The Submodule-Based Zero-Divisor Graph with Respect to Some Homomorphism

M. Baziar*
Yasouj University
N. Ranjbar
Yasouj University

Abstract

Let M be an R-module and $0 \neq f \in M^{*}=\operatorname{Hom}(M, R)$. The graph $\Gamma_{f}(M)$ is a graph with vertices $Z^{f}(M)=\{x \in M \backslash\{0\} \mid$ $x f(y)=0$ or $y f(x)=0$ for some non-zero $y \in M\}$, in which non-zero elements x and y are adjacent provided that $x f(y)=0$ or $y f(x)=0$, which introduced and studied in [3]. In this paper we associate an undirected submodule based graph $\Gamma_{N}^{f}(M)$ for each submodule N of M with vertices $Z_{N}^{f}(M)=\{x \in M \backslash N \mid x f(y) \in N$ or $y f(x) \in N$ for some $y \in$ $M \backslash N\}$, in which non-zero elements x and y are adjacent provided that $x f(y) \in N$ or $y f(x) \in N$. We observe that over a commutative ring R, $\Gamma_{N}^{f}(M)$ is connected and $\operatorname{diam}\left(\Gamma_{N}^{f}(M)\right) \leqslant 3$. Also we get some results about clique number and connectivity number of $\Gamma_{N}^{f}(M)$

AMS Subject Classification: 05C25; 05C38; 05C40; 16D10; 16D4
Keywords and Phrases: Zero-divisor graph of modules, diameter, cut-point, clique number

1. Introduction

All rings in this paper are commutative with identity and modules are unitary right modules. Let M be an R-module, following [9] all R homomorphism from M to R will be denoted by M^{*}.
In recent decades, the zero-divisor graphs of commutative rings have been extensively studied by many authors and become a major field of

[^0]research. S. P. Redmond replaced zero (ideal) in the definition of zero divisor graph by an arbitrary ideal (see [7]) to get a nice generalization of the zero-divisor graph of a commutative ring. The zero divisor graph for modules over commutative rings, introduced by M. Behboodi in [4], was one of the first attempts to generalize the zero-divisor graphs in module theoretic context. In [2] and [3] the authors gave a new interpretation of zero-divisor graph for modules, which in some cases, coincide with the zero-divisor graph of commutative rings.
In this paper, we extend Redmond's findings to see if additional information about the structure of commutative rings is hidden in ideal-divisor graphs.
Let G be a (undirected) graph. We say that G is connected if there is a path between any two distinct vertices. For distinct vertices x and y in G, the distance between x and y, denoted by $d(x, y)$, is the length of a shortest path connecting x and $y(d(x, x)=0$ and $d(x, y)=\infty$ if no such path exists).
The diameter of G is $\operatorname{diam}(G)=\sup \{d(x, y) \mid x$ and y are vertices of $G\}$.
A cycle of length n in G is a path of the form $x_{1}-x_{2}-x_{3}-\cdots-x_{n}-x_{1}$, where $x_{i} \neq x_{j}$ when $i \neq j$. We define the girth of G, denoted by $\operatorname{gr}(G)$, as the length of a shortest cycle in G, provided G contains a cycle; otherwise, $\operatorname{gr}(G)=\infty$. A graph is complete if any two distinct vertices are adjacent. By a complete subgraph we mean a subgraph which is complete as a graph. In this article all subgraphs are induced subgraphs, where a subgraph G^{\prime} of a graph G is an induced subgraph of G if two vertices of G^{\prime} are adjacent in G^{\prime} if and only if they are adjacent in G. A complete subgraph of G is called a clique. The clique number of G, denoted by $\operatorname{cl}(G)=\sup \left\{\left|G^{\prime}\right|:\right.$ where G^{\prime} is a complete subgraph of $\left.G\right\}$. Unexplained terminology and standard results may be found in [8] and [9].

2. Definition and Some Preliminary Results

We begin with the definition of the submodule-based zero-divisor graph of modules and then give some clarifications of the relation between this definition and those appeared in the literature.

