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Abstract. Decomposer functional equations were introduced by the
author and have been completely solved on arbitrary groups. Their so-
lutions are as decomposer functions and play important role regarding
to decomposition (factorization) of groups by their two subsets. In this
paper, we introduce an important class of strong decomposer functions,
namely parter (or cyclic decomposer) functions. As some important ap-
plications of this topic, we characterize all periodic , coperiodic functions
in arbitrary groups and give general solution of their functional equa-
tions: f(bx) = f(x) , f(xb) = f(x), f(bx) = bf(x) and f(xb) = f(x)b.
Moreover, we characterize all parter functions in arbitrary groups and
completely solve the decomposer equation with the condition which its
∗-range is a cyclic subgroup of G. Finally, we give some functional char-
acterization for related projections and b-parts functions and also, we
introduce some uniqueness conditions for b-parts of real numbers.
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1. Introduction and Preliminaries

In [2] decomposer and strong decomposer functions on groups were in-
troduced and characterized. They have many important properties and
so close relations to factorization of groups by their two subsets, and
associative functions. Every strong decomposer function f on a group
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G is associative and induces another binary operation ·f namely f-
multiplication such that (G, ·f ) is a grouplike (a new algebraic structure
that is something between semigroup and group, see [5,6]). Here, we
introduce and study an important special case of decomposer functions,
namely parter (or cyclic decomposer) functions. On the other hand, b-
parts of real numbers were introduced in [8] and some of their properties
have been studied in [8,4]. Here, we see that the b-decimal part function
is a real parter function and we consider it as our first idea for introduc-
ing the topic.
Let (G, .) be a group with the identity element e. If f, g are functions
from G to G, then define the functions f.g and f− by

f.g(x) = f(x)g(x) , f−(x) = [f(x)]−1 : ∀x ∈ G.

Note that the notation fg is used for the composition of f and g (fog),
also f−1 is the inverse function of f . We denote the identity function on
G by ιG or simply by ι and constant function f(x) = c by c (especially
when c = e).
For every f : G → G , we put f∗ = ι.f− , f∗ = f−.ι and call f∗ [resp. f∗]
left ∗-conjugate of f [resp. right ∗-conjugate of f ]. They are also called
∗-conjugates of f . Clearly ι∗ = ι∗ = e, e∗ = e∗ = ι, f = (f∗)∗ = (f∗)∗.
Also, the identity (fg)− = f−g implies f−f = (f2)−, (fg)∗ = g∗.f∗g

and (fg)∗ = f∗g.g∗ . Note that f is idempotent if and only if f∗f = e

(or f∗f = e).

Additive notations. If (G, +) is additive group, then the notations e,
f−, f.g, f.g− are replaced by 0, −f , f + g, f − g and we have f∗ = f∗ =
ι− f .

Example 1.1. Consider the additive group R and fix b ∈ R \ {0}. For
each real number a denote by [a] the largest integer not exceeding a and
put (a) = a− [a] (the decimal part of a). Now, set

[a]b = b[
a

b
] , (a)b = b(

a

b
).

We call [a]b b-integer part of a and (a)b b-decimal part of a. Also, [ ]b,
( )b are called b-decimal part function and b-integer part function, re-
spectively. Clearly ( )∗b = [ ]b and [ ]∗b = ( )b, both are idempotent, so
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their compositions are zero and (R)b = Rb = b[0, 1) = {bd|0 6 d < 1}
and [R]b = bZ = 〈b〉. Here, the b-parts functions are our idea for intro-
ducing b-parter functions as an important class of strong decomposer,
b-periodic and b-coperiodic functions.

2. Decomposer Type Functions on Groups

If f is an arbitrary function from G to G and f(x) = f(y), then x =
f∗(x)f(y) = f(y)f∗(x). The converse is valid if f is decomposer and we
have the following definition (see [2,3]).

Definition 2.1. Let f be a function from G to G. We call f :
(a) right [resp. left] strong decomposer if

f(f∗(x)y) = f(y) [resp. f(xf∗(y)) = f(x)] : ∀x, y ∈ G.

(b) right [resp. left] semi-strong decomposer if

f(f∗(x)y) = f(f∗(e)y) [resp. f(xf∗(y)) = f(xf∗(e))] : ∀x, y ∈ G.

