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Abstract. Let M be an R-module and 0 6= f ∈ M∗ = Hom(M, R).
The graph Γf (M) is a graph with vertices Zf (M) = {x ∈ M \ {0} |
xf(y) = 0 or yf(x) = 0 for some non-zero y ∈ M}, in which non-zero
elements x and y are adjacent provided that xf(y) = 0 or yf(x) = 0,
which introduced and studied in [3]. In this paper we associate an undi-

rected submodule based graph Γf
N (M) for each submodule N of M with

vertices Zf
N (M) = {x ∈ M \ N | xf(y) ∈ N or yf(x) ∈ N for some y ∈

M \N}, in which non-zero elements x and y are adjacent provided that
xf(y) ∈ N or yf(x) ∈ N . We observe that over a commutative ring R,
Γf

N (M) is connected and diam(Γf
N (M)) 6 3. Also we get some results

about clique number and connectivity number of Γf
N (M)
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1. Introduction

All rings in this paper are commutative with identity and modules are
unitary right modules. Let M be an R-module, following [9] all R-
homomorphism from M to R will be denoted by M∗.
In recent decades, the zero-divisor graphs of commutative rings have
been extensively studied by many authors and become a major field of
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research. S. P. Redmond replaced zero (ideal) in the definition of zero
divisor graph by an arbitrary ideal (see [7]) to get a nice generalization of
the zero-divisor graph of a commutative ring. The zero divisor graph for
modules over commutative rings, introduced by M. Behboodi in [4], was
one of the first attempts to generalize the zero-divisor graphs in module
theoretic context. In [2] and [3] the authors gave a new interpretation of
zero-divisor graph for modules, which in some cases, coincide with the
zero-divisor graph of commutative rings.
In this paper, we extend Redmond’s findings to see if additional informa-
tion about the structure of commutative rings is hidden in ideal-divisor
graphs.
Let G be a (undirected) graph. We say that G is connected if there is
a path between any two distinct vertices. For distinct vertices x and y

in G, the distance between x and y, denoted by d(x, y), is the length of
a shortest path connecting x and y (d(x, x) = 0 and d(x, y) = ∞ if no
such path exists).
The diameter of G is diam(G) = sup{d(x, y) | x and y are vertices of G}.
A cycle of length n in G is a path of the form x1−x2−x3−· · ·−xn−x1,
where xi 6= xj when i 6= j. We define the girth of G, denoted by gr(G),
as the length of a shortest cycle in G, provided G contains a cycle; oth-
erwise, gr(G) = ∞. A graph is complete if any two distinct vertices are
adjacent. By a complete subgraph we mean a subgraph which is com-
plete as a graph. In this article all subgraphs are induced subgraphs,
where a subgraph G′ of a graph G is an induced subgraph of G if two
vertices of G′ are adjacent in G′ if and only if they are adjacent in G.
A complete subgraph of G is called a clique. The clique number of G,
denoted by cl(G) = sup{|G′| : where G′ is a complete subgraph of G}.
Unexplained terminology and standard results may be found in [8] and
[9].

2. Definition and Some Preliminary Results

We begin with the definition of the submodule-based zero-divisor graph
of modules and then give some clarifications of the relation between this
definition and those appeared in the literature.
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Definition 2.1. Let R be a commutative ring, M an R-module, f ∈
M∗ = HomR(M,R) and N a submodule of M . We define an undirected
graph with vertices

Zf
N (M) = {x ∈ M \N | xf(y) ∈ N or yf(x) ∈ N for some y ∈ M \N},

where distinct vertices x and y are adjacent if and only if xf(y) ∈ N or
yf(x) ∈ N , and will be denoted by Γf

N (M).

The following proposition shows that the graph in Definition 2.1 is a
direct generalization of ideal-based zero-divisor graph introduced in [6].