Definition 2.1. Let R be a commutative ring, M an R-module, $f \in$ $M^{*}=\operatorname{Hom}_{R}(M, R)$ and N a submodule of M. We define an undirected graph with vertices
$Z_{N}^{f}(M)=\{x \in M \backslash N \mid x f(y) \in N$ or $y f(x) \in N$ for some $y \in M \backslash N\}$, where distinct vertices x and y are adjacent if and only if $x f(y) \in N$ or $y f(x) \in N$, and will be denoted by $\Gamma_{N}^{f}(M)$.

The following proposition shows that the graph in Definition 2.1 is a direct generalization of ideal-based zero-divisor graph introduced in [6].

Proposition 2.2. Let M be an R-module and N be a submodule of M. (a) If $N=(0)$, then $\Gamma_{N}^{f}(M)=\Gamma_{f}(M)$
(b) If N is a non-zero proper submodule of M then $\Gamma_{N}^{f}(M)=\emptyset$ if and only if N is a prime submodule of M and $Z_{N}^{f}(M) \neq M \backslash N$

Proof. (a) It is clear.
(b) Let N be a prime submodule of M and $Z_{N}^{f}(M) \neq M \backslash N$. If $\Gamma_{N}^{f}(M)$ $\neq \emptyset$ then there exists $x \in Z_{N}^{f}(M)$ and $y \in Z_{N}^{f}(M)$ such that $x f(y) \in N$ or $y f(x) \in N$, since $x \notin N$ an N is a prim submodule, $M f(y) \subseteq N$ and so for all $m \in M \backslash N, m f(y) \in N$ and hence $Z_{N}^{f}(M)=M \backslash N$, a contradiction.
Conversely, suppose that $m r \in N$ and $m \notin N$, for some $r \in R$ and $m \in M$. If $M a \nsubseteq N$, then there exists $m_{0} \in M$ such that $m_{0} a \notin N$ and hence $m f\left(m_{0} a\right) \in N$. Thus $\Gamma_{N}^{f}(M) \neq \emptyset$, a contradiction.

Theorem 2.3. Let N be a submodule of M. Then $\Gamma_{N}^{f}(M)$ is a connected graph with $\operatorname{diam}\left(\Gamma_{N}^{f}(M)\right) \leqslant 3$.

Proof. Let x and y be distinct vertices of $\Gamma_{N}^{f}(M)$. The following cases may be hold.
Case 1. If $x f(y) \in N$ or $y f(x) \in N$, then $x-y$ is a path of $\Gamma_{N}^{f}(M)$.
Case 2. If $x f(y) \notin N$ but $x f(x) \in N$ and $y f(y) \in N$, then $x-x f(y)-y$ is a path of $\Gamma_{N}^{f}(M)$ since $x f(x f(y))=x f(x) f(y) \in N$ and $y f(x f(y))=$ $y(f(x) f(y)) \in N$.
Case 3. If $x f(y) \notin N$ and $y f(y) \notin N$ but $x f(x) \in N$, then there exists $z \in \mathbb{Z}$ such that $y f(z) \in N$ or $z f(y) \in N$. If $y f(z) \in N$, then
$x-x f(z)-y$ is a path of $\Gamma_{N}^{f}(M)$. If $z f(y) \in N$, then $x-z f(x)-y$ is a path of $\Gamma_{N}^{f}(M)$.
Case 4. If $x f(y) \notin N$ and $x f(x) \notin N$ but $y f(y) \in N$, then the proof is the same as case 3 .
Case 5. If $x f(y) \notin N$ and $y f(y) \notin N$ and $x f(x) \notin N$, then there exists $z, t \in \mathbb{Z}$ such that $x f(z) \in N$ or $z f(x) \in N$ and $y f(t) \in N$ or $t f(y) \in N$. If $t f(z) \in N$ or $z f(t) \in N$ then $x-z-t-y$ is a path in $\Gamma_{N}^{f}(M)$ else $t f(z) \notin N$ and $z f(t) \notin N$. If $x f(z) \in N$ then $x-t f(z)-y$ is a path of $\Gamma_{N}^{f}(M)$. If $z f(x) \in N$ and $y f(t) \in N$ then $x-z f(t)-y$ is a path in $\Gamma_{N}^{f}(M)$. If $z f(x) \in N$ and $t f(y) \in N$ then $x-z f(t)-t f(x)-y$ is a path in $\Gamma_{N}^{f}(M)$ thus $\Gamma_{N}^{f}(M)$ is connected and $\operatorname{diam}\left(\Gamma_{N}^{f}(M)\right) \leqslant 3$.

