
Journal of Mathematical Extension
Vol. 15, SI-NTFCA, (2021) (4)1-28
URL: https://doi.org/10.30495/JME.SI.2021.1927
ISSN: 1735-8299
Original Research Paper

Investigation of a Common Solution for a
Multi-Singular Fractional System by Using

Control Functions Method

A. Malekpour
South Tehran Branch, Islamic Azad University

M. Shabibi∗

Meharn Branch, Islamic Azad University

Abstract. In this article, first of all, we investigate a pointwise defined
multi-singular fractional differential equation. Using control functions
method, existence a solution for the problem, will be proved. In the
following, we determine some conditions to prove the existence of a
common solution for two multi-singular fractional differential equations
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1 Introduction

Besides the fact that fractional calculus had been dated back to the last
three centuries, it is of high significance among the recent researchers
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and academians (see, for instance, [1]- [7]), that sometimes are singular
at some points (see [8]- [13]). Sometimes, considering a mathematical
model of a sceintific phenomena, leads to a fractional differential equa-
tion, therefore many application in fractional calculus can be seen (see
[14]- [20]).
In [21], the authors investigated the fractional equation cDσν(t)+y(t, ν(t))
= 0 with initial conditions ν(0) = ν ′′(0) = 0 and ν(1) = τ

∫ 1
0 ν(s)ds,

where 0 < t < 1, 2 < σ < 3, 0 < τ < 2, cDσ is the Caputo fractional
derivative and y : [0, 1]× [0,∞)→ [0,∞) is a continuous function.
In 2013, the fractional problem cDrν(ξ) + y(t, ν(ξ)) = 0 with boundary
conditions ν ′(0) = ν ′′(0) = · · · = ν(k0−1)(0) = 0 and ν(1) =

∫ 1
0 ν(s)dγ(s)

was investigated, where 0 < ξ < 1, n ≥ 2, r ∈ (k0 − 1, k0), γ(s) is
a function of bounded variation, y may have singularity at ξ = 1 and∫ 1

0 dγ(s) < 1 ([22]).
In 2015, the fractional problem cDρy(t) = ψ(t, y(t),cDσy(t)) with bound-
ary conditions y(0)+y′(0) = g(x),

∫ 1
0 y(t)dt = m0 and y′′(0) = y(3)(0) =

· · · = y(nρ−1)(0) = 0 was studied where, 0 < t < 1, m0 is a real number,
nρ ≥ 2, ρ ∈ (nρ − 1, nρ), 0 < σ < 1, cDρ and cDσ is the Caputo frac-
tional derivatives, g ∈ C([0, 1],R) → R and ψ : (0, 1] × R × R → R is
continuous with ψ(t, u, v) that may be singular at t = 0 ([23]).
In 2018, the existence of a solution for the following three steps crisis
problem was investigated:

cDηz(t) + ψ(t, z(t), z′(t),cDσz(t),
∫ t

0
Ω(ξ)z(ξ)dξ, ω(x(t))) = 0

with boundary conditions z(1) = z(0) = z′′(0) = znη(0) = 0, where
η ≥ 2, λ, µ, σ ∈ (0, 1), Ω ∈ L1[0, 1], ω : C1[0, 1] → C1[0, 1] is a map-
ping such that ‖ω(x1) − ω(x2)‖ ≤ ι0‖x1 − x2‖ + ι1‖x′1 − x′2‖ for some
non-negative real numbers ι0 and ι1 ∈ [0,∞) and all x1, x2 ∈ C1[0, 1],
cDη is the η-order Caputo fractional derivative, ψ(t, z1(t), ..., z5(t)) =
ψ1(t, z1(t), ..., z5(t)) for all t ∈ [0, λ), ψ(t, z1(t), ..., z5(t)) = ψ2(t, z1(t), ...,
z5(t)) for all t ∈ [λ, µ] and ψ(t, z1(t), ..., z5(t)) = ψ3(t, z1(t), ..., z5(t)) for
all t ∈ (µ, 1], ψ1(t, ., ., ., ., .) and ψ3(t, ., ., ., ., .) are continuous on [0, λ)
and (µ, 1] and ψ2(t, ., ., ., ., .) is multi-singular ([24]).
In 2019, the existence and uniqueness of solutions were discussed for the
following class of boundary value problem of nonlinear fractional differ-
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ential equations depending with non-separated type integral boundary
conditions

cDqz(t) = Ψ(t, z(t),cDrz(t))

with the conditions z(0)− ι1z(τ) = κ1

∫ τ
0 U(s, z(s))ds and

z′(0) − ι2z′(τ) = κ2

∫ τ
0 V (s, z(s))ds, where t ∈ [0, τ ], t > 0, 1 < q ≤ 2,

0 < r ≤ 1, cDq is the q-th order of the Caputo fractional derivative,
Ψ ∈ C([0, τ ] × R × R,R), U, V : [0, τ ] × R → R are given continuous
functions and ι1, ι2, κ1, κ2 ∈ R with ι1 6= 1 and ι2 6= 1 ([25]).

In 2020, the existence of solutions were examined for the following
nonlinear differential pointwise defined system:

cDα1ν1(t) = h1(t, ν1(t), ν ′1(t), cDβ1ν1(t), Ip1ν1(t),
..., νm(t), ν ′m(t), cDβmνm(t), Ipmνm(t)),
.
. , t ∈ [0, 1]
.
cDαmνm(t) = hm(t, ν1(t), ν ′1(t), cDβ1ν1(t), Ip1ν1(t),
..., νm(t), ν ′m(t), cDβmνm(t), Ipmνm(t)),

with boundary value conditions ν
(j)
k (0) = 0 for 2 ≤ j ≤ nk − 1 and

k = 1, . . . ,m,

νk(θk) =

n0∑
i=1

λ c
i,kDµi,kνk(γi,k)

and ν ′k(0) = νk(ηk) for all k = 1, 2, ...,m, where λi,k ≥ 0, βk, γi,k, µi,k, θk, ηk
∈ (0, 1), pk > 0, m,n0 ∈ N, k = 1, 2, ...,m, i = 1, 2, ..., n0, cDαk
is the Caputo fractional derivative of order αk ≥ 2, nk = [αk] + 1,
and hk : [0, 1] × X4m → R, is singular at some points [0, 1], where
X = C1[0, 1] ([26]).

