\bar{f}(v + n_2) =$ $w\bar{f}(v) + w\bar{f}(n_2) + n_1\bar{f}(v + n_2) \in N$ and if $v\bar{f}(w) \in N$ then $b\bar{f}(a) =$ $(v + n_2)\bar{f}(w + n_1) = v\bar{f}(w) + v\bar{f}(n_1) + n_2\bar{f}(w + n_1) \in N$. \Box

Corollary 3.3. If N is a proper non-zero submodule of M that is not prime and f and \overline{f} be as above theorem, then $|N| - 1 < k(\Gamma_N^{\overline{f}}(M)) < (|N|.k(\Gamma(M)))$. Moreover, if N is infinite, then $k(\Gamma_N^{\overline{f}}(M))) = \infty$

We recall that for a graph G, a complete subgraph is called a clique. The clique number, $\omega(G)$, is the greatest integer $n \ge 1$ such that $K^n \subseteq G$, and $\omega(G) = \infty$ if $K^n \subseteq G$ for all $n \ge 1$.

Proposition 3.4. Let N be a submodule of an R-module M and $f \in M^*$. If $\Gamma_N^f(M)$ has a connected column, then $\omega(\Gamma_N^f(M)) \ge |N|$.

Proof. If a + N is a connected column of $\Gamma_N^f(M)$, then a + N a complete subgraph of $\Gamma_N^f(M)$. \Box

Corollary 3.5. Let N be a proper submodule of M, $f \in \left(\frac{M}{N}\right)^*$ and $\overline{f} = f\pi$, where $\pi : M \to \frac{M}{N}$ is the natural projection map. If $\Gamma(M)$ consists of only one vertex, then $\omega(\Gamma_N^{\overline{f}}(M)) = |N|$. If $N \neq 0$, then $\omega(\Gamma^f(\frac{M}{N})) < \omega(\Gamma_N^{\overline{f}}(M))$.

Corollary 3.6. If M, N, f, \bar{f} are as above, $\Gamma^f(\frac{M}{N})$ has at least two vertices and $\Gamma^{\bar{f}}_N(M)$ has a connected column, then $\omega(\Gamma^{\bar{f}}_N(M)) \ge |N| + 1$

Proof. Let a + N be a connected column of $\Gamma_N^{\bar{f}}(M)$. There exists $b \in M \setminus N$ such that $a + N \neq b + N$ and a + N is adjacent to b + N in $\Gamma^f(\frac{M}{N})$. We know that each element of connected column a + N is adjacent to b and so $\{a + N\} \bigcup \{b\}$ forms a complete subgraph of $\Gamma_N^{\bar{f}}(M)$. \Box

Theorem 3.7. Let N be a proper submodule of M, $f \in \frac{M^*}{N}$ and $\bar{f} = f\pi$ where $\pi : M \to \frac{M}{N}$ is the natural projection map. If $\Gamma_N^f(M)$ has no connected column, then $\omega(\Gamma^f(\frac{M}{N})) = \omega(\Gamma_N^{\bar{f}}(M))$ **Proof.** By Corollary 3.5, we observed that $\omega(\Gamma^f(\frac{M}{N})) < \omega(\Gamma^f_N(M))$. Thus it is sufficient to consider the case where $\omega(\Gamma^f(\frac{M}{N})) = d < \infty$. We assume G is the complete subgraph of $\Gamma^{\bar{f}}_N(M)$ on d+1 vertices and provide a contradiction. Let a_1, \ldots, a_{d+1} be the set of (distinct) vertices of G. Consider the subgraph G^* of $\Gamma(M)$ on vertices $a_1+N, \ldots, a_{d+1}+N$. G^* is a complete graph (since G is a complete graph), and since we assumed that $\omega(\Gamma^f(\frac{M}{N})) = d$, thus we must have $a_j + N = a_k + N$ for some $j \neq k$. Therefore $a_k = a_j + n$ for some $n \in N$. Since G is complete, a_j is adjacent to a_k in $\Gamma^{\bar{f}}_N(M)$. It follows that either $a_j\bar{f}(a_k) \in N$ or $a_k\bar{f}(a_j) \in N$. Let $a_j\bar{f}(a_k) \in N$. Then $a_j\bar{f}(a_j) + a_j\bar{f}(n) = a_j\bar{f}(a_j + n) = a_j\bar{f}(k) \in N$ and therefore $a_j\bar{f}(a_j) \in N$ (since $N \subseteq ker(f)$). Therefore $a_j + N$ is a connected column in $\Gamma^{\bar{f}}_N(M)$. This contradicts with Corollary 3.6. \Box

References

- D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217 (1999), 434-447.
- [2] M. Baziar, E. Momtahan, and S. Safaeeyan, A zero-divisor graph for modules with respect to their (first) dual, J. Algebra Appl., 12 (2013), (to appear).
- [3] M. Baziar, E. Momtahan, and S. Safaeeyan, A Module Theoretic Approach to Zero-Divisor Graph with Respect to First Dual, (Submitted).
- [4] M. Behboodi, Zero divisor graphs of modules over a commutative rings, J. Commut. Algebra, 4 (2) (2012), 175-197.
- [5] I. Beck, Coloring of commutative rings, J. Algebra, 116 (1988), 208-226.
- [6] A. Ghalandarzadeh, S. Shirinkam, and P. Malakooti Rad, Annihilator ideal-based zero-divisor graphs over multiplication modules, *Comm. Al*gebra, 41 (3) (2013), 1134-1148.
- [7] S. P. Redmond, An ideal-based zero-divisor graph of a commutative ring, Comm. Algebra, 31 (9) (2003), 4425-4443.

M. BAZIAR AND N. RANJBAR

- [8] D. B. West, Introduction to Graph Theory, 2nd ed., Prentice Hall, Upper Saddle River, 2001.
- [9] R. Wisbauer, Foundations of Modules and Rings Theory, Gordon and Breach Reading, 1991.

Mohammad Baziar

Department of Mathematics Assistant Professor of Mathematics Yasouj University Yasouj, Iran E-mail: mbaziar@yu.ac.ir

Nooshin Ranjbar

Department of Mathematics M.Sc of Mathematics Faculty of Mathematical Science Yasouj University Yasouj, Iran E-mail: n.Ranjbar@gmail.com