(c) right [resp. left] decomposer if

f(f∗(x)f(y)) = f(y) [resp. f(f(x)f∗(y)) = f(x)] : ∀x, y ∈ G.

(d) right [resp. left] weak decomposer if

f(f∗(e)f(x)) = f(x) , f(f∗(x)f(e)) = f(e) : ∀x ∈ G.

[resp. f(f(x)f∗(e)) = f(x) , f(f(e)f∗(x)) = f(e) : ∀x ∈ G].

(e) right [resp. left] separator if f∗(G) ∩ f(G) = {f(e)} [resp. f(G) ∩
f∗(G) = {f(e)}].

We call f decomposer or two-sided decomposer [resp. separator] if it is
left and right decomposer [resp. separator].

Note: In each parts of the above and other definitions if f(e) = e, then
we will add the word standard to the titles. For example ”f is standard
right separator” means f∗(G) ∩ f(G) = {e}.
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Fix c ∈ G. The functions c and cx [resp. c and x] are decomposer [resp.
strong decomposer], we call them trivial decomposers [resp. trivial strong
decomposers].
In the additive real numbers group, |x| is standard separator (and idem-
potent) but it is not (standard) weak decomposer. The function f(x) =
max{x, 0} is standard weak decomposer but it is not (standard) decom-
poser. Finally [ ]b is standard decomposer but it is not (standard) strong
decomposer.

Theorem 2.2. Let f : G → G.
(a) f is right strong decomposer ⇒ f is right semi-strong decomposer
⇒ f is right decomposer ⇒ f is right weak decomposer.
(b) f is standard right strong decomposer ⇔ f is standard right semi-
strong decomposer ⇒ f is standard right decomposer ⇒ f is standard
right weak decomposer ⇒ f is standard right separator.
(c) If f is right strong decomposer, then f is right separator, idempotent,
ff∗ = f(e) and

f∗(e).ff∗ = f∗f = e , 〈f(e)〉 6 f∗(G) 6 G.

(d) If f is right decomposer and f∗(G) 6 G, then f is right strong de-
composer (and visa versa). We have similar theorem for left decomposer
type functions.

Proof. See [2,3]. �

Example 2.3. Consider G = {1, a, a2, a3, b, ba, ba2, ba3} ∼= D4 (a4 =
b2 = 1, bab = a−1 = a3). Put Ω = {1, ba, ba2, ba3} and

f(x) =

{
x x ∈ Ω
bx x /∈ Ω

Considering the relation x /∈ Ω ⇔ bx ∈ Ω, it can be seen that f is
(standard) right strong decomposer.

3. Parter, Periodic and Coperiodic Functions
on Groups

An exact observation of b-parts functions shows that their basic prop-
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erties are (x+b)b = (x)b [i.e. ( )b is b-periodic] and [R]b = 〈b〉 (i.e. the ∗-
range of ( )b is cyclic real subgroup) and other properties are concluded
from them. This fact lead us to an important vast class of (strong)
decomposer functions which are the most natural generalization of b-
parts functions. In this section we study those decomposer functions
such that f∗(G) is cyclic subgroup and consider their relations to the
periodic and coperiodic functions.

Definition 3.1.We call a right [resp. left] decomposer function f right
[resp. left] parter (or cyclic decomposer) if f∗(G) [resp.f∗(G)] is a cyclic
subgroup of G, and if this is the case f∗(G) = 〈b〉 [resp. f∗(G) = 〈b〉],
then we call it right b-parter [resp. left b-parter]. The function f is called
b-parter if it is left and right b-parter. The identity function is trivial
(two-sided) standard e-parter. If G = 〈g〉, then the constant function e

is also another trivial g-parter function on G. Also, f is right parter if
and only if f is right strong decomposer and f∗(G) is subset of a cyclic
subgroup of G (by Theorem 2.2).

Example 3.2. The function f in Example 2.3 is b-parter, because is
right decomposer and f∗(G) = 〈b〉 = {1, b}. The parter functions have
so closed relationship to periodic and coperiodic functions. Recall that
if b ∈ G is fix. then a function f : G → G is called left [resp. right]
b-periodic if f(bx) = f(x) [resp. f(xb) = f(x)] for all x ∈ G. It is
b-periodic if is left and right b-periodic. In group G, every function is
trivial (two-sided) e-periodic, and the function e is trivial (two-sided)
b-periodic, for all b ∈ G.