Regarding the main ideas of above papers, we investigate the non-
controlled multi-singular fractional differential pointwisly defined equa-
tion

cDσw(t) + U(t, w(t), w′(t),cDβw(t), φ(w(t))) = 0 (1)

with boundary conditions w(0) = 0 for σ ∈ [2, 3) and w(0) = w′′(0) =
w(n0)(0) = 0 where n0 = [σ] − 1 for σ ∈ [3,∞) and also w(η) +
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∫ 1
0 w(s)ds = 0 where σ ≥ 2, η, β ∈ (0, 1), φ : X → X is a mapping such

that for all w1, w2 ∈ X, ‖φ(w1)− φ(w2)‖ ≤ a0‖w1 −w2‖+ a1‖w′1 −w′2‖
for some a0, a1 ∈ [0,∞), cDσ is the Caputo fractional derivative of order
σ and U : [0, 1]× R4 → R is a function such that U(t, ., ., ., .) is singular
at some points t ∈ [0, 1]. In fact, U is stated to be multi-sigular when
it is singular at more than one point t (see Example 2.1 and 2.2). Like-
wise, cDαw(t) + U(t) = 0 is pointwise defined equation on [0, 1] if there
is the set E ⊂ [0, 1] such that its measure of complenment Ec is zero
and equation on E is being hold. It’s obvious that every equation is a
pointwisly defined equation. In this paper, we use ‖.‖1 as the norm of
L1[0, 1], ‖.‖ as the sup norm Y = C[0, 1] and ‖w‖∗ = max{‖w‖, ‖w′‖}
as the norm of X = C1[0, 1].

2 Preliminaries

In this section, we introduce some notations and basic facts which are
used throughout the paper. The Riemann-Liouville integral of order r
with the lower limit b ≥ 0 for a function y : (b,∞) → R is defined by
Irb+y(t) = 1

Γ(r)

∫ t
b (t − s)r−1y(s)ds provided that the right-hand side is

pointwise defined on (b,∞). we denote Iry(t) for Ir0+y(t). Also, The Ca-
puto fractional derivative of order r > 0 of an absolutely continuous func-

tion y : (0,∞) → R is defined by cDry(t) = 1
Γ(n−r)

∫ t

0

yn(s)

(t− s)r+1−nds,

where n = [r] + 1 ([27]).
Let Ψ be the family of nondecreasing functions ψ : [0,∞)→ [0,∞) such
that

∑∞
n=1 ψ

n(t) < ∞ for all t > 0 ([28]). One can check that ψ(t) < t
for all t > 0 ([28]). Let T : X → X and α : X × X → [0,∞) be
two maps. Then T is called an α-admissible map whenever α(x, y) ≥ 1
implies α(T x, T y) ≥ 1 ([29]). Let (X, d) be a complete metric space,
ψ ∈ Ψ and α : X × X → [0,∞) a map. A self-map T : X → X is
called an α-ψ-contraction whenever α(x, y)d(T x, T y) ≤ ψ(d(x, y)) for
all x, y ∈ X ([29]). We need the following results.

Lemma 2.1. ([30]) Assume that 0 < n − 1 ≤ r < n and v ∈ C[0, 1] ∩
L1[0, 1]. Then IrcDrv(ξ) = v(ξ) +

∑n−1
i=0 ιiξ

i for some constants
ι0, . . . , ιn−1 ∈ R.
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Lemma 2.2. ([31])Let X is a Banach space and C ⊆ X is closed and
convex. Suppose that Ξ be a relatively open subset of C with 0 ∈ Ξ and
let T : Ξ→ C be a continuous and compact mapping. Then either
i) the mapping T has a fixed point in Ξ̄, or
ii) there exists w0 ∈ ∂Ξ and γ ∈ (0, 1) with w0 = γT w0.

Lemma 2.3. ([32]) Let (X, d) be a complete metric space, ψ ∈ Ψ,
α : X×X → [0,∞) is a map and S, T : X → X are mappings satisfying
the following conditions
i) for x, y ∈ X, α(x, y) ≥ 1 implies α(Sx, T y) ≥ 1 or α(T x,Sy) ≥ 1,
ii) there exists x0 ∈ X such that α(x0,Sx0) ≥ 1,
iii) S and T are continuous
iv) for all x, y ∈ X, α(x, y)d(Sx, T y) ≤ ψ(d(x, y)) and
α(y, x)d(Sx, T y) ≤ ψ(d(x, y)).
Then T and S have a common fixed point.

3 Main Results

In this section, we declare existence condititions for the problem (6).
First of all, we change the differential equation to a integral one, then
we prove the exisitence of a solution for the problem (6).

Lemma 3.1. Let σ ≥ 2, η ∈ (0, 1) and U ∈ L1[0, 1]. Then w(t) =∫ 1
0 κ(t, s)U(s)ds is a solution for the pointwise defined problem cDσw(t)+
U(t) = 0 with boundary value conditions w(0) = 0 for σ ∈ [2, 3) and
w(0) = w′′(0) = w(n0)(0) = 0 where n0 = [σ]− 1 for σ ∈ [3,∞) and also
w(η) +

∫ 1
0 w(s)ds = 0 for all σ ∈ [2,∞), where

κ(t, s) =



−(t−s)σ−1

Γ(σ) + 2t(1−s)σ
(2η+1)Γ(σ+1) + 2t(η−s)σ−1

(2η+1)Γ(σ) 0 ≤ s ≤ t ≤ 1, s ≤ η

−(t−s)σ−1

Γ(σ) + 2t(1−s)σ
(2η+1)Γ(σ+1) 0 ≤ η ≤ s ≤ t ≤ 1

2t(1−s)σ
(2η+1)Γ(σ+1) 0 ≤ t ≤ s ≤ 1, η ≤ s

2t(1−s)σ
(2η+1)Γ(σ+1) + 2t(η−s)σ−1

(2η+1)Γ(σ) 0 ≤ t ≤ s ≤ η ≤ 1.
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Proof. Let for all t ∈ E ⊂ [0, 1] the equation cDσw(t) + U(t) = 0 is
held, where m(Ec) = 0 and m is the Lebesgue measure on R. Also let
U0 ∈ L1[0, 1] ∩ C[0, 1] be a function such that U0 = U on E. Note that
if this problem has a solution then U0 exists, because if w0 ∈ C[0, 1] is
a solution for the pointwise defined problem, it is enough to consider
U0(t) = −cDσw0(t) for all t ∈ [0, 1], so we have U0 ∈ L1[0, 1] ∩ C[0, 1]
and U0 = U|E . Hence if t ∈ E, we have

Iσ(U(t)) =
1

Γ(σ)

∫ t

0
(t− s)σ−1U(s)ds

=
1

Γ(σ)
(

∫
[0,t]∩E

(t− s)σ−1U(s)ds+

∫
[0,t]∩Ec

(t− s)σ−1U(s)ds)

=
1

Γ(σ)

∫
[0,t]∩E

(t− s)σ−1U0(s)ds

=
1

Γ(σ)
(

∫
[0,t]∩E

(t− s)σ−1U0(s)ds+

∫
[0,t]∩Ec

(t− s)σ−1U0(s)ds)

=
1

Γ(σ)

∫ t

0
(t− s)σ−1U0(s)ds = Iσ(U0(t)).