For an R-module M the graph $\Gamma_{\{0\}}^{f}(M)$ will be denoted by $\Gamma^{f}(M)$. The next results show the relation between $\Gamma_{N}^{f}(M)$ and $\Gamma^{f}\left(\frac{M}{N}\right)$.

Theorem 2.4. Let M be an R-module, N a submodule of M and f a non-zero homomorphism in $\left(\frac{M}{N}\right)^{*}$.
(a) If $x+N-y+N$ in $\Gamma^{f}\left(\frac{M}{N}\right)$, then $x-y$ in $\Gamma_{N}^{f \pi}(M)$ (where $\pi: M \rightarrow$ M / N is the natural projection map).
(b) If $x-y$ in $\Gamma^{g}(M)$ for some non-zero homomorphism $g \in M^{*}, x+N \neq$ $y+N$ and $N \subseteq \operatorname{ker}(g)$, then $x+N-y+N$ in $\Gamma^{\bar{g}}\left(\frac{M}{N}\right)$ for some \bar{g} in $\left(\frac{M}{N}\right)^{*}$.
(c) If $x-y$ in $\Gamma^{g}(M)$ for some non-zero homomorphism $g \in M^{*}$ and $x+N=y+N$, then $x g(x) \in N$ or $y g(y) \in N$.

Proof. (a) Since $x+N-y+N$, then $(x+N) f(y+N)=0_{\frac{M}{N}}$ or $(y+N) f(x+N)=0_{\frac{M}{N}}$. Suppose $(x+N) f(y+N)=0_{\frac{M}{N}}=N$, therefore $x f \pi(y) \in N$ and hence $x-y$ in $\Gamma_{N}^{f \pi}(M)$.
(b) Let $x-y$ in $\Gamma^{g}(M)$ for some non-zero homomorphism $g \in M^{*}$ and $x+N \neq y+N$ and $N \subseteq \operatorname{ker}(g)$. Now suppose $x g(y) \in N$. Then for all $n_{1}, n_{2} \in N$ we have $\left(x+n_{1}\right) g\left(y+n_{2}\right)=x g(y)+n_{1} g\left(y+n_{2}\right)+$ $x g\left(n_{2}\right) \in N$, which implies that $(x+N) \bar{g}(y+N)=0$, for $\bar{g} \in\left(\frac{M}{N}\right)^{*}$ with $\bar{g}(m+N)=g(m)$.
(c) Let $x-y$ and $x g(y) \in N$. Since $x+N=y+N$ thus $x g(y)+N=$ $y g(y)+N$ and so we have $y g(y) \in N$. In the same way we can show if
$y g(x) \in N$ then $x g(x) \in N$.
Using the notation as in the above construction, we call the subset $x+N$ a column of $\Gamma_{N}^{f}(M)$. If $x f(x) \in N$, then we call $x+N$ a connected column of $\Gamma_{N}^{f}(M)$.

Corollary 2.5. Let M be an R-module, N a submodule of M and $f \in M^{*}$. If $x-y$ in $\Gamma_{N}^{f}(M)$ and $N \subseteq k e r(f)$, then all(distinct) elements of $x+N$ and $y+N$ are adjacent in $\Gamma_{N}^{f}(M)$.
If $x f(x) \in N$, then all distinct elements of $x+N$ are adjacent in $\Gamma_{N}^{f}(M)$. For a graph G, we say $\left\{G_{\delta}\right\}_{\delta \in \Delta}$ is a collection of disjoint subgraphs of G if all the vertices and edges of G_{δ} are contained in G and no two of these G_{δ} contain a common vertex.

Proposition 2.6. Let N be a submodule of R-module M. Then the graph $\Gamma_{N}^{f}(M)$ contains $|N|$ disjoint subgraphs isomorphic to $\Gamma^{f}\left(\frac{M}{N}\right)$.