Definition 3.3. We call f : G → G left [resp. right] b-coperiodic
if f(bx) = bf(x) [resp. f(xb) = f(x)b] for all x ∈ G, and it is b-
coperiodic if is left and right b-coperiodic. The b-integer part function [ ]b
is standard b-coperiodic and the b-decimal part function ( )b is standard
b-periodic. In general, f : G → G is left [resp. right] b-coperiodic if and
only if f∗ [resp. f∗] is left [resp. right] b-periodic:

f(bx) = bf(x) ⇔ f∗(bx) = f∗(x), f(xb) = f(x)b ⇔ f∗(xb) = f∗(x) : ∀x ∈ G.

Example 3.4. If f is right [resp. left] strong decomposer and b ∈ f∗(G)
[resp. b ∈ f∗(G)],then f is left [resp. right] b-periodic. The function f

in Example 2.3 is left b-periodic but it is not right b-periodic.
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Definition 3.5. If ∆ and Ω are subsets of G, then the notation A = ∆·Ω
means A = ∆Ω and if δ1ω1 = δ2ω2 where δ1, δ2 ∈ ∆, ω1, ω2 ∈ Ω, then
δ1 = δ2 and ω1 = ω2. If A = ∆ · Ω, then we say A is direct product of
(subsets) ∆ and Ω. By the notation A = ∆ : Ω we mean A = ∆ ·Ω and
∆∩Ω = {e} and say A is standard direct product of ∆ and Ω. Note that
additive notations are ∆Ω (direct sum of subsets) and ∆+̈Ω (standard
direct sum of subsets). For example R = bZ+̈b[0, 1) = b+̈Rb.
Clearly if ∆Ω = ∆·Ω, then |∆Ω| = |∆||Ω|. Also if ∆ and Ω are nonempty
subsets of G, then ∆Ω = ∆ · Ω if and only if (∆−1∆) ∩ (ΩΩ−1) = {e}
(in additive notation (∆−∆) ∩ (Ω− Ω) = {0}).
Let G = ∆·Ω. Define the functions P∆, PΩ, from G to G, by P∆(x) = δ,
PΩ(x) = ω, where x = δω, δ ∈ ∆, ω ∈ Ω. Clearly, they are well-defined
and P∆(G) = ∆, PΩ(G) = Ω, P ∗Ω = P∆. We call PΩ, [resp. P∆] right
[resp. left] projection of the direct decomposition G = ∆ ·Ω. The b-parts
functions are projections of the direct decomposition R =< b > +̈Rb.
Now, we can prove some equivalent conditions for a function to be left
b-parter and state its relations to b-periodic, b-coperiodic functions and
factorization of G by its subsets. Similar theorem can be stated for the
right case.

Theorem 3.6. Fix b ∈ G. The followings are equivalent for every
f : G→ G:
(a) f is right b-parter,
(b) f is right strong decomposer and b ∈ f∗(G) ⊆ b,
(c) f is right semi-strong decomposer and f∗(G) = b,
(d) f is left b-periodic and f∗(G) = b,
(e) f∗ is left b-coperiodic and f∗(G) = b,
(f) G = b · f(G) and b ∈ f∗(G) ⊆ b.

Proof. It is clear that (a) ⇒ (b) ⇒ (c), by applying Theorem 2.2 and
the definitions.
Now if (c) holds, then there exist x0, y0 ∈ G such that f∗(x0) = e,
f∗(y0) = b and

f(bx) = f(f∗(y0)x) = f(f∗(e)x) = f(f∗(x0)x) = f(ex) = f(x); ∀x ∈ G.

So, we arrive at (d).
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Proof. It is clear that (a) ⇒ (b) ⇒ (c), by applying Theorem 2.2 and
the definitions.
Now if (c) holds, then there exist x0, y0 ∈ G such that f∗(x0) = e,
f∗(y0) = b and

f(bx) = f(f∗(y0)x) = f(f∗(e)x) = f(f∗(x0)x) = f(ex) = f(x); ∀x ∈ G.