If t ∈ Ec|{0}, then there exists {tn} ⊂ E such that tn → t− as n→∞,
so

Iσ(U(t)) =
1

Γ(σ)

∫ t

0
(t− s)σ−1U(s)ds

= lim
n→∞

1

Γ(σ)

∫ tn

0
(tn − s)σ−1U(s)ds = lim

n→∞
Iσ(U(tn))

= lim
n→∞

Iσ(U0(tn)) = lim
n→∞

1

Γ(σ)

∫ tn

0
(tn − s)σ−1U0(s)ds

=
1

Γ(σ)

∫ t

0
(t− s)σ−1U0(s)ds = Iσ(U0(t))

and in the case t = 0 ∈ Ec, we have Iσ(U(t)) = Iσ(U0(t)) = 0. So for
all t ∈ [0, 1], Iσ(U(t)) = Iσ(U0(t)). Therefore if cDσw(t) + U(t) = 0 for
all t ∈ E, then Iσ(cDσw(t)) = Iσ(−U(t)) for all t ∈ [0, 1], consequently
Iσ(cDσw(t)) = Iσ(−U0(t)) on [0, 1].
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Thus, regarding Lemma (2.1) and the boundary conditions, we ob-
tain

w(t) = − 1

Γ(σ)

∫ t

0
(t− s)σ−1U(s)ds+ ι1t.

Putting t = η, we have

w(η) = − 1

Γ(σ)

∫ η

0
(η − s)σ−1U(s)ds+ ι1η.

On the other hand,

∫ 1

0
w(s)ds =

∫ 1

0
w(t)dt = − 1

Γ(σ)

∫ 1

0

∫ t

0
(t− s)σ−1U(s)dsdt+

ι1
2

= − 1

Γ(σ)

∫ 1

0

∫ 1

s
(t− s)σ−1dtU(s)ds+

ι1
2

= − 1

Γ(σ)

∫ 1

0
(
1

σ
(t− s)σ|1s)U(s)ds+

ι1
2

= − 1

Γ(σ + 1)

∫ 1

0
(1− s)σU(s)ds+

ι1
2
.

By hypothesis w(η) = −
∫ 1

0 w(s)ds, so we have

− 1

Γ(σ)

∫ η

0
(η − s)σ−1U(s)ds+ ι1η =

1

Γ(σ + 1)

∫ 1

0
(1− s)σU(s)ds− ι1

2
,

hence,

ι1(η +
1

2
) =

1

Γ(σ + 1)

∫ 1

0
(1− s)σU(s)ds+

1

Γ(σ)

∫ η

0
(η − s)σ−1U(s)ds.

Therefore,

ι1 =
2

(2η + 1)
(

1

Γ(σ + 1)

∫ 1

0
(1− s)σU(s)ds+

1

Γ(σ)

∫ η

0
(η− s)σ−1U(s)ds).
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So we obtain the following equations

w(t) = − 1

Γ(σ)

∫ t

0
(t− s)σ−1U(s)ds

+
2t

2η + 1
(

1

Γ(σ + 1)

∫ 1

0
(1− s)σU(s)ds+

1

Γ(σ)

∫ η

0
(η − s)σ−1U(s)ds)

= − 1

Γ(σ)

∫ t

0
(t− s)σ−1U(s)ds+

2t

(2η + 1)Γ(σ + 1)

∫ 1

0
(1− s)σU(s)ds

+
2t

(2η + 1)Γ(σ)

∫ η

0
(η − s)σ−1U(s)ds.

If η ≥ t, then

w(t) = − 1

Γ(σ)

∫ t

0
(t− s)σ−1U(s)ds

+
2t

(2η + 1)Γ(σ + 1)
(

∫ t

0
+

∫ η

t
+

∫ 1

η
)(1− s)σU(s)ds

+
2t

(2η + 1)Γ(σ)
(

∫ t

0
+

∫ η

t
)(η − s)σ−1U(s)ds.

If η ≤ t then

w(t) = − 1

Γ(σ)
(

∫ η

0
+

∫ t

η
)(t− s)σ−1U(s)ds

+
2t

(2η + 1)Γ(σ + 1)
(

∫ η

0
+

∫ t

η
+

∫ 1

t
)(1− s)σU(s)ds

+
2t

(2η + 1)Γ(σ)

∫ η

0
(η − s)σ−1U(s)ds.

So w(t) =
∫ 1

0 κ(t, s)U(s)ds can be written, where
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κ(t, s) =



−(t−s)σ−1

Γ(σ) + 2t(1−s)σ
(2η+1)Γ(σ+1) + 2t(η−s)σ−1

(2η+1)Γ(σ) 0 ≤ s ≤ t ≤ 1, s ≤ η

−(t−s)σ−1

Γ(σ) + 2t(1−s)σ
(2η+1)Γ(σ+1) 0 ≤ η ≤ s ≤ t ≤ 1

2t(1−s)σ
(2η+1)Γ(σ+1) 0 ≤ t ≤ s ≤ 1, η ≤ s

2t(1−s)σ
(2η+1)Γ(σ+1) + 2t(η−s)σ−1

(2η+1)Γ(σ) 0 ≤ t ≤ s ≤ η ≤ 1.

�

Lemma 3.2. Let κ(t, s) be given in Lemma (3.1). Then for all t, s ∈
[0, 1], κ(t, s) has the following properties
i) |κ(t, s)| ≤ Aσ,ηt(1− t)σ−1,

ii) |∂κ(t,s)
∂t | ≤ Aσ,η(1− t)

α−1,

where Aσ,η = 2(1+σ)
(2η+1)Γ(σ+1) .

Proof. i) For all t, s ∈ [0, 1] we have

|κ(t, s)| ≤ 2t(1− s)σ

(2η + 1)Γ(σ + 1)
+

2t(η − s)σ−1

(2η + 1)Γ(σ)

=
2t(1− s)σ + 2tσ(η − s)σ−1

(2η + 1)Γ(σ + 1)
≤ 2t(1− s)σ + 2tσ(1− s)σ−1

(2η + 1)Γ(σ + 1)

=
2t(1− s)σ−1(1− s+ σ)

(2η + 1)Γ(σ + 1)
≤ 2t(1− t)σ−1(1 + σ)

(2η + 1)Γ(σ + 1)

= Aσ,ηt(1− t)σ−1.

ii) By differentiating from the κ(t, s) with respect to t, it is deduced that

∂κ

∂t
(t, s) =

−(σ − 1)(t− s)σ−2

Γ(σ)
+

2(1− s)σ

(2η + 1)Γ(σ + 1)
+

2(η − s)σ−1

(2η + 1)Γ(σ)

for 0 ≤ s < t < 1 and s ≤ η,

∂κ

∂t
(t, s) =

−(σ − 1)(t− s)σ−2

Γ(σ)
+

2(1− s)σ

(2η + 1)Γ(σ + 1)
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for 0 ≤ η ≤ s < t < 1,

