On the Block Coloring of Steiner Triple Systems

R. Manaviyat
Payame Noor University

Abstract

A Steiner triple system of order $v, \operatorname{STS}(v)$, is an ordered pair $S=(V, B)$, where V is a set of size v and B is a collection of triples of V such that every pair of V is contained in exactly one triple of B. A k-block coloring is a partitioning of the set B into k color classes such that every two blocks in one color class do not intersect. In this paper, we introduce a construction and use it to show that for every k-block colorable $\operatorname{STS}(v)$ and l-block colorable $\operatorname{STS}(w)$, there exists a $(k+l v)$-block colorable $\operatorname{STS}(v w)$. Moreover, it is shown that for every k block colorable $\operatorname{STS}(v)$, every $\operatorname{STS}(2 v+1)$ obtained from the well-known construction is $(k+v)$-block colorable.

AMS Subject Classification: 05B07; 05C15
Keywords and Phrases: Steiner triple system, chromatic index, matching

1. Introduction

Let G be a graph. We denote the vertex set and the edge set of G by $V(G)$ and $E(G)$, respectively. The degree of $v \in V(G)$ is the number of edges of G incident with v. The maximum degree of G is denoted by $\Delta(G)$. A graph G called strongly (k, λ, μ)-regular if there are parameters k, λ and μ such that G is k-regular, every adjacent pair of vertices have λ common neighbors, and every nonadjacent pair of vertices have μ common neighbors. A proper vertex coloring of G is a function $c: V(G) \longrightarrow L$, with this property that if $u, v \in V(G)$ are adjacent, then $c(u)$ and $c(v)$ are different. A vertex k-coloring is a proper vertex coloring with $|L|=k$. The chromatic number of G, denoted by $\chi(G)$, is the minimum number k for which G has a vertex k-coloring.

[^0]Theorem 1.1. If G is not an odd cycle or a complete graph, then $\chi(G) \leqslant \Delta(G)$. A (proper) k-edge coloring of a graph G is a function $f: E(G) \longrightarrow L$, where $|L|=k$ and $f\left(e_{1}\right) \neq f\left(e_{2}\right)$, for every two adjacent edges of G. A matching in a graph is a set of non-adjacent edges. A perfect matching of G is a matching that covers all vertices of G. Given an edge coloring of a graph, a rainbow matching is a matching whose edges have distinct colors.
An $n \times n$ matrix $L=\left(l_{i j}\right)$ whose entries are taken from a set S of n symbols is called a latin square of order n on S if each symbol appears precisely once in each row and in each column of L. A pair of latin squares $L=\left(l_{i j}\right)$ and $L^{\prime}=\left(l_{i j}^{\prime}\right)$ are called orthogonal latin squares if and only if the ordered pairs $\left(l_{i j}, l_{i j}^{\prime}\right)$ are distinct for all i and j. Here we say that L is orthogonal to L^{\prime}. The following theorem states the condition for existence orthogonal latin squares of order n.

Theorem 1.2. ([2]) For every natural number $n \neq 2,6$, there is a pair of orthogonal latin squares of order n.
A Steiner triple system of order $v, S T S(v)$, is an ordered pair $S=(V, B)$, where V is a set of size v and B is a set of size b which is a collection of triples of V such that every pair of V is contained in exactly one triple of B. Every triple of $S T S(v)$ called a block. The number of times that each $v \in V$ appears in the blocks is denoted by r. One can easily see that for every $\operatorname{STS}(v)$, $r=\frac{v-1}{2}$. It is not hard to see that a STS(v) exists if and only if the edges of the complete graph K_{v} partitions into triangles. It is well known that a necessary and sufficient condition for existing a $S T S(v), v \geqslant 3$ is $v \equiv 1$ or $3(\bmod 6)$ (see [1]). Such $a v$ is said to be admissible.
A Steiner triple system (V, B) is called resolvable if the triples of B can be partitioned into $\frac{b}{r}$ classes, where each class is a partition of V. By Lemma 9.1.1 of [2], a resolvable $S T S(v)$ can exist only if $v \equiv 3$, (mod 6$)$.