Proof. Let $\left\{m_{\alpha}\right\}_{\alpha}$ be a set of coset representatives of the vertices of $\Gamma^{f}\left(\frac{M}{N}\right)$ that is, $\bigcup_{\alpha}\left(m_{\alpha}+N\right)=Z\left(\frac{M}{N}\right)$, and if $\alpha \neq \beta$, then $m_{\alpha}+N \neq m_{\beta}+$ N. For each $n \in N$, define a graph G_{n} with vertices $\left\{m_{\alpha}+n \mid n \in N\right\}$, where $m_{\alpha}+n$ is adjacent to $m_{\beta}+n$ in G_{n} whenever $m_{\alpha}+N$ is adjacent to $m_{\beta}+N$ in $\Gamma^{f}\left(\frac{M}{N}\right)$; i.e., whenever $m_{\alpha} f\left(m_{\beta}\right) \in I$. By the above theorem, G_{n} is a subgraph of $\Gamma_{N}^{f}(M)$. Also, for each $n, n_{1}, n_{2} \in N, G_{n} \cong \Gamma^{f}\left(\frac{M}{N}\right)$, and $G_{n_{1}}$ and $G_{n_{2}}$ contain no common vertices if $n_{1} \neq n_{2}$.

3. Cut-Points and Clique Number

A vertex x of a connected graph is a cut-point of G if there are vertices u and w of G such that $x \neq u$ and $x \neq w$ and x lies in every path from u to w.

Theorem 3.1. Let N be a non-zero proper submodule of an R-module M. Then the graph $\Gamma_{N}^{f}(M)$ has no cut-point.

Proof. Let x be a cut-point of $\Gamma_{N}^{f}(M)$. Then there exist u and w in $\Gamma_{N}^{f}(M)$ such that x lies in every path from u to w. By Theorem 2.4, the shortest path from u to w is of length 2 or 3 .

Case 1. The path from u to w is of length 2 . Let $u-x-w$ is the shortest path from u to w, then we have $u f(x) \in N$ or $x f(u) \in N$ and $x f(w) \in N$ or $w f(x) \in N$ and these cases may compose in 4 way,

1. $x f(u) \in N$ and $x f(w) \in N$;
2. $x f(u) \in N$ and $w f(x) \in N$;
3. $u f(x) \in N$ and $x f(w) \in N$;
4. $u f(x) \in N$ and $w f(x) \in N$.

If all elements $x f(u), x f(w), w f(x)$ and $u f(x)$ are zero, then $u-x+n-w$, which n is a non-zero element of N, a contradiction.
If y is one of non-zero element $x f(u), x f(w), w f(x)$ or $u f(x)$, then there exists a path $u-x+y-w$, a contradiction.

Case 2. The path from u to w is of length 3 . Let $u-x-y-w$ be the shortest path from u to w, which implies that shortest path from u to y be the path $u-x-y$. Now similar case 1 we can find another path from u to y, which shows that x is not cut-point.

The connectivity of a graph G, denoted by $k(G)$, is defined to be the minimum number of vertices which is necessary to remove from G in order to produce a disconnected graph. We provide bounds on $k\left(\Gamma_{N}^{f}(M)\right)$ for a given module M, non-zero homomorphism f in M^{*} and submodule N of M. Recall that if M is the regular module R, f a monomorphism in M^{*} and $N=I$, then $\Gamma_{N}^{f}(M)=\Gamma_{I}(R)$.

Theorem 3.2. Let N be a proper submodule of $M, f \in\left(\frac{M}{N}\right)^{*}$ and $\pi: M \rightarrow \frac{M}{N}$ be the natural projection map and $\bar{f}=f \pi$.
(a) If $\Gamma^{f}\left(\frac{M}{N}\right)$ is the graph on one vertex, then $k\left(\Gamma_{\bar{N}}^{\bar{f}}(M)\right)=|N|-1$;
(b) If $\Gamma^{f}\left(\frac{M}{N}\right)$ has at least two vertices, then $2 \leqslant k\left(\Gamma_{N}^{\bar{f}}(M)\right) \leqslant|N| \cdot k\left(\Gamma^{f}\left(\frac{M}{N}\right)\right)$;
(c) $|N|-1 \leqslant k\left(\Gamma_{N}^{\bar{f}}(M)\right)$