∂κ

∂t
(t, s) =

−(σ − 1)(t− s)σ−2

Γ(σ)
+

2(1− s)σ

(2η + 1)Γ(σ + 1)

for 0 ≤ η ≤ s < t < 1,

∂κ

∂t
(t, s) =

2(1− s)σ

(2η + 1)Γ(σ + 1)

for 0 < t < s ≤ 1 and η ≤ s, and finally

∂κ

∂t
(t, s) =

2(1− s)σ

(2η + 1)Γ(σ + 1)
+

2(η − s)σ−1

(2η + 1)Γ(σ)

for 0 < t < s ≤ η ≤ 1, hence

|∂κ(t, s)

∂t
| ≤ 2(1− s)σ

(2η + 1)Γ(σ + 1)
+

2(η − s)σ−1

(2η + 1)Γ(σ)

=
2(1− s)σ + 2σ(η − s)σ−1

(2η + 1)Γ(σ + 1)
≤ 2(1− s)σ + 2σ(1− s)σ−1

(2η + 1)Γ(σ + 1)

=
2(1− s)σ−1(1− s+ σ)

(2η + 1)Γ(σ + 1)
≤ 2(1− t)σ−1(1 + σ)

(2η + 1)Γ(σ + 1)

= Aσ,η(1− t)σ−1,

for all t, s ∈ [0, 1] that t 6= s, t 6= 0 and t 6= 1. In the case t = s, t = 0 or
t = 1, the same result is obtained. �
Now, let F : X → X be defined as

Fw(t) =

∫ 1

0
κ(t, s)U(s, w(s), w′(s), cDβw(s), φ(w(s)))ds

= − 1

Γ(σ)

∫ t

0
(t− s)σ−1U(s, w(s), w′(s), cDβw(s), φ(w(s)))ds

+
2t

(2η + 1)Γ(σ + 1)

∫ 1

0
(1− s)σU(s, w(s), w′(s), cDβw(s), φ(w(s)))ds

+
2t

(2η + 1)Γ(σ)

∫ η

0
(η − s)σ−1U(s, w(s), w′(s), cDβw(s), φ(w(s)))ds,
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where 0 < β < 1 and φ : X → X is a mapping such that

‖φ(w1)− φ(w2)‖ ≤ a0‖w1 − w2‖+ a1‖w′1 − w′2‖,

for all w1, w2 ∈ X and some a0, a1 ∈ [0,∞). By taking l0 = a0 + a1, it
can be seen that ‖φ(w1) − φ(w2)‖ ≤ l0‖w1 − w2‖∗, for all w1, w2 ∈ X.
According to the defintion of Caputo derivative, for all t ∈ [0, 1] and
w1, w2 ∈ X it follows

|cDβw1(t)−c Dβw2(t)| ≤ 1

Γ(1− β)

∫ t

0
(t− s)−β|w′1(s)− w′2(s)|ds

≤ ‖w
′
1 − w′2‖

Γ(2− β)
t1−β,

so

‖cDβw1 −c Dβw2‖ ≤
‖w′1 − w′1‖
Γ(2− β)

≤ ‖w1 − w2|∗
Γ(2− β)

.

Now, we consider F : X → X, to prove that the pointwise problem
(1) has a solution in X. For this, by lemma (3.1), we indicate that F
has a fixed point in X. In the next results, by using some functions
which are called control functions, we will control the singularity and
then, investigate the existence of a sloution for the singular fractional
differential problem.

Theorem 3.3. Let U : [0, 1]× (C[0, 1])4 → R be a singular function at
some points t ∈ [0, 1] such that U(t,O,O,O,O) ∈ L1[0, 1] where O is
the zero function on [0, 1], i.e for all s ∈ [0, 1], O(s) = 0. Assume that
there exists a nondecreaing mapping Λ : X4 → R+

:= [0,∞) such that
Λ(z,z,z,z)

z → q0 < ∞ as z → 0+ and Λ(z,z,z,z)
z → 0 as z → ∞. If the

inequality

|U(t, w1, w2, w3, w4)− U(t, z1, z2, z3, z4)|
≤ b(t)Λ(w1 − z1, w2 − z2, w3 − z3, w4 − z4),

be established for almost all t ∈ [0, 1], all (w1, w2, w3, w4), (z1, z2, z3, z4) ∈
X4 and some b ∈ L1[0, 1], then the poinwise defined problem (1) has a
solution.
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Proof. Let ε be arbitary. Regardig to the properties limz→0+
Λ(z,z,z,z)

z =
q0 < ∞, there exists 0 < δ(ε) ≤ ε such that for all z ∈ (0, δ(ε)],
Λ(z,z,z,z)

z < q0 + ε, and so Λ(z, z, z, z) < (q0 + ε)z. Hence taking z =
δ(ε) := δ, we have

Λ(δ, δ, δ, δ) < (q0 + ε)δ < (q0 + ε)ε. (2)

Now, let {wn}n≥1 be a sequence such that wn → w in X as n → ∞.
So ‖wn − w‖∗ → 0 as n→∞. Therefore, there exists m ∈ N such that
n ≥ m implies

‖wn − w‖∗ = max{‖wn − w‖, ‖w′n − w′‖} <
δ

l1
,

where l1 := max{1, 1
Γ(2−β) , a0 +a1}. So it is concluded that ‖wn−w‖ <

δ
l1

and ‖w′n−w′‖ < δ
l1
, for all n ≥ m. Hence for all t ∈ [0, 1] and n ≥ m,

we have

|Fwn(t)−Fw(t)|

≤
∫ 1

0
|κ(t, s)|

∣∣∣∣U(s, wn(s), w′n(s),cDβwn(s), φ(wn(s)))

−U(s, w(s), w′(s),cDβw(s), φ(w(s)))

∣∣∣∣ds
≤

∫ 1

0
Aσ,ηt(1− t)σ−1

∣∣∣∣U(s, wn(s), w′n(s),cDβwn(s), φ(wn(s)))

−U(s, w(s), w′(s),cDβw(s), φ(w(s)))

∣∣∣∣ds
≤

∫ 1

0
Aσ,ηt(1− t)σ−1b(s)Λ((wn − x)(s), (w′n − w′)(s),

( cDβwn − c Dβw)(s), φ(wn(s))− φ(w(s)))ds

≤ Aσ,ηt(1− t)σ−1

∫ 1

0
b(s)Λ(‖wn − w‖, ‖w′n − w′‖,

‖w′n − w′‖
Γ(2− β)

,

a0‖wn − w‖+ a1‖w′n − w′‖)ds
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≤ Aσ,ηt(1− t)σ−1Λ(
δ

l1
,
δ

l1
,

δ

l1Γ(2− β)
, (a0 + a1)

δ

l1
)