Proposition 2.2. Let M be an R-module and N be a submodule of M .
(a) If N = (0), then Γf

N (M) = Γf (M)
(b) If N is a non-zero proper submodule of M then Γf

N (M) = ∅ if and
only if N is a prime submodule of M and Zf

N (M) 6= M \N

Proof. (a) It is clear.
(b) Let N be a prime submodule of M and Zf

N (M) 6= M \N . If Γf
N (M)

6= ∅ then there exists x ∈ Zf
N (M) and y ∈ Zf

N (M) such that xf(y) ∈ N

or yf(x) ∈ N , since x /∈ N an N is a prim submodule, Mf(y) ⊆ N

and so for all m ∈ M \ N , mf(y) ∈ N and hence Zf
N (M) = M \ N , a

contradiction.
Conversely, suppose that mr ∈ N and m /∈ N , for some r ∈ R and
m ∈ M . If Ma * N , then there exists m0 ∈ M such that m0a /∈ N and
hence mf(m0a) ∈ N . Thus Γf

N (M) 6= ∅, a contradiction. �

Theorem 2.3. Let N be a submodule of M . Then Γf
N (M) is a connected

graph with diam(Γf
N (M)) 6 3.

Proof. Let x and y be distinct vertices of Γf
N (M). The following cases

may be hold.
Case 1. If xf(y) ∈ N or yf(x) ∈ N , then x− y is a path of Γf

N (M).
Case 2. If xf(y) /∈ N but xf(x) ∈ N and yf(y) ∈ N , then x−xf(y)−y

is a path of Γf
N (M) since xf(xf(y)) = xf(x)f(y) ∈ N and yf(xf(y)) =

y(f(x)f(y)) ∈ N .
Case 3. If xf(y) /∈ N and yf(y) /∈ N but xf(x) ∈ N , then there
exists z ∈ Z such that yf(z) ∈ N or zf(y) ∈ N . If yf(z) ∈ N , then
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x− xf(z)− y is a path of Γf
N (M). If zf(y) ∈ N , then x− zf(x)− y is

a path of Γf
N (M).

Case 4. If xf(y) /∈ N and xf(x) /∈ N but yf(y) ∈ N , then the proof is
the same as case 3.
Case 5. If xf(y) /∈ N and yf(y) /∈ N and xf(x) /∈ N , then there exists
z, t ∈ Z such that xf(z) ∈ N or zf(x) ∈ N and yf(t) ∈ N or tf(y) ∈ N .
If tf(z) ∈ N or zf(t) ∈ N then x − z − t − y is a path in Γf

N (M) else
tf(z) /∈ N and zf(t) /∈ N . If xf(z) ∈ N then x − tf(z) − y is a path
of Γf

N (M). If zf(x) ∈ N and yf(t) ∈ N then x− zf(t)− y is a path in
Γf

N (M). If zf(x) ∈ N and tf(y) ∈ N then x − zf(t) − tf(x) − y is a
path in Γf

N (M) thus Γf
N (M) is connected and diam(Γf

N (M)) 6 3. �

For an R-module M the graph Γf
{0}(M) will be denoted by Γf (M). The

next results show the relation between Γf
N (M) and Γf (M

N ).

Theorem 2.4. Let M be an R-module, N a submodule of M and f a
non-zero homomorphism in (M

N )∗.
(a) If x+N −y +N in Γf (M

N ), then x−y in Γfπ
N (M) (where π : M →

M/N is the natural projection map).
(b) If x−y in Γg(M) for some non-zero homomorphism g ∈ M∗, x+N 6=
y + N and N ⊆ ker(g), then x + N − y + N in Γḡ(M

N ) for some ḡ in
(M

N )∗.
(c) If x − y in Γg(M) for some non-zero homomorphism g ∈ M∗ and
x + N = y + N , then xg(x) ∈ N or yg(y) ∈ N .

Proof. (a) Since x + N − y + N , then (x + N)f(y + N) = 0M
N

or
(y +N)f(x+N) = 0M

N
. Suppose (x+N)f(y +N) = 0M

N
= N , therefore

xfπ(y) ∈ N and hence x− y in Γfπ
N (M).