Let $S=(V, B)$ be a Steiner triple system. A color class is a system of pairwise disjoint triples. $A k$-block coloring is a partitioning of the set B into k color classes. Here we say that (V, B) is k-block colorable. The chromatic index, $\chi^{\prime}(S)$, of a Steiner triple system S is the least k for which a k-block coloring exists. We say two blocks are adjacent if they have an element of S in common. A block intersection graph of a Steiner triple system $S=(V, B)$, denoted by G_{S}, is a graph with the vertex set B; the vertices are adjacent if and only if the respective blocks are adjacent. Moreover, it is not hard to see that G_{S} is a strongly $(3 r-3, r+2,9)$-regular graph. So, by Theorem 1.1, $\chi^{\prime}(S) \leqslant 3 r-3$ for $v>7$. Also, since the the clique number of G_{S} is $r, \chi^{\prime}(S) \geqslant r$ if $v \equiv 3$ (mod 6). The following well known theorem states that in what conditions $\chi^{\prime}(S)=r$.

Theorem 1.3. Let S be a $S T S(v)$. Then $\chi^{\prime}(S)=r$ if and only if S is resolvable. Now, By Theorem 1.1 and Theorem 1.3, we conclude that $r \leqslant \chi^{\prime}(S) \leqslant 3 r-3$
if $v \equiv 3(\bmod 6)$ and $r+1 \leqslant \chi^{\prime}(S) \leqslant 3 r-3$ if $v \equiv 1(\bmod 6)$.
The upper bound $\chi^{\prime}(S) \leqslant 3 r-3$ seems to be weak in general. In fact, using probabilistic methods Pippenger and Spencer in [7] proved that $\chi^{\prime}(S T S(v))$ is asymptotic to $\frac{v}{2}$. For more information on the chromatic index of Steiner triple systems the reader is referred to Chapter 18 of [4]. For some classes of STS (v) the upper bound was improved. In particular, Colbourn in [3] improved it for cyclic $S T S(v)$ by proving $\chi^{\prime}(S T S(v)) \leqslant v$. Block coloring of Steiner triple systems studied by several authors (For more information see [4, 5, 6]).
In this paper, we introduce a construction and use it to show that for every k-block colorable $S T S(v)$ and l-block colorable $S T S(w)$, there exists a $(k+l v)$ block colorable $S T S(v w)$. Moreover, it is shown that for every k-block colorable $S T S(v)$, every $S T S(2 v+1)$ obtained from the well-known construction is $(k+v)$ block colorable.

2. Block Coloring of Steiner Triple Systems of Order vw

In this section, we introduce a block coloring of a Steiner triple system $\operatorname{STS}(v w)$ obtained from two Steiner triple systems $\operatorname{STS}(v)$ and $\operatorname{STS}(w)$. For this purpose, first we establish the following Construction. In particular, we introduce some resolvable $\operatorname{STS}(v w)$ of $\operatorname{STS}(v)$ and $\operatorname{STS}(w)$.

Construction 2.1.

Let (V, B) be a $\operatorname{STS}(v)$ on the set $V:=\left\{x_{1}, \ldots, x_{v}\right\}$ and $\left(W, B^{\prime}\right)$ be a $\operatorname{STS}(w)$ on the set $W:=\left\{y_{1}, \ldots, y_{w}\right\}$. Then define (Z, S) as a $\operatorname{STS}(v w)$ on the set $Z:=\left\{z_{i j}, 1 \leqslant i \leqslant v, 1 \leqslant j \leqslant w\right\}$ with two types of blocks as follows:
For every $j, 1 \leqslant j \leqslant w$, consider a copy of the complete graph K_{v}, K_{v}^{j}, with the vertex set $\left\{z_{1 j}, \ldots, z_{v j}\right\}$. Using (V, B) one can partition the edges of each K_{v}^{j}, for every $1 \leqslant j \leqslant w$, into triangles. Call the blocks made by these triangles, Type 1. Now, consider the complete graph K_{w} with the vertex set $\left\{K_{v}^{j}, 1 \leqslant j \leqslant w\right\}$. Using $\left(W, B^{\prime}\right)$ one can partition the edges of K_{w} into triangles. Let us call this partition by F. For every $i, j, 1 \leqslant i, j \leqslant w, i \neq j$, join every vertex of K_{v}^{i} to every vertex of K_{v}^{j}. So, every triangle in the K_{w} is corresponding to $3 v^{2}$ edges. Now, for each triangle of F such as $\left\{K_{v}^{p}, K_{v}^{s}, K_{v}^{t}\right\}$, $1 \leqslant p, s, t \leqslant w$, consider a latin square L of order v on the set $\left\{z_{1 t}, \ldots, z_{v t}\right\}$ such that the rows and the columns are indexed by $\left\{z_{1 p}, \ldots, z_{v p}\right\}$ and $\left\{z_{1 s}, \ldots, z_{v s}\right\}$, respectively. For every $z_{i p}$ and $z_{j s}, 1 \leqslant i, j \leqslant v,\left\{z_{i p}, z_{j s}, L_{z_{i p} z_{j s}}\right\}$ is considered as a block of Type 2. It is not hard to see that all blocks of Type 1 and Type 2 form a STS $(v w)$. Call a Steiner triple Systems obtained from this Construction such that every used latin square has an orthogonal latin square, by $\operatorname{OLS}(v w)$.