∫ 1

0
b(s)ds

≤ m1Aσ,ηt(1− t)σ−1Λ(l1
δ

l1
, l1

δ

l1
, l1

δ

l1
, l1

δ

l1
)

= m1Aσ,ηt(1− t)σ−1Λ(δ, δ, δ, δ) ≤ m1Aσ,ηt(1− t)σ−1(q0 + ε)ε,

where m1 =
∫ 1

0 b(s)ds. So ‖Fwn−Fw‖ ≤ m1Aσ,η(q0 +ε)ε, for all n ≥ m.
In a similar mannner for all t ∈ [0, 1] and n ≥ m, it is resulted that

|F ′wn(t)−F ′w(t)|

≤
∫ 1

0
|∂κ(t, s)

∂t
|
∣∣∣∣U(s, wn(s), w′n(s),cDβwn(s), φ(wn(s)))

−U(s, w(s), w′(s),cDβw(s), φ(w(s)))

∣∣∣∣ds
≤ m1Aσ,η(1− t)σ−1(q0 + ε)ε.

Hence ‖F ′wn−F ′w‖ ≤ m1Aσ,η(q0 + ε)ε, for all n ≥ m. Using the above
inequalities as well as ∗−norm definition, we conclude that

‖Fwn −Fw‖∗ = max{‖Fwn −Fw‖, ‖F ′wn −F ′w‖} ≤ m1Aσ,η(q0 + ε)ε

for all n ≥ m, and since ε > 0 is arbitary, it is deduced that Fwn → Fw
in X as wn → w in X, so F is a continuous mapping on X. Now, put
m2 =

∫ 1
0 |U(s,O,O,O,O)|ds. Since limz→∞

Λ(z,z,z,z)
z = 0, therefore

lim
z→∞

m2 +m1Λ(z, z, z, z)

z
= 0.

So for ε > 0, there exists r(ε) > 0 such that z ≥ r(ε) implies that

m2 +m1Λ(z, z, z, z)

z
< ε.

Thus, for all z ≥ r(ε), we have m2 + m1Λ(z, z, z, z) < εz. Choose an
ε0 > 0 such that 0 < ε0 <

1
Aσ,ηl1

and let r0 := r(ε0), then, for all z ≥ r0

the following inequality is held:

m2 +m1Λ(z, z, z, z) < ε0z,
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By putting z = r0l1, in the above inequality, we have

m2 +m1Λ(r0l1, r0l1, r0l1, r0l1) < ε0r0l1 <
r0

Aσ,η
.

Now, let Ξ = {w ∈ X : ‖w‖∗ < r0}, λ ∈ (0, 1) and w0 ∈ ∂Ξ be such that
w0 = λFw0, then for all t ∈ [0, 1], we have

|w0(t)| = |λFw0(t)| ≤
∫ 1

0
|κ(t, s)|

×
∣∣∣∣U(s, w0(s), w′0(s),cDβw0(s), φ(w0(s)))

∣∣∣∣ds
≤ Aσ,ηt(1− t)σ−1

(∫ 1

0

∣∣∣∣U(s, w0(s), w′0(s),cDβw0(s), φ(w0(s)))

−U(s,O(s),O(s),O(s),O(s))

∣∣∣∣ds
+

∫ 1

0
|U(s,O(s),O(s),O(s),O(s))|ds

)
≤ Aσ,ηt(1− t)σ−1

×
(∫ 1

0
b(s)Λ(x0(s), w′0(s),cDβw0(s), φ(w0(s)))ds+m2

)
≤ Aσ,ηt(1− t)σ−1

(
Λ(‖w0‖, ‖w′0‖, ‖cDβw0‖, ‖φ(w0(s))‖)

×
∫ 1

0
b(s)ds+m2

)
≤ Aσ,ηt(1− t)σ−1

×
(

Λ(l1‖w0‖∗, l1‖w0‖∗, l1‖w0‖∗, l1‖w0‖∗)m1 +m2

)
,

conseqently

‖w0‖ = λ‖Fw0‖ ≤ Aσ,η

(
Λ(l1r0, l1r0, l1r0, l1r0)m1 +m2

)
< Aσ,η

r0

Aσ,η
= r0.
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Likewise, for all t ∈ [0, 1], it is infered that

|w′0(t)| = |λF ′w0(t)|

≤
∫ 1

0
|∂κ(t, s)

∂t
|
∣∣∣∣U(s, w0(s), w′0(s),cDβw0(s), φ(w0(s)))

∣∣∣∣ds
≤ Aσ,η(1− t)σ−1

(∫ 1

0

∣∣∣∣U(s, w0(s), w′0(s),cDβw0(s), φ(w0(s)))

−U(s,O(s),O(s),O(s),O(s))

∣∣∣∣ds
+

∫ 1

0
|U(s,O(s),O(s),O(s),O(s))|ds

)
≤ Aσ,η(1− t)σ−1

×
(∫ 1

0
b(s)Λ(w0(s), w′0(s),cDβw0(s), φ(w0(s)))ds+m2

)
≤ Aσ,η(1− t)α−1

(
Λ(‖w0‖, ‖w′0‖, ‖cDβw0‖, ‖φ(w0(s))‖)

×
∫ 1

0
b(s)ds+m2

)
≤ Aσ,η(1− t)σ−1

×
(

Λ(l1‖w0‖∗, l1‖w0‖∗, l1‖w0‖∗, l1‖w0‖∗)m1 +m2

)
,

so

‖w′0‖ = λ‖F ′w0‖ ≤ Aσ,η

(
Λ(l1r0, l1r0, l1r0, l1r0)m1 +m2

)
< Aσ,η

r0

Aσ,η
= r0.

Hence, r0 = ‖w0‖∗ = max{‖w0‖, ‖w′0‖} < r0 which is a contradiction.
Therefore, regarding to theorem (2.2), F : X → X has a fixed point
in X, so the pointwise defined fractional differential equation (1) has a
solution. �
The final result is illustrated by the following example.

Example 3.4. Let σ1, ..., σn ∈ (0, 1) such that Σn
i=1σi < 1, δ1, ..., δn ∈

[0, 1],

d(t) =
1

(t− δ1)σ1(t− δ2)σ2 ...(t− δn)σn
,
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c(t) =


0 t ∈ [0, 1] ∩Q

1 t ∈ (0, 1) ∩Qc.

b(t) = 1
c(t) and

U(t, w1, w2, w3, w4) = b(t)(Σ4
i=1

|wi|
1 + |wi|

) + d(t).