(b) Let x − y in Γg(M) for some non-zero homomorphism g ∈ M∗ and
x + N 6= y + N and N ⊆ ker(g). Now suppose xg(y) ∈ N . Then for
all n1, n2 ∈ N we have (x + n1)g(y + n2) = xg(y) + n1g(y + n2) +
xg(n2) ∈ N , which implies that (x+N)ḡ(y +N) = 0, for ḡ ∈ (M

N )∗ with
ḡ(m + N) = g(m).
(c) Let x − y and xg(y) ∈ N . Since x + N = y + N thus xg(y) + N =
yg(y) + N and so we have yg(y) ∈ N . In the same way we can show if
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yg(x) ∈ N then xg(x) ∈ N . �

Using the notation as in the above construction, we call the subset x+N

a column of Γf
N (M). If xf(x) ∈ N , then we call x+N a connected column

of Γf
N (M).

Corollary 2.5. Let M be an R-module, N a submodule of M and
f ∈ M∗. If x−y in Γf

N (M) and N ⊆ ker(f), then all(distinct) elements
of x + N and y + N are adjacent in Γf

N (M).
If xf(x) ∈ N , then all distinct elements of x+N are adjacent in Γf

N (M).
For a graph G, we say {Gδ}δ∈∆ is a collection of disjoint subgraphs of
G if all the vertices and edges of Gδ are contained in G and no two of
these Gδ contain a common vertex.

Proposition 2.6. Let N be a submodule of R-module M . Then the
graph Γf

N (M) contains |N | disjoint subgraphs isomorphic to Γf (M
N ).

Proof. Let {mα}α be a set of coset representatives of the vertices of
Γf (M

N ) that is,
⋃

α(mα + N) = Z(M
N ), and if α 6= β, then mα+N 6= mβ+

N . For each n ∈ N , define a graph Gn with vertices {mα + n | n ∈ N},
where mα+n is adjacent to mβ+n in Gn whenever mα+N is adjacent to
mβ + N in Γf (M

N ); i.e., whenever mαf(mβ) ∈ I. By the above theorem,
Gn is a subgraph of Γf

N (M). Also, for each n, n1, n2 ∈ N , Gn
∼= Γf (M

N ),
and Gn1 and Gn2 contain no common vertices if n1 6= n2. �

3. Cut-Points and Clique Number

A vertex x of a connected graph is a cut-point of G if there are vertices
u and w of G such that x 6= u and x 6= w and x lies in every path from
u to w.

Theorem 3.1. Let N be a non-zero proper submodule of an R-module
M . Then the graph Γf

N (M) has no cut-point.

Proof. Let x be a cut-point of Γf
N (M). Then there exist u and w in

Γf
N (M) such that x lies in every path from u to w. By Theorem 2.4, the

shortest path from u to w is of length 2 or 3.
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Case 1. The path from u to w is of length 2. Let u − x − w is the
shortest path from u to w, then we have uf(x) ∈ N or xf(u) ∈ N and
xf(w) ∈ N or wf(x) ∈ N and these cases may compose in 4 way,

1. xf(u) ∈ N and xf(w) ∈ N ;

2. xf(u) ∈ N and wf(x) ∈ N ;

3. uf(x) ∈ N and xf(w) ∈ N ;

4. uf(x) ∈ N and wf(x) ∈ N .

If all elements xf(u), xf(w), wf(x) and uf(x) are zero, then u−x+n−w,
which n is a non-zero element of N , a contradiction.
If y is one of non-zero element xf(u), xf(w), wf(x) or uf(x), then there
exists a path u− x + y − w, a contradiction.