Proof. (a) If $\Gamma^{f}\left(\frac{M}{N}\right)$ has only one vertex. Then $x+N$ is connect to itself, thus for all $n_{1}, n_{2} \in N,\left(x+n_{1}\right) \bar{f}\left(x+n_{2}\right)=x \bar{f}(x)+n_{1} \bar{f}\left(x+n_{2}\right)+x \bar{f}\left(n_{2}\right) \in$ N. So that $x \bar{f}(x) \in N$ and hence $\Gamma_{N}^{\bar{f}}(M)$ completed graph with $|N|$
vertices. Thus $k\left(\Gamma_{N}^{\bar{f}}(M)\right)=|N|-1$.
(b) Since $\Gamma_{N}^{\bar{f}}(M)$ is connected and by Theorem 3.1 has no cut-point, so that $2 \leqslant k\left(\Gamma_{N}^{\bar{f}}(M)\right)$. Let $k_{0}=k\left(\Gamma^{f}\left(\frac{M}{N}\right)\right)$ and let $a_{1}+N, \ldots, a_{k_{0}}+N$ be vertices of $\Gamma^{f}\left(\frac{M}{N}\right)$ witch, once removed, give a disconnect graph and let G be the graph obtained from $\Gamma_{N}^{\bar{f}}(M)$ by removing columns corresponding to $a_{1}+N, \ldots, a_{k_{0}}+N$ (this means to remove $k_{0} .|N|$ vertices). If we show that G is disconnected, it means $k\left(\Gamma_{N}^{\bar{f}}(M)\right) \leqslant|N| \cdot k\left(\Gamma^{f}\left(\frac{M}{N}\right)\right)$. By the choice of $a_{1}+N, \ldots, a_{k_{0}}+N$, there exist vertices $b+N$ and $c+N$ of $\Gamma^{f}\left(\frac{M}{N}\right)$ such that are not connected by removing $a_{1}+N, \ldots, a_{k_{0}}+N$, then b and c are vertices of G. Suppose $b-x_{1}-\ldots-x_{m}-c$ is a path in G. Without loss of generality, $x_{j}+N \neq x_{j+1}+N$, for $1 \leqslant j \leqslant m$. Therefor, $b+N-x_{1}+N-\ldots-x_{m}+N-c+N$ is a path in $\Gamma(M)$ after $a_{1}+N, \ldots, a_{k}+N$ have been removed, this contradicts with the hypothesis $b+N$ and $c+N$ are disconnected in $\Gamma(M)$. Hence G must be disconnected.
(c) We define a number d such that $d=|N|-1$ if $|N|<\infty$ and d is any positive integer if $|N|=\infty$. Let a_{1}, \ldots, a_{d} be some arbitrary vertices of $\Gamma_{N}^{\bar{f}}(M)$ and G be the graph obtained by removing a_{1}, \ldots, a_{d} from $\Gamma_{N}^{\bar{f}}(M)$. We show that G is a connected graph. Let x and y be vertices of G. If $x-y$ there is nothing to proof. We know that $\operatorname{diam}\left(\Gamma_{N}^{\bar{f}}(M)\right) \leqslant 3$ thus we have two cases.
Case 1. Let $x-w-y$ be the shortest path from x to y in $\Gamma_{N}^{\bar{f}}(M)$. If $w \neq a_{j}$ for $j=1, \ldots, d$, then $x-w-y$ in G. Supposes there exists $1 \leqslant j \leqslant d$ such that $w=a_{j}$. The column $a_{j}+N$ contains $|N|$ elements, so we can choose $v \in a_{j}+N$ such that $v \neq a_{i}$ for $1 \leqslant i \leqslant d$. Since we have choose $d<|N|$ and x and y are adjacent to w, we have x and y are adjacent to v and v is in G, thus $x-v-y$ is a path in G.
Case 2. Let $x-w-v-y$ be the shortest path from x to y in $\Gamma_{N}^{\bar{f}}(M)$. If $w \in G$ or $v \in G$ then by above proof we have a path from x to y in G. Suppose $w \notin G$ and $v \notin G$. We can choose $a \in w+N$ (so $a=w+n_{1}$ for some $n_{1} \in N$) such that $a \neq a_{j}$ for $1 \leqslant i \leqslant d$. Since x is adjacent to w, we have $x-a\left(\right.$ if $x \bar{f}(w) \in N$ then $x \bar{f}(a)=x \bar{f}\left(w+n_{1}\right)=x \bar{f}(w)+x \bar{f}\left(n_{1}\right) \in N$ and if $w \bar{f}(x) \in N$ then $a \bar{f}(x)=(w+n) \bar{f}(x)=w \bar{f}(x)+n \bar{f}(x) \in N)$ and a is in G, thus $x-a$ is a path in G and like this we can choose
$b \in G\left(b=v+n_{2}\right.$ for some $\left.n_{2} \in N\right)$ such that $b-y$. Now we prove that $a-b$ is a path. If $w \bar{f}(v) \in N$, then $a \bar{f}(b)=\left(w+n_{1}\right) \bar{f}\left(v+n_{2}\right)=$ $w \bar{f}(v)+w \bar{f}\left(n_{2}\right)+n_{1} \bar{f}\left(v+n_{2}\right) \in N$ and if $v \bar{f}(w) \in N$ then $b \bar{f}(a)=$ $\left(v+n_{2}\right) \bar{f}\left(w+n_{1}\right)=v \bar{f}(w)+v \bar{f}\left(n_{1}\right)+n_{2} \bar{f}\left(w+n_{1}\right) \in N$.