Consider the pointwise defined equation

cD
√

11w(t) + U(t, w(t), w′(t),cD
2
3w(t),

∫ t

0
w(s)ds) = 0 (3)

with boundary condition w(0) = w′′(0) = 0 and w(η)+
∫ 1

0 w(s)ds = 0, in
which η ∈ (0, 1) is fixed. Then, for all (w1, w2, w3, w4), (z1, z2, z3, z4) ∈
X4 and almost t ∈ [0, 1] we have∣∣∣∣U(t, w1, w2, w3, w4)− U(t, z1, z2, z3, z4)

∣∣∣∣
= b(t)

∣∣∣∣Σ4
i=1(

|wi|
1 + |wi|

− |zi|
1 + |zi|

)

∣∣∣∣ ≤ b(t)Σ4
i=1

|wi − zi|
1 + |wi − zi|

= b(t)Λ(w1 − z1, w2 − z2, w3 − z3, w4 − z4),

where

Λ(z1, z2, z3, z4) = Σ4
i=1

|zi|
1 + |zi|

.

Simply speaking, limz→0+
Λ(z,z,z,z)

z = 4 < ∞, limz→∞
Λ(z,z,z,z)

z = 0 and

b(t) ∈ L1[0, 1]. Note that if φ(w(t)) =
∫ t

0 w(s)ds, then

|φ(w(t))− φ(z(t))| ≤
∫ t

0
|w(s)− z(s)|ds ≤ ‖w − z‖t,

for all t ∈ [0, 1], so ‖φ(w)−φ(z)‖ ≤ ‖w−z‖. Therefore all the conditions
of Theorem (3.3) are held, so by therem (3.3), the pointwisedefined
equation (3) has a solution.
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Now, we want to consider two pointwise defined differential equaions

cDσw(t) + U(t, w(t), w′(t),cDβw(t), φ(w(t))) = 0 (4)

and

cDσz(t) + V(t, z(t), z′(t),cDγz(t), φ(z(t))) = 0, (5)

when σ ≥ 2, γ, β ∈ (0, 1), φ : X → X is a mapping such that for
all w1, w2 ∈ X, ‖φ(w1) − φ(w2)‖ ≤ a0‖w1 − w2‖ + a1‖w′1 − w′2‖, for
some a0, a1,∈ [0,∞) and U ,V : [0, 1] × X4 → R are two fuctions that
are singular at some set with measure zero, under boundary conditions
w(0) = z(0) = 0 for σ ∈ [2, 3) and

w(0) = w′′(0) = w(n0)(0) = z(0) = z′′(0) = z(n0)(0) = 0

where n0 = [σ] + 1 for σ ∈ [3,∞) and also w(η) +
∫ 1

0 w(s)ds = z(η) +∫ 1
0 z(s)ds = 0. We will show that under some conditions, these two

equations have the same solution.
For this, we define F ,S : X → X as

Fw(t) =

∫ 1

0
κ(t, s)U(s, w(s), w′(s),cDβw(s), φ(w(s)))ds

and

Sz(t) =

∫ 1

0
κ(t, s)V(s, z(s), z′(s),cDγz(s), φ(z(s)))ds

where κ(t, s) is the Green function that defined by lemma (3.1). We will
prove that F and S has a common fixed point, so two equations (4) and
(5) have a same solution.

Theorem 3.5. Let U ,V : [0, 1] × X4 → R are continuous on E ⊂ X
with m(Ec) = 0 and there exist b, θ ∈ L1[0, 1], nondecreasing mapping
Λ : X4 → R such that

lim
‖zi‖→0

|V(t, z1, z2, z3, z4)|
‖zi‖

≤ θ(t)

and |U(t, w1, w2, w3, xw4)| ≤ b(t)Λ(w1, w2, w3, w4) for all (w1, w2, w3, w4)
∈ X4, 1 ≤ i ≤ 4 and almost all t ∈ [0, 1]. Also let

lim
z→0+

Λ(z, z, z, z)

z
= q0,
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m1 :=
∫ 1

0 b(s)ds <
1

Aσ,η
and m2 :=

∫ 1
0 θ(s)ds <

1
l2Aσ,η

, where

l1 = max{1, 1
Γ(2−β) , a0+a1}, l2 = max{1, 1

Γ(2−γ) , a0+a1} and q0 ∈ [0, 1
l1

).

If for all (w1, w2, w3, w4), (z1, z2, z3, z4) ∈ X4 that
(w1, w2, w3, w4) 6= (z1, z2, z3, z4), almost all t ∈ [0, 1] and all 1 ≤ i ≤ 4

lim
(‖wi‖,‖zi‖)→(0+,0+)

U(t, w1, w2, w3, w4)− V(t, z1, z2, z3, z4)

max‖wi − zi‖
= 0,

then the pointwise defined equations (4) and (5) have a common solution.

Proof. Since

lim
z→0+

Λ(z, z, z, z)

z
= q0,

so for each ε > 0, there exists 0 < δ(ε) ≤ ε such that z ∈ (0, δ(ε)] implies
that

Λ(z, z, z, z)

z
< q0 + ε,

therefore
Λ(z, z, z, z) < (q0 + ε)z.

Let ε1 > 0 be such that q0 + ε1 <
1
l1

, then for all z ∈ (0, δ1 := δ(ε1)] it is
concluded that

Λ(z, z, z, z) < (q0 + ε1)z,

consequently

Λ(l1z, l1z, l1z, l1z) < (q0 + ε1)l1z < z,

for all z ∈ (0, δ1l1 ]. On the other hand for all w ∈ X and t ∈ [0, 1], we
have

|Fw(t)| ≤
∫ 1

0
|κ(t, s)|

∣∣∣∣U(s, w(s), w′(s),cDβw(s), φ(w(s)))

∣∣∣∣ds
≤
∫ 1

0
Aσ,ηt(1− t)σ−1b(s)Λ(w(s), w′(s),cDβw(s), φ(w(s)))ds

≤ Aσ,ηt(1− t)σ−1

∫ 1

0
b(s)Λ(‖w‖, ‖w′‖, ‖cDβw‖, ‖φ(w)‖)ds

≤ Aσ,ηt(1− t)σ−1Λ(‖w‖, ‖w′‖, ‖w′‖
Γ(2− β)

, a0‖w‖+ a1‖w′‖)
∫ 1

0
b(s)ds

≤ Aσ,ηt(1− t)σ−1Λ(l1‖w‖∗, l1‖w‖∗, l1‖w‖∗, l1‖w‖∗)m1.
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So, if ‖w‖∗ ∈ (0, δ1l1 ], then

|Fw(t)| ≤ Aσ,ηt(1− t)σ−1‖w‖∗m1 ≤ ‖w‖∗t(1− t)σ−1

thus, it is resulted that ‖Fw‖ ≤ ‖w‖∗. Also we have

|F ′w(t)| ≤
∫ 1

0
|∂κ(t, s)

∂t
||U(s, w(s), w′(s),cDβw(s), φ(w(s)))|ds

≤
∫ 1

0
Aσ,η(1− t)σ−1b(s)Λ(w(s), w′(s),cDβw(s), φ(w(s)))ds

≤ Aσ,η(1− t)σ−1

∫ 1

0
b(s)Λ(‖w‖, ‖w′‖, ‖cDβw‖, ‖φ(w)‖)ds

≤ Aσ,η(1− t)σ−1Λ(‖w‖, ‖w′‖, ‖w′‖
Γ(2− β)

, a0‖w‖+ a1‖w′‖)
∫ 1

0
b(s)ds

≤ Aσ,η(1− t)σ−1Λ(l1‖w‖∗, l1‖w‖∗, l1‖w‖∗, l1‖w‖∗)m1.