Case 2. The path from u to w is of length 3. Let u− x− y −w be the
shortest path from u to w, which implies that shortest path from u to
y be the path u − x − y. Now similar case 1 we can find another path
from u to y, which shows that x is not cut-point. �

The connectivity of a graph G, denoted by k(G), is defined to be the
minimum number of vertices which is necessary to remove from G in or-
der to produce a disconnected graph. We provide bounds on k(Γf

N (M))
for a given module M , non-zero homomorphism f in M∗ and submodule
N of M . Recall that if M is the regular module R, f a monomorphism
in M∗ and N = I, then Γf

N (M) = ΓI(R).

Theorem 3.2. Let N be a proper submodule of M , f ∈ (M
N )∗ and

π : M → M
N be the natural projection map and f̄ = fπ.

(a) If Γf (M
N ) is the graph on one vertex, then k(Γf̄

N (M)) = |N | − 1;

(b) If Γf (M
N ) has at least two vertices, then 2 6 k(Γf̄

N (M)) 6 |N |.k(Γf (M
N ));

(c) |N | − 1 6 k(Γf̄
N (M))

Proof. (a) If Γf (M
N ) has only one vertex. Then x+N is connect to itself,

thus for all n1, n2 ∈ N , (x+n1)f̄(x+n2) = xf̄(x)+n1f̄(x+n2)+xf̄(n2) ∈
N . So that xf̄(x) ∈ N and hence Γf̄

N (M) completed graph with |N |
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vertices. Thus k(Γf̄
N (M)) = |N | − 1.

(b) Since Γf̄
N (M) is connected and by Theorem 3.1 has no cut-point, so

that 2 6 k(Γf̄
N (M)). Let k0 = k(Γf (M

N )) and let a1 + N, . . . , ak0 + N be
vertices of Γf (M

N ) witch, once removed, give a disconnect graph and let G

be the graph obtained from Γf̄
N (M) by removing columns corresponding

to a1 + N, . . . , ak0 + N (this means to remove k0.|N | vertices). If we
show that G is disconnected, it means k(Γf̄

N (M)) 6 |N |.k(Γf (M
N )). By

the choice of a1 + N, . . . , ak0 + N , there exist vertices b + N and c + N

of Γf (M
N ) such that are not connected by removing a1 +N, . . . , ak0 +N ,

then b and c are vertices of G. Suppose b− x1 − . . .− xm − c is a path
in G. Without loss of generality, xj + N 6= xj+1 + N , for 1 6 j 6 m.
Therefor, b + N − x1 + N − . . . − xm + N − c + N is a path in Γ(M)
after a1 + N, . . . , ak + N have been removed, this contradicts with the
hypothesis b + N and c + N are disconnected in Γ(M). Hence G must
be disconnected.
(c) We define a number d such that d = |N | − 1 if |N | < ∞ and d is any
positive integer if |N | = ∞. Let a1, . . . , ad be some arbitrary vertices
of Γf̄

N (M) and G be the graph obtained by removing a1, . . . , ad from
Γf̄

N (M). We show that G is a connected graph. Let x and y be vertices
of G. If x−y there is nothing to proof. We know that diam(Γf̄

N (M)) 6 3
thus we have two cases.
Case 1. Let x − w − y be the shortest path from x to y in Γf̄

N (M).
If w 6= aj for j = 1, . . . , d, then x − w − y in G. Supposes there exists
1 6 j 6 d such that w = aj . The column aj +N contains |N | elements,
so we can choose v ∈ aj + N such that v 6= ai for 1 6 i 6 d. Since we
have choose d < |N | and x and y are adjacent to w, we have x and y

are adjacent to v and v is in G, thus x− v − y is a path in G.
Case 2. Let x−w− v − y be the shortest path from x to y in Γf̄