Corollary 3.3. If N is a proper non-zero submodule of M that is not prime and f and \bar{f} be as above theorem, then $|N|-1<k\left(\Gamma_{N}^{\bar{f}}(M)\right)<$ $\left(|N| \cdot k(\Gamma(M))\right.$. Moreover, if N is infinite, then $\left.k\left(\Gamma_{N}^{\bar{f}}(M)\right)\right)=\infty$
We recall that for a graph G, a complete subgraph is called a clique. The clique number, $\omega(G)$, is the greatest integer $n \geqslant 1$ such that $K^{n} \subseteq G$, and $\omega(G)=\infty$ if $K^{n} \subseteq G$ for all $n \geqslant 1$.

Proposition 3.4. Let N be a submodule of an R-module M and $f \in$ M^{*}. If $\Gamma_{N}^{f}(M)$ has a connected column, then $\omega\left(\Gamma_{N}^{f}(M)\right) \geqslant|N|$.

Proof. If $a+N$ is a connected column of $\Gamma_{N}^{f}(M)$, then $a+N$ a complete subgraph of $\Gamma_{N}^{f}(M)$.

Corollary 3.5. Let N be a proper submodule of $M, f \in\left(\frac{M}{N}\right)^{*}$ and $\bar{f}=f \pi$, where $\pi: M \rightarrow \frac{M}{N}$ is the natural projection map. If $\Gamma(M)$ consists of only one vertex, then $\omega\left(\Gamma_{N}^{\bar{f}}(M)\right)=|N|$. If $N \neq 0$, then $\omega\left(\Gamma^{f}\left(\frac{M}{N}\right)\right)<\omega\left(\Gamma_{N}^{\bar{f}}(M)\right)$.

Corollary 3.6. If M, N, f, \bar{f} are as above, $\Gamma^{f}\left(\frac{M}{N}\right)$ has at least two vertices and $\Gamma_{N}^{\bar{f}}(M)$ has a connected column, then $\omega\left(\Gamma_{N}^{\bar{f}}(M)\right) \geqslant|N|+1$

Proof. Let $a+N$ be a connected column of $\Gamma_{N}^{\bar{f}}(M)$. There exists $b \in M \backslash N$ such that $a+N \neq b+N$ and $a+N$ is adjacent to $b+N$ in $\Gamma^{f}\left(\frac{M}{N}\right)$. We know that each element of connected column $a+N$ is adjacent to b and so $\{a+N\} \bigcup\{b\}$ forms a complete subgraph of $\Gamma_{N}^{\bar{f}}(M)$.