Note that by Theorem 1.2, $\operatorname{OLS}(v w) \neq \emptyset$ for each admissible v and w.
Theorem 2.2. For every k-block colorable $S T S(v)$ and l-block colorable $S T S(w)$, there exists a $(k+l v)$-block colorable $O L S(v w)$.

Proof. Let (V, B) be a k-block colorable $\operatorname{STS}(v)$ and $f: B \longrightarrow\{1, \ldots, k\}$ be a such coloring and $\left(W, B^{\prime}\right)$ be a l-block colorable $\operatorname{STS}(w)$ with the function $f^{\prime}: B^{\prime} \longrightarrow\{1, \ldots, l\}$. Moreover, let (Z, S) be an OLS $(v w)$. Now, define $c: S \longrightarrow\{1, \ldots, l v+k\}$ as follows. First, we color the blocks of Type 1. For all $1 \leqslant j \leqslant w$ and $\left\{x_{m}, x_{n}, x_{p}\right\} \in B$, let $c\left(\left\{z_{m j}, z_{n j}, z_{p j}\right\}\right)=f\left(\left\{x_{m}, x_{n}, x_{p}\right\}\right)$. Next, to color the blocks of Type 2, consider a triangle $t=\left\{K_{v}^{p}, K_{v}^{s}, K_{v}^{t}\right\}$ of partition F in Construction ??. Note that t is corresponding to a block of (W, B^{\prime}), say b. Let L be a latin square used to partition the edges of t and L^{\prime} be a latin square on the set $\left\{k+\left(f^{\prime}(b)-1\right) v+1, \ldots, k+f^{\prime}(b) v\right\}$ orthogonal to L. Then, let $c\left(\left\{z_{i p}, z_{j s}, L_{z_{i p} z_{j s}}\right\}\right)=L_{z_{i p} z_{j s}}^{\prime}$ and repeat this procedure for every triangle of F. We show that c is a $(k+l v)$-block coloring of (Z, S). First, note that if two adjacent blocks call b_{1} and b_{2} have the same color, since the set of colors used to color the blocks of Type 1 and Type 2 have no color in common, then b_{1} and b_{2} belong to the same type. First, suppose that b_{1} and b_{2} are the blocks of Type 1. Since f is a k-block coloring of $(V, B), c\left(b_{1}\right) \neq c\left(b_{2}\right)$. Now, suppose that b_{1} and b_{2} are the blocks of Type 2. Two cases may be assumed. Suppose that $b_{1}=\left\{m, n, L_{m n}\right\}$ and $b_{2}=\left\{p, q, L_{p q}\right\}$ are obtained from the same triangle of partition F. If $m=p$ or $n=q$, since L^{\prime} is a latin square, then $c\left(b_{1}\right) \neq c\left(b_{2}\right)$. If $L_{m n}=L_{p q}$, since L and L^{\prime} are orthogonal latin squares, then $L_{m n}^{\prime} \neq L_{p q}^{\prime}$. So, in this case $c\left(b_{1}\right) \neq c\left(b_{2}\right)$. Now, assume that b_{1} and b_{2} belong to different triangles, call t_{1} and t_{2}. The adjacency of b_{1} and b_{2} concludes the adjacency of t_{1} and t_{2}. So, t_{1} and t_{2} are corresponding to two adjacent blocks in B^{\prime}. Since f^{\prime} is a block coloring of B^{\prime}, the sets of colors used to color the blocks obtained from t_{1} and t_{2} have no color in common. Thus $c\left(b_{1}\right) \neq c\left(b_{2}\right)$ and the proof is complete.

Corollary 2.3. If there exists a resolvable $S T S(v)$ and a resolvable $S T S(w)$, then there exists a resolvable $\operatorname{STS}(v w)$.