N (M).
If w ∈ G or v ∈ G then by above proof we have a path from x to y in G.
Suppose w 6∈ G and v 6∈ G. We can choose a ∈ w+N (so a = w+n1 for
some n1 ∈ N) such that a 6= aj for 1 6 i 6 d. Since x is adjacent to w, we
have x−a (if xf̄(w) ∈ N then xf̄(a) = xf̄(w+n1) = xf̄(w)+xf̄(n1) ∈ N

and if wf̄(x) ∈ N then af̄(x) = (w + n)f̄(x) = wf̄(x) + nf̄(x) ∈ N)
and a is in G, thus x − a is a path in G and like this we can choose
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b ∈ G (b = v + n2 for some n2 ∈ N) such that b − y. Now we prove
that a − b is a path. If wf̄(v) ∈ N , then af̄(b) = (w + n1)f̄(v + n2) =
wf̄(v) + wf̄(n2) + n1f̄(v + n2) ∈ N and if vf̄(w) ∈ N then bf̄(a) =
(v + n2)f̄(w + n1) = vf̄(w) + vf̄(n1) + n2f̄(w + n1) ∈ N . �

Corollary 3.3. If N is a proper non-zero submodule of M that is not
prime and f and f̄ be as above theorem, then |N | − 1 < k(Γf̄

N (M)) <

(|N |.k(Γ(M)). Moreover, if N is infinite, then k(Γf̄
N (M))) = ∞

We recall that for a graph G, a complete subgraph is called a clique. The
clique number, ω(G), is the greatest integer n > 1 such that Kn ⊆ G,
and ω(G) = ∞ if Kn ⊆ G for all n > 1.

Proposition 3.4. Let N be a submodule of an R-module M and f ∈
M∗. If Γf

N (M) has a connected column, then ω(Γf
N (M)) > |N |.

Proof. If a+N is a connected column of Γf
N (M), then a+N a complete

subgraph of Γf
N (M). �

Corollary 3.5. Let N be a proper submodule of M , f ∈ (M
N )∗ and

f̄ = fπ, where π : M → M
N is the natural projection map. If Γ(M)

consists of only one vertex, then ω(Γf̄
N (M)) = |N |. If N 6= 0, then

ω(Γf (M
N )) < ω(Γf̄

N (M)).

Corollary 3.6. If M,N, f, f̄ are as above, Γf (M
N ) has at least two ver-

tices and Γf̄
N (M) has a connected column, then ω(Γf̄

N (M)) > |N |+ 1

Proof. Let a + N be a connected column of Γf̄
N (M). There exists

b ∈ M \ N such that a + N 6= b + N and a + N is adjacent to b + N

in Γf (M
N ). We know that each element of connected column a + N

is adjacent to b and so {a + N}
⋃
{b} forms a complete subgraph of

Γf̄
N (M). �

Theorem 3.7. Let N be a proper submodule of M , f ∈ M
N

∗ and f̄ = fπ

where π : M → M
N is the natural projection map. If Γf

N (M) has no

connected column, then ω(Γf (M
N )) = ω(Γf̄

N (M))
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Proof. By Corollary 3.5, we observed that ω(Γf (M
N )) < ω(Γf̄

N (M)).
Thus it is sufficient to consider the case where ω(Γf (M

N )) = d < ∞.

We assume G is the complete subgraph of Γf̄
N (M) on d + 1 vertices and

provide a contradiction. Let a1, . . . , ad+1 be the set of (distinct) vertices
of G. Consider the subgraph G∗ of Γ(M) on vertices a1+N, . . . , ad+1+N .
G∗ is a complete graph (since G is a complete graph), and since we
assumed that ω(Γf (M

N )) = d, thus we must have aj + N = ak + N for
some j 6= k. Therefore ak = aj +n for some n ∈ N . Since G is complete,
aj is adjacent to ak in Γf̄

N (M). It follows that either aj f̄(ak) ∈ N or
akf̄(aj) ∈ N . Let aj f̄(ak) ∈ N . Then aj f̄(aj)+aj f̄(n) = aj f̄(aj +n) =
aj f̄(k) ∈ N and therefore aj f̄(aj) ∈ N (since N ⊆ ker(f)). Therefore
aj+N is a connected column in Γf̄

N (M). This contradicts with Corollary
3.6. �
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