Theorem 3.7. Let N be a proper submodule of $M, f \in \frac{M}{N}^{*}$ and $\bar{f}=f \pi$ where $\pi: M \rightarrow \frac{M}{N}$ is the natural projection map. If $\Gamma_{N}^{f}(M)$ has no connected column, then $\omega\left(\Gamma^{f}\left(\frac{M}{N}\right)\right)=\omega\left(\Gamma_{N}^{\bar{f}}(M)\right)$

Proof. By Corollary 3.5, we observed that $\omega\left(\Gamma^{f}\left(\frac{M}{N}\right)\right)<\omega\left(\Gamma_{N}^{\bar{f}}(M)\right)$. Thus it is sufficient to consider the case where $\omega\left(\Gamma^{f}\left(\frac{M}{N}\right)\right)=d<\infty$. We assume G is the complete subgraph of $\Gamma_{N}^{\bar{f}}(M)$ on $d+1$ vertices and provide a contradiction. Let a_{1}, \ldots, a_{d+1} be the set of (distinct) vertices of G. Consider the subgraph G^{*} of $\Gamma(M)$ on vertices $a_{1}+N, \ldots, a_{d+1}+N$. G^{*} is a complete graph (since G is a complete graph), and since we assumed that $\omega\left(\Gamma^{f}\left(\frac{M}{N}\right)\right)=d$, thus we must have $a_{j}+N=a_{k}+N$ for some $j \neq k$. Therefore $a_{k}=a_{j}+n$ for some $n \in N$. Since G is complete, a_{j} is adjacent to a_{k} in $\Gamma_{N}^{\bar{f}}(M)$. It follows that either $a_{j} \bar{f}\left(a_{k}\right) \in N$ or $a_{k} \bar{f}\left(a_{j}\right) \in N$. Let $a_{j} \bar{f}\left(a_{k}\right) \in N$. Then $a_{j} \bar{f}\left(a_{j}\right)+a_{j} \bar{f}(n)=a_{j} \bar{f}\left(a_{j}+n\right)=$ $a_{j} \bar{f}(k) \in N$ and therefore $a_{j} \bar{f}\left(a_{j}\right) \in N$ (since $\left.N \subseteq \operatorname{ker}(f)\right)$. Therefore $a_{j}+N$ is a connected column in $\Gamma_{N}^{\bar{f}}(M)$. This contradicts with Corollary 3.6.

References

[1] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217 (1999), 434-447.
[2] M. Baziar, E. Momtahan, and S. Safaeeyan, A zero-divisor graph for modules with respect to their (first) dual, J. Algebra Appl., 12 (2013), (to appear).
[3] M. Baziar, E. Momtahan, and S. Safaeeyan, A Module Theoretic Approach to Zero-Divisor Graph with Respect to First Dual, (Submitted).
[4] M. Behboodi, Zero divisor graphs of modules over a commutative rings, J. Commut. Algebra, 4 (2) (2012), 175-197.
[5] I. Beck, Coloring of commutative rings, J. Algebra, 116 (1988), 208-226.
[6] A. Ghalandarzadeh, S. Shirinkam, and P. Malakooti Rad, Annihilator ideal-based zero-divisor graphs over multiplication modules, Comm. Algebra, 41 (3) (2013), 1134-1148.
[7] S. P. Redmond, An ideal-based zero-divisor graph of a commutative ring, Comm. Algebra, 31 (9) (2003), 4425-4443.
[8] D. B. West, Introduction to Graph Theory, 2nd ed., Prentice Hall, Upper Saddle River, 2001.
[9] R. Wisbauer, Foundations of Modules and Rings Theory, Gordon and Breach Reading, 1991.

Mohammad Baziar

Department of Mathematics
Assistant Professor of Mathematics
Yasouj University
Yasouj, Iran
E-mail: mbaziar@yu.ac.ir

Nooshin Ranjbar

Department of Mathematics
M.Sc of Mathematics

Faculty of Mathematical Science
Yasouj University
Yasouj, Iran
E-mail: n.Ranjbar@gmail.com

[^0]: Received: August 2012; Accepted: April 2013

 * Corresponding author