Therefore, if ‖w‖∗ ∈ (0, δ1l1 ], then

|F ′w(t)| ≤ Aσ,η(1− t)σ−1‖w‖∗m1 ≤ ‖w‖∗(1− t)σ−1,

so, we conclude that ‖F ′w‖ ≤ ‖w‖∗. Hence if ‖w‖∗ ∈ (0, δ1l1 ] then

‖Fw‖∗ = max{‖Fw‖, ‖F ′w‖} ≤ ‖w‖∗. (6)

By the assumptions, for all 1 ≤ i ≤ 4 and almost all t ∈ [0, 1],

lim
‖zi‖→0

|V(t, z1, z2, z3, z4)|
‖zi‖

≤ θ(t),

so, for each ε > 0 there exists δ(ε) > 0, such that ‖zi‖ ∈ (0, δ(ε)] implies

|V(t, z1, z2, z3, z4)| ≤ (θ(t) + ε)‖zi‖.

Thus, for ε > 0, there exists δ(ε) > 0 such that l2‖z‖ ∈ (0, δ(ε)], it
follows

|V(t, z, z′,cDγz, φ(z))| ≤ (θ(t) + ε) max{‖z‖, ‖z′‖, ‖cDγz‖, ‖φ(z)|‖}
≤ (θ(t) + ε)l2‖z‖∗.
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Since m2 <
1

l2Aσ,η
, there exists ε2 > 0 such that m2 + ε2 <

1
l2Aσ,η

. Put

δ2 := δ(ε2), so if ‖z‖ ∈ (0, δ2l2 ], then we have

|V(t, z, z′,cDγz, φ(z))| ≤ (θ(t) + ε2)l2‖z‖∗.

Thus, for z ∈ X in which ‖z‖ ∈ (0, δ2l2 ], we conclude that

|Sz(t)| ≤
∫ 1

0
|κ(t, s)||V(s, z(s), z′(s),cDγz(s), φ(z(s)))|ds

≤
∫ 1

0
Aσ,ηt(1− t)α−1(θ(s) + ε2)l2‖z‖∗ds

= t(1− t)σ−1Aσ,η(

∫ 1

0
θ(s)ds+ ε2)l2‖z‖∗

= t(1− t)σ−1Aσ,η(m2 + ε2)l2‖z‖∗
≤ t(1− t)σ−1‖z‖∗,

so ‖Sz‖ ≤ ‖z‖∗. Also for all t ∈ [0, 1] and z ∈ X in which ‖z‖ ∈ (0, δ2l2 ],
we have

|S ′z(t)| ≤
∫ 1

0
|∂κ(t, s)

∂t
||V(s, z(s), z′(s),cDγz(s), φ(z(s)))|ds

≤
∫ 1

0
Aσ,η(1− t)α−1(θ(s) + ε2)l2‖z‖∗ds

= (1− t)σ−1Aσ,η(

∫ 1

0
θ(s)ds+ ε2)l2‖z‖∗

= (1− t)σ−1Aσ,η(m2 + ε2)l2‖z‖∗
≤ (1− t)σ−1‖z‖∗,

so ‖S ′z‖ ≤ ‖z‖∗. Therefore,

‖Sz‖∗ = max{‖Sz‖, ‖S ′z‖} ≤ ‖z‖∗. (7)

Likewise, through the given assumptions for almost all t ∈ [0, 1], we have

lim
(‖wi‖,‖zi‖)→(0+,0+)

U(t, w1, w2, w3, w4)− V(t, z1, z2, z3, z4)

max‖wi − zi‖
= 0.
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Put ‖wk − zk‖ := max1≤j≤4‖wi − zi‖ for some 1 ≤ k ≤ 4, then for each
ε > 0 there exists δ(ε) > 0 such that ‖wi‖, ‖zi‖ ∈ (0, δ] implies

|U(t, w1, w2, w3, w4)− V(t, z1, z2, z3, z4)| < ε‖wk − zk‖.

Let 0 < ε3 <
1

Aσ,η
and δ3 := δ(ε3), then if ‖w‖, ‖z‖ ∈ (0, δ3l3 ], we have

|U(t, w,w′,cDβw, φ(w))− V(t, z, z′,cDγz, φ(z))|
< ε3 max{‖w − z‖, ‖w′ − z′‖, ‖cDβw −c Dγz‖, ‖φ(w)− φ(z)‖}
≤ ε3l3‖w − z‖∗,

where l3 = max{l1, l2, | 1
Γ(2−β)−

1
Γ(2−γ) |} = max{l1, l2}. So if ‖w‖, ‖z‖ ∈

(0, δ3], then

|U(t, w,w′,cDβw, φ(w))− V(t, z, z′,cDγz, φ(z))| ≤ ε3‖w − z‖∗. (8)

Now, let δM = min{ δ1l1 ,
δ2
l2
, δ3}, define α : X2 → [0,∞) as

α(x, y) =


1 ‖w‖∗, ‖z‖∗ ∈ (0, δM ]

0 other wise

and ψ : R → R as ψ(t) = ε3Aσ,ηt. So, ψ ∈ Ψ is obviuos. If α(w, z) ≥ 1
then ‖w‖∗, ‖z‖∗ ∈ (0, δM ], so by (7), ‖Sw‖∗ ≤ ‖x‖∗ ≤ δM . Likewise,
via (6), ‖Fy‖∗ ≤ ‖y‖∗ ≤ δM , so α(Sw,Fz) ≥ 1. If w ∈ X be such
that ‖w‖∗ ≤ δM , then ‖Sw‖∗ ≤ δM , so it is concluded that there exists
w0 ∈ X such that α(w0,Sw0) ≥ 1. To check the continuity F , let
E ⊂ [0, 1] be a set which U(t, ., ., ., .) is not continuous on that, then
m(E) = 0 where m is the Lebesgue measure in R, and let wn → w as



22 A. MALEKPOUR AND M. SHABIBI

n→∞. So for all t ∈ [0, 1] we have

lim
n→∞

Fwn(t) = lim
n→∞

∫ 1

0
κ(t, s)U(s, wn(s), w′n(s),cDβwn(s), φ(wn(s)))ds

= lim
n→∞

∫
Ec
κ(t, s)U(s, wn(s), w′n(s),cDβwn(s), φ(wn(s)))ds

+ lim
n→∞

∫
E
κ(t, s)U(s, wn(s), w′n(s),cDβwn(s), φ(wn(s)))ds

=

∫
Ec
κ(t, s)U(s, w(s), w′(s),cDβw(s), φ(w(s)))ds

=

∫ 1

0
κ(t, s)U(s, w(s), w′(s),cDβw(s), φ(w(s)))ds

= Fw(t).