Proof. Let (V, B) and (W, B^{\prime}) be a resolvable $\operatorname{STS}(v)$ and a resolvable $\operatorname{STS}(w)$. Moreover, let (Z, S) be an $\operatorname{OLS}(v w)$. By Theorem 2.2, (Z, S) is $\left(\frac{v w-1}{2}\right)$-block colorable. Since the chromatic index of (Z, S) is at least $\frac{v w-1}{2}$, by Theorem 1.3 we are done.

Theorem 2.4. If (Z, S) is a resolvable $S T S(v w)$ obtained from Construction 2.1, then (Z, S) is an $O L S(v w)$.

Proof. Let $f: Z \longrightarrow\left\{1, \ldots, \frac{v w-1}{2}\right\}$ be a $\left(\frac{v w-1}{2}\right)$-block coloring of (Z, S).

First we claim that exactly v colors are appeared in the coloring of the blocks obtained from each used latin square. Note that for every $x \in Z, x$ appears in $\frac{v-1}{2}$ blocks of Type 1 and $\frac{v(w-1)}{2}$ blocks of Type 2. Call $q=\frac{w-1}{2}$ latin square used in Construction 2.1, by L_{1}, \ldots, L_{q}. Note that x appears in v blocks obtained from L_{i} for eah $1 \leqslant i \leqslant q$. Thus for every $1 \leqslant i, j \leqslant q, i \neq j$, there are v colors appeared in the blocks obtained from L_{i} not in the blocks obtained from L_{j}. Moreover, since f is a $\left(\frac{v w-1}{2}\right)$-block coloring, for each latin square exactly v colors are used in f. Now, for each latin square L define L^{\prime} be a square of size v such that $L_{i j}^{\prime}=f\left(\left\{i, j, L_{i j}\right\}\right)$. The properties of block coloring conclude that L^{\prime} is orthogonal to L and the proof is complete.

3. Block Coloring of Steiner Triple Systems of Order $2 v+1$

In this section, we study the block chromatic index of $\operatorname{STS}(2 v+1)$. We show that there exists $(k+v)$-block colorable $\operatorname{STS}(2 v+1)$ for every k-block colorable $\operatorname{STS}(v)$. Before stating the main result, we need the following definition and theorems.

Definition 3.1. ([2]) Let S be a set of $n+1$ elements (symbols). A Room square of side n (on symbol set S), $R S(n)$, is an $n \times n$ array, F, that satisfies the following properties:
(1) every cell of F either is empty or contains an unordered pair of symbols from S.
(2) Each symbol of S occurs once in each row and column of F.
(3) Every unordered pair of symbols occurs in precisely one cell of F.

Theorem 3.2. ([2]) A Room square of side n exists if and only if n is odd and $n \neq 3,5$.

Corollary 3.3. Let n be an even integer where $n \neq 4,6$. Then there exists $a(n-1)$-edge coloring of K_{n} such that partition the edges of K_{n} to $(n-1)$ rainbow perfect matchings.

Proof. Let $S=V\left(K_{n}\right)=\left\{v_{1}, \ldots, v_{n}\right\}$. Since $n \neq 4,6$ is an even integer, by Theorem 3.2, there exists a room square F of side $n-1$ on S. Note that each unordered pair appeared in each cell of F is corresponding to an edge of K_{n}. Moreover, by Part (2) of Definition 3.1, the union of edges appeared in each row or column is a perfect matching of K_{n}. Now, assign color i to all edges appeared in cells of row i in F, for every $i, 1 \leqslant i \leqslant n-1$. Note that since every unordered pair of symbols occur in precisely one cell of F, we obtain a
($n-1$)-edge coloring of K_{n}. Now, the columns of F partition the edges of K_{n} to $(n-1)$ rainbow perfect matchings.
In the following, we introduce a construction of $\operatorname{STS}(2 v+1)$ obtained from a $\operatorname{STS}(v)$ and use it to find $(k+v)$-block colorable $\operatorname{STS}(2 v+1)$ for every k-block colorable $\operatorname{STS}(v)$.

Construction 3.4. Let (V, B) be a $\operatorname{STS}(v)$. Define a $\operatorname{STS}(2 v+1)$, $\left(W, B^{\prime}\right)$, on the set $W=\left\{x_{1}, \ldots, x_{2 v+1}\right\}$ with two types of blocks as follows. The blocks of Type 1 are the blocks of B on $\left\{x_{1}, \ldots, x_{v}\right\}$. Now, consider the complete graph K_{v+1} with the vertex set $\left\{x_{v+1}, \ldots, x_{2 v+1}\right\}$. Since v is odd, the edges of K_{v+1} can be partitioned to v perfect matchings F_{1}, \ldots, F_{v}. Now, every triangle obtained from vertex $x_{i}, 1 \leqslant i \leqslant v$, and two vertices of every edge of F_{i} introduce a block. These blocks are blocks of Type 2.