So, we arrive at (d).
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Considering the relation

f(bx) = f(x) ⇔ f∗(x) = bf∗(x) : ∀x ∈ G,

(d) implies (e).
Suppose (e) holds. Then f is left b-periodic (because of the above rela-
tion) and G = f∗(G)f(G) = 〈b〉f(G). We claim that f is idempotent
and this product is direct. For if x ∈ G, then f∗(x) = bnx for some
nx ∈ Z and

f(f(x)) = f(bnxf(x)) = f(f∗(x)f(x)) = f(x),

also if x, y ∈ G, m,n ∈ Z and bmf(x) = bnf(y), then

f(x) = f2(x) = f(bmf(x)) = f(bnf(y)) = f(y),

therefore bm = bn and the claim has been proved and we obtain (f).
Finally, if (f) holds and x, y ∈ G, then there exist nx, ny ∈ Z such that
f∗(x) = bnx , f∗(y) = bny and so

f(f∗(x)y) = f(f∗(x)f∗(y)f(y)) = f(bnx+nyf(y)) = f(y),

where the last equation is concluded from G = 〈b〉·f(G) and the identity
bnx+nyf(y) = f∗(bnx+nyf(y))f(bnx+nyf(y)). Therefore, f is right strong
decomposer thus f∗(G) 6 G and so f∗(G) = 〈b〉. Therefore, the proof
is complete. �

Remark 3.7. The conditions (a)-(f) are not equivalent to the statement
”f is right decomposer and b ∈ f∗(G) ⊆ 〈b〉” (that is gotten from (a) if
replace f∗(G) = 〈b〉 by b ∈ f∗(G) ⊆ 〈b〉). Because, putting

f(x) =

{
x if [x] is even
x− 1 if [x] is odd

f is decomposer and 1 ∈ f∗(R) ⊆ 〈1〉 = Z, but f is not 1-parter (f∗(R) =
{0, 1}).

Up to now we have studied the properties of parter functions. Now,
we show that how we can construct them and prove their existence,
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in arbitrary groups. Considering Remark 2.7, Corollary 2.9 of [2] (and
p448 of [7]), if H 6 G [resp. H E G], then H is a left and right factor
[resp. two-sided factor] of G as the sense in factorization of a group by
its subsets, i.e. there exist subsets Ω and ∆ of G such that G = H ·Ω and
G = ∆ ·H [resp. G = H ·Ω = Ω ·H]. Moreover, we can find such these
subsets in which G = H : Ω and G = ∆ : H [resp. G = H : Ω = Ω : H]
that means H is a standard left and right factor [resp. standard two-
sided factor] of G. Also, if G 6= 0 is a group (finite or infinite) for
which |G| is not a prime number and H is a non-trivial subgroup [resp.
normal subgroup], then we can find such subsets with cardinality> 1 (so
the factorization is non-trivial). This fact implies existence of left and
right [resp. two-sided] strong decomposer functions in groups G 6= 0
(finite or infinite) for which |G| is not a prime number [resp. non-simple
groups] (see [2;Corollary 2.9]).
Also, Theorem 2.5,3.5 and Corollary 2.2,3.6 of [2] state that:

Theorem 3.8. In every group G

(i) General form of all right [resp. left] decomposer functions is

f = PΩ ; for all representation G = ∆ · Ω.

[f = P∆ ; for all representation G = ∆ · Ω.]

(ii) General form of all right [resp. left] strong decomposer functions is

f = PΩ ; for all representation G = ∆ · Ω with ∆ 6 G.

[f = P∆ ; for all representation G = ∆ · Ω with Ω 6 G.]

(iii) General form of all strong decomposer functions is

f = PΩ ; for all representation G = ∆ · Ω with ∆ E G.

For the standard case of the every above functions, ∆ · Ω should be re-
placed by ∆ : Ω.