Similarly, limn→∞F ′wn(t) = F ′w(t) is obtained for all t ∈ [0, 1], so it
is concluded that F is a continuous mapping in (X, ‖.‖∗). On the other
hand, for all t ∈ [0, 1] we deduce that

|Fw(t)− Sz(t)| ≤
∫ 1

0
|κ(t, s)|

∣∣∣∣U(s, w(s), w′(s),cDβw(s), φ(w(s)))

−V(s, z(s), z′(s),cDβz(s), φ(z(s)))

∣∣∣∣ds
≤ Aσ,ηt(1− t)σ−1

∫ 1

0

∣∣∣∣U(s, w(s), w′(s),cDβw(s), φ(w(s)))

−V(s, z(s), z′(s),cDβz(s), φ(z(s)))

∣∣∣∣ds.
Therefore, when ‖w‖∗, ‖z‖∗ ∈ (0, δM ], by (8), it implies that

|Fw(t)− Sz(t)| ≤ Aσ,ηt(1− t)σ−1ε3‖w − z‖∗,

consequently

‖Fw − Sz‖ ≤ Aσ,ηε3‖x− y‖∗ = ψ(‖w − z‖∗).

In a similar manner, we have

‖F ′w − S ′z‖ ≤ Aσ,ηε3‖w − z‖∗ = ψ(‖w − z‖∗),
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hence

‖Fw − Sz‖∗ = max{‖F ′w − S ′z‖, ‖Fw − Sz‖} ≤ ψ(‖w − z‖∗).

Therefore, regarding Lemma (2.3), both equations (4) and (5) have a
common solution. �

Example 3.6. Consider the following pointwise defined equations

cD
5
2w(t) +

0.5

p(t)
(‖w(t)‖2 + ‖w′(t)‖2 + ‖cD

1
2w(t)‖2 + ‖

∫ t

0
w(s)ds‖2) = 0

and

cD
5
2 z(t) +

0.3√
t
(‖z(t)‖+ ‖z′(t)‖+ ‖cD

1
3 z(t)‖+ ‖

∫ t

0
z(s)ds‖) = 0

with boundary conditions w(0) = z(0) = 0 and w(1
2) +

∫ 1
0 w(s)ds =

z(1
2) +

∫ 1
0 z(s)ds = 0, where

p(t) =


1 t ∈ [0, 1]|{δ1, ..., δk}

0 t ∈ {δ1, ..., δk}.

Put Λ(w1, w2, w3, w4) = Σ4
i=1‖wi‖2, φ(w(t)) =

∫ t
0 w(s)ds, b(t) = 0.5

p(t) ,

U(t, w1, w2, w3, w4) = Λ(w1, w2, w3, w4),

θ(t) = 0.3√
t

and

V(t, z1, z2, z3, z4) = θ(t)Σ4
i=1‖zi‖,

then ‖φ(w)− φ(z)‖ ≤ ‖w − z‖, l1 = max{1, 1
Γ(2− 1

2
)
} = 2√

π
,

l2 = max{1, 1
Γ(2− 1

3
)
} = 1

Γ( 5
3

)
, q0 = limz→0+

Λ(z,z,z,z)
z = 0 < 1

l1
,

Aσ,η =
2(1 + 5

2)

(1 + 1)Γ(5
2 + 1)

=
28

15
√
π
,
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b, θ ∈ L1[0, 1], m1 =
∫ 1

0 b(s)ds = 0.5 < 1
Aσ,η

, m2 =
∫ 1

0 θ(s)ds = 0.6 <
1

l2Aσ,η
and for all (w1, w2, w3, w4), (z1, z2, z3, z4) ∈ X4 that (w1, w2, w3, w4) 6=

(z1, z2, z3, z4), almost all t ∈ [0, 1] and all 1 ≤ i ≤ 4

lim
(‖wi‖,‖zi‖)→(0+,0+)

|U(t, w1, w2, w3, w4)− V(t, z1, z2, z3, z4)|
max‖wi − zi‖

≤ |b(t)− θ(t)| lim
(‖wi‖,‖zi‖)→(0+,0+)

Σ4
i=1|‖wi‖2 − ‖zi‖|
max‖xi − zi‖

≤ |b(t)− θ(t)| lim
(‖xi‖,‖zi‖)→(0+,0+)

Σ4
i=1|‖wi‖2 − ‖wi‖‖zi‖|

max‖wi − zi‖

= |b(t)− θ(t)| lim
(‖wi‖,‖zi‖)→(0+,0+)

Σ4
i=1|‖wi‖(‖wi‖ − ‖zi‖)|

max‖xi − yi‖

≤ |b(t)− θ(t)| lim
(‖wi‖,‖zi‖)→(0+,0+)

Σ4
i=1‖wi‖‖wi − zi‖
max‖wi − zi‖

≤ |b(t)− θ(t)| lim
‖wi‖→0+

Σ4
i=1‖wi‖ = 0.

Hence, based on Theorem (3.5) there is a common solution for both
mentioned equations.

Corollary 3.7. Let U : [0, 1] × X4 → R be continuous on set E ∈ X
with m(Ec) = 0, there exists b ∈ L1[0, 1] and nondecreasing mapping
Λ : X4 → R such that |U(t, w1, w2, w3, w4)| ≤ b(t)Λ(w1, w2, w3, w4) for
all (w1, w2, w3, w4) ∈ X4 and almost all t ∈ [0, 1], also let

lim
z→0+

Λ(z, z, z, z)

z
= q0,

m1 :=
∫ 1

0 b(s)ds <
1

Aσ,η
, where l1 = max{1, 1

Γ(2−β) , a0 + a1} and q0 ∈
[0, 1

l1
). Then, the pointwise defined equation (4) has a solution.

Proof. In theorem (3.5), let for all t ∈ [0, 1] and (w1, w2, w3, w4) ∈ X4,

V(t, w1, w2, w3, w4) = U(t, w1, w2, w3, w4).

Indicating all conditions of Theorem (3.5) is feasible. Therefore, the
pointwise defined equation (4) has a solution.

�
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4 Conclusion

Investigating of a solution for fractional differential equations has a spe-
cific importance, among which the singular ones have a significant role.
In this paper, we consider a solution for a singular differential equation,
then allocate some conditions to prove the existence of a common solu-
tion for two singular differential equations. Used new methods in this
article, can help to examine other fractional differential equations.
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