Theorem 3.5. For every k-block colorable $\operatorname{STS}(v)$, every $\operatorname{STS}(2 v+1)$ obtained from Construction 3.4 is $(k+v)$-block colorable.

Proof. Let (V, B) be a k-block colorable $\operatorname{STS}(v)$ and $f: B \rightarrow\{1, \ldots, k\}$ be a such coloring. Moreover, let $\left(W, B^{\prime}\right)$ be a $\operatorname{STS}(2 v+1)$ obtained from Construction 3.4. Define $c: B^{\prime} \rightarrow\{1, \ldots, k+v\}$ as follows. For $1 \leqslant i, j, t \leqslant v$, let $c\left(\left\{x_{i}, x_{j}, x_{t}\right\}\right)=f\left(\left\{x_{i}, x_{j}, x_{t}\right\}\right)$. Since $v+1$ is even, by Theorem 3.3, there exists a v-edge coloring ϕ of K_{v+1} on the vertices $\left\{x_{v+1}, \ldots, x_{2 v+1}\right\}$ such that all edges partitions into v rainbow perfect matchings F_{1}, \ldots, F_{v}. Now, for every block $\left\{x_{i}, x_{j}, x_{t}\right\}, 1 \leqslant i \leqslant v$ and $v+1 \leqslant j, t \leqslant 2 v+1$, let $c\left(\left\{x_{i}, x_{j}, x_{t}\right\}\right)=$ $\phi\left(x_{j} x_{t}\right)$. We claim that c is a $(k+v)$-block coloring. Notice that if two adjacent blocks call b_{1} and b_{2} have the same color, since the set of colors used to color the blocks of Type 1 and Type 2 have no color in common, then b_{1} and b_{2} belong to the same type. So, two cases may be considered. First, suppose that b_{1} and b_{2} are the blocks of Type 1. Since f is a k-block coloring of (V, B), $c\left(b_{1}\right) \neq c\left(b_{2}\right)$. Otherwise, two cases may be considered. First assume that $b_{1} \cap b_{2}=\left\{x_{i}\right\}$ such that $1 \leqslant i \leqslant v$. Since every perfect matching $F_{p}, 1 \leqslant p \leqslant v$ is rainbow, $c\left(b_{1}\right) \neq c\left(b_{2}\right)$. Now, suppose that $b_{1} \cap b_{2}=\left\{x_{i}\right\}, v+1 \leqslant i \leqslant 2 v+1$. Since ϕ is a proper edge coloring, we are done and the proof is complete.

Acknowledgements:

The author would like to express her deep gratitude to the referees for a very careful reading of the paper, and many valuable comments, which have greatly improved the presentation of the paper.

References

[1] I. Anderson, Combinatorial Designs, Oxford Science Publication, 1990.
[2] C. J. Colbourn and J. H. Dinitz, Handbook of Combinatorial Designs, Discrete Math. and its Applications, Second Edition, 2007.
[3] C. J. Colbourn and A. Rosa, Triple Systems, Oxford mathematical monographs, The clarendon press Oxford university Press (1999).
[4] C. J. Colbourn and M. J. Colbourn, The chromatic index of cyclic Steiner 2-designs, Internat. J. Math. Math. Sci., 5 (1982), 823-825.
[5] M. J. Colbourn and R. A. Mathon, On cyclic Steiner 2-designs, Annals of Disc. Math., 7 (1980), 215-253.
[6] M. Meszka, R. Nedela, and A. Rosa, Circulants and the chromatic index of Steiner triple systems, Mathematica Slovaca, 4 (2006), 371-378.
[7] N. Pippenger and J. Spencer, Asymptotic behavior of the chromatic index for hypergraphs, J. Combin. Theory (A), 51 (1989), 24-42.
[8] D. West, Introduction to Graph Theory, Second Edition, Prentice Hall, 2001.

Raoufeh Manaviyat

Department of Mathematics
Assistant Professor of Mathematics
Payame Noor University
B.o.x: 19395-4697

Tehran, Iran
E-mail: R.Manaviyat@gmail.com

[^0]: Received: January 2014; Accepted: August 2014