Remark 3.9. Therefore, putting H = 〈b〉, there exists a class of subsets
Ω and ∆ of G such that G = 〈b〉 ·Ω and G = ∆ · 〈b〉. We fix one of such
these Ω in which G = 〈b〉 : Ω and denote it by Ωb. Hence, in this paper
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we consider G = 〈b〉 : Ωb as the fixed standard direct decomposition by b

(i.e. 〈b〉). For example, for bZ = 〈b〉 6 R, there exists an infinite class
of real subsets Ω containing all half open intervals b[n, n + 1) such that
R = bZ+̇Ω. Here, we fix Ωb = b[0, 1) = Rb and we have R =< b > +̈Rb.
Hence, we observe that PbZ = [ ]b and PRb

= ( )b which are the same
b-parts functions. Now, we are ready to prove existence of a vast class
of decomposer type functions.

Lemma 3.10. Let G 6= 0 be a group (finite or infinite).
(a) If |G| is not a prime number, then nontrivial (standard) right and
left parter, periodic and coperiodic functions exist (and vice versa).
(b) If G is not cyclic, then for every b ∈ G \ {e} nontrivial (standard)
right and left b-parter, b-periodic and b-coperiodic functions exist.
(c) If 〈b〉 is nontrivial normal subgroup of G, then nontrivial standard
(two-sided) b-parter, b-periodic and b-coperiodic functions exist (and vice
versa).

Proof. Suppose that 〈b〉 is a non-trivial subgroup of G. Then, Re-
mark 3.6 gives us a non-singleton and proper subset Ωb of G such that
G = 〈b〉 : Ωb. Putting f = PΩb

, we have f∗(G) = P〈b〉(G) = 〈b〉, and
so Theorem 3.5 implies f is nontrivial standard right parter function on
G. Therefore, nontrivial standard right b-parter, left b-periodic and left
b-coperiodic functions exist (analogously for the left parter function).
This fact proves (a) and (b), clearly.
Now, if 〈b〉 is nontrivial normal subgroup of G, then f = PΩb

is (two-
sided) standard strong decomposer, by Theorem 2.2 (c), and also Corol-
lary 3.6 of [2] implies f∗(G) = f∗(G) = P〈b〉(G) = 〈b〉 so we arrive at
(c), by Theorem 3.6. The converse is also valid, by Theorem 2.2 and
Theorem 3.6. �

4. General Form of Parter Functions and Gen-
eral Solution of the Periodic and Coperiodic
Functional Equations

Up to now, one see that every right b-parter function is left b-periodic
and left ∗-conjugate of every b-periodic function is b-coperiodic. Hence,
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considering the fact that left composition of every arbitrary function
on G with all b-periodic functions are also b-periodic, we arrive at the
following characterizing theorem.

Theorem 4.1. (Characterization of parter, periodic and coperiodic func-
tions). Fix b ∈ G.
(i) General form of all right [resp. left] b-parter functions is

f = PΩ ; for all representation G = 〈b〉 · Ω.

[f = P∆ ; for all representation G = ∆ · 〈b〉.]
(ii) General form of all left [resp. right] b-periodic functions is

f = µPΩ ; for all representation G = 〈b〉 · Ωand all functions µ : Ω → G.

[f = µP∆; for all representation G = ∆ · 〈b〉 and all functions µ : ∆ → G.]

(iii) General form of all left [resp. right] b-coperiodic functions is

f = P〈b〉.µPΩ ; for all representationG = 〈b〉 · Ω and all functionsµ : Ω → G.

[f = µP∆.P〈b〉; for all representationG = ∆ · 〈b〉and all functionsµ : ∆ → G.]

Proof. Part(i) is concluded from Theorem 2.2 and Theorem 3.6. Now,
let f be left b-periodic and consider the standard factorization G = 〈b〉 :
Ωb. Then f(βx) = f(x) for all β ∈ 〈b〉, x ∈ G and so

f(x) = f(P ∗
Ωb

(x)−1x) = f(PΩb
(x)) : ∀x ∈ G,

because P ∗
Ωb

(G) = 〈b〉. Now putting µ = f |Ωb
we have f = µPΩb

and
µ : Ωb → G. Conversely, it is clear that if f has the form (ii), then f is
left b-periodic.
For the last part, if f = P〈b〉.µPΩ, then

f(bx) = P〈b〉(bx)µ(PΩ(bx)) = bP〈b〉(x)µ(PΩ(x)) = bf(x).

Conversely, if f is left b-coperiodic, then f∗ is left b-periodic and the part
(ii) implies f∗ = λPΩ where λ, PΩ are gotten from the general solution
(ii) for f∗. So,

f = (f∗)∗ = (λPΩ)∗ = P ∗
Ω.λ∗PΩ = P〈b〉.λ

∗PΩ



PARTER, PERIODIC AND COPERIODIC FUNCTIONS ... 11

Therefore,
putting µ = λ∗ we obtain µ : Ω → G such that f = P〈b〉.µPΩ. �

Remark 4.2. The above theorem completely solve the functional equa-
tions f(bx) = f(x), f(bx) = bf(x), the left strong decomposer equa-
tion with the condition f∗(G) = 〈b〉 and the other mentioned functional
equations (right cases). Also, it states an important fact that all left
b-periodic [resp. b-coperiodic] functions f are gotten from the compo-
sition of right b-parter functions εb and arbitrary functions µ defined
on its image, i.e. f = µεb [resp. f = ε∗b .µεb]. Moreover, for every
left b-periodic function f we can find an standard left b-parter function
εb (obtained from the fixed standard direct decomposition G = 〈b〉 : Ωb

where εb = PΩb
). Analogously, we have similar properties for the right

cases and b-coperiodic functions. Therefore, we can say the fixed stan-
dard b-parter function εb is essential and basic b-periodic function and
it generates others (by composition with arbitrary functions). For in-
stance, the above statement says the b-decimal part function εb = ( )b

is the essential b-periodic real function and other periodic real functions
are generated by it, i.e. f = µ( )b where µ : b[0, 1) → R. Also, the
general solution of the real functional equation f(b + x) = b + f(x) is
f = [ ]b + µ( )b = [ ]b + µ[ ]∗b that is general form of all real b-coperiodic
functions, and says [ ]b is the essential b-coperiodic function.
Considering the interesting fact that PbZ = [ ]b and Pb[0,1) = ( )b (cor-
responding to the standard direct decomposition R = bZ+̇b[0, 1)) we can
give a uniqueness conditions for them, by the following lemma.

Lemma 4.3. Let G = ∆ · Ω and f : G → G.
(i) If f is a right [resp. left] decomposer function such that f(G) ⊆ Ω and
f∗(G) ⊆ ∆ [resp. f(G) ⊆ ∆ and f∗(G) ⊆ Ω], then (f∗, f) = (P∆, PΩ)
[resp. (f, f∗) = (P∆, PΩ)].
(ii) If f is a right [resp. left] decomposer and g : G → G is a function
such that g(G) ⊆ f(G) and g∗(G) ⊆ f∗(G) [resp. g(G) ⊆ f(G) and
g∗(G) ⊆ f∗(G)], then g = f .
(iii) (P∆, PΩ) is the unique solution of functional equation f(f∗(x)f(y)) =
f(y) [resp. f(f(x)f∗(y)) = f(x)] with the conditions f(G) = Ω and
f∗(G) = ∆ [resp. f(G) = ∆ and f∗(G) = Ω].
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Proof. If f(G) ⊆ Ω , f∗(G) ⊆ ∆ and x ∈ G, then there exist x′, x′′ ∈ G

such that f(x) = PΩ(x′), f∗(x) = P∆(x′′) and

PΩ(x) = PΩ(f∗(x)f(x)) = PΩ(P∆(x′′)PΩ(x′)) = PΩ(x′) = f(x).

So (i) is proved and (ii) is a result of (i). Also, (iii) is concluded from
Theorem 2.2 and the part (i). �

Corollary 4.4. (Functional characterizations of b-parts of real num-
bers)
(i) b-decimal part function is the only b-parter function for which its
range is b[0, 1).
(ii) b-decimal part function is the unique solution of the functional equa-
tion
f(x− f(x) + f(y)) = f(y) such that f(R) = b[0, 1) and f∗(R) = bZ.
(iii) b-decimal part function is the unique solution of the functional equa-
tion
f(x− f(x) + y) = f(y) such that f(R) = b[0, 1) and f∗(R) = bZ.
(iv) b-integer part function is the unique solution of the functional equa-
tion
f(x− f(x) + f(y)) = f(y) such that f(R) = bZ and f∗(R) = b[0, 1).
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