Journal of Mathematical Extension Vol. 15, SI-NTFCA, (2021) (4)1-28 URL: https://doi.org/10.30495/JME.SI.2021.1927 ISSN: 1735-8299 Original Research Paper

Investigation of a Common Solution for a Multi-Singular Fractional System by Using Control Functions Method

A. Malekpour

South Tehran Branch, Islamic Azad University

M. Shabibi^{*}

Meharn Branch, Islamic Azad University

Abstract. In this article, first of all, we investigate a pointwise defined multi-singular fractional differential equation. Using control functions method, existence a solution for the problem, will be proved. In the following, we determine some conditions to prove the existence of a common solution for two multi-singular fractional differential equations with integral boundary conditions. To this purpose, we use inequalities, control functions and fixed point method. Finally, an example will illustrate our main results.

AMS Subject Classification: 34A08; 37C25; 46F30 **Keywords:** Control functions, Fractional differential equation, Pointwise defined equation, Multi-singular, The Caputo derivative

1 Introduction

Besides the fact that fractional calculus had been dated back to the last three centuries, it is of high significance among the recent researchers

Received: February 2021; Published: July 2021

^{*}Corresponding Author

and academians (see, for instance, [1]- [7]), that sometimes are singular at some points (see [8]- [13]). Sometimes, considering a mathematical model of a sceintific phenomena, leads to a fractional differential equation, therefore many application in fractional calculus can be seen (see [14]- [20]).

In [21], the authors investigated the fractional equation ${}^{c}\mathcal{D}^{\sigma}\nu(t)+y(t,\nu(t)) = 0$ with initial conditions $\nu(0) = \nu''(0) = 0$ and $\nu(1) = \tau \int_{0}^{1} \nu(s) ds$, where $0 < t < 1, 2 < \sigma < 3, 0 < \tau < 2, {}^{c}\mathcal{D}^{\sigma}$ is the Caputo fractional derivative and $y : [0,1] \times [0,\infty) \to [0,\infty)$ is a continuous function.

In 2013, the fractional problem ${}^{c}\mathcal{D}^{r}\nu(\xi) + y(t,\nu(\xi)) = 0$ with boundary conditions $\nu'(0) = \nu''(0) = \cdots = \nu^{(k_0-1)}(0) = 0$ and $\nu(1) = \int_{0}^{1} \nu(s)d\gamma(s)$ was investigated, where $0 < \xi < 1$, $n \ge 2$, $r \in (k_0 - 1, k_0)$, $\gamma(s)$ is a function of bounded variation, y may have singularity at $\xi = 1$ and $\int_{0}^{1} d\gamma(s) < 1$ ([22]).

In 2015, the fractional problem ${}^{c}\mathcal{D}^{\rho}y(t) = \psi(t, y(t), {}^{c}\mathcal{D}^{\sigma}y(t))$ with boundary conditions y(0) + y'(0) = g(x), $\int_{0}^{1} y(t)dt = m_{0}$ and $y''(0) = y^{(3)}(0) = \cdots = y^{(n_{\rho}-1)}(0) = 0$ was studied where, 0 < t < 1, m_{0} is a real number, $n_{\rho} \geq 2, \ \rho \in (n_{\rho} - 1, n_{\rho}), \ 0 < \sigma < 1, \ {}^{c}\mathcal{D}^{\rho}$ and ${}^{c}\mathcal{D}^{\sigma}$ is the Caputo fractional derivatives, $g \in C([0, 1], \mathbb{R}) \to \mathbb{R}$ and $\psi : (0, 1] \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is continuous with $\psi(t, u, v)$ that may be singular at t = 0 ([23]).

In 2018, the existence of a solution for the following three steps crisis problem was investigated:

$${}^{c}\mathcal{D}^{\eta}z(t) + \psi(t,z(t),z'(t),{}^{c}\mathcal{D}^{\sigma}z(t),\int_{0}^{t}\Omega(\xi)z(\xi)d\xi,\omega(x(t))) = 0$$

with boundary conditions $z(1) = z(0) = z''(0) = z^{n_{\eta}}(0) = 0$, where $\eta \geq 2, \ \lambda, \mu, \sigma \in (0, 1), \ \Omega \in L^1[0, 1], \ \omega : C^1[0, 1] \rightarrow C^1[0, 1]$ is a mapping such that $\|\omega(x_1) - \omega(x_2)\| \leq \iota_0 \|x_1 - x_2\| + \iota_1 \|x'_1 - x'_2\|$ for some non-negative real numbers ι_0 and $\iota_1 \in [0, \infty)$ and all $x_1, x_2 \in C^1[0, 1], \ ^c \mathcal{D}^{\eta}$ is the η -order Caputo fractional derivative, $\psi(t, z_1(t), ..., z_5(t)) = \psi_1(t, z_1(t), ..., z_5(t))$ for all $t \in [0, \lambda), \ \psi(t, z_1(t), ..., z_5(t)) = \psi_2(t, z_1(t), ..., z_5(t))$ for all $t \in [\lambda, \mu]$ and $\psi(t, z_1(t), ..., z_5(t)) = \psi_3(t, z_1(t), ..., z_5(t))$ for all $t \in (\mu, 1], \ \psi_1(t, ..., ..., ..)$ and $\psi_3(t, ..., ..., ..)$ are continuous on $[0, \lambda)$ and $(\mu, 1]$ and $\psi_2(t, ..., ..., ..)$ is multi-singular ([24]).

In 2019, the existence and uniqueness of solutions were discussed for the following class of boundary value problem of nonlinear fractional differ-

ential equations depending with non-separated type integral boundary conditions

$${}^{c}\mathcal{D}^{q}z(t) = \Psi(t, z(t), {}^{c}\mathcal{D}^{r}z(t))$$

with the conditions $z(0) - \iota_1 z(\tau) = \kappa_1 \int_0^{\tau} U(s, z(s)) ds$ and $z'(0) - \iota_2 z'(\tau) = \kappa_2 \int_0^{\tau} V(s, z(s)) ds$, where $t \in [0, \tau], t > 0, 1 < q \leq 2$, $0 < r \leq 1, \ {}^c \mathcal{D}^q$ is the q-th order of the Caputo fractional derivative, $\Psi \in C([0, \tau] \times \mathbb{R} \times \mathbb{R}, \mathbb{R}), U, V : [0, \tau] \times \mathbb{R} \to \mathbb{R}$ are given continuous functions and $\iota_1, \iota_2, \kappa_1, \kappa_2 \in \mathbb{R}$ with $\iota_1 \neq 1$ and $\iota_2 \neq 1$ ([25]).

In 2020, the existence of solutions were examined for the following nonlinear differential pointwise defined system:

$$\begin{cases} {}^{c}\mathcal{D}^{\alpha_{1}}\nu_{1}(t) = h_{1}(t,\nu_{1}(t),\nu_{1}'(t), {}^{c}\mathcal{D}^{\beta_{1}}\nu_{1}(t), I^{p_{1}}\nu_{1}(t), \\ \dots,\nu_{m}(t),\nu_{m}'(t), {}^{c}\mathcal{D}^{\beta_{m}}\nu_{m}(t), I^{p_{m}}\nu_{m}(t)), \\ \vdots & & , & , & t \in [0,1] \\ \vdots & & \\ {}^{c}\mathcal{D}^{\alpha_{m}}\nu_{m}(t) = h_{m}(t,\nu_{1}(t),\nu_{1}'(t), {}^{c}\mathcal{D}^{\beta_{1}}\nu_{1}(t), I^{p_{1}}\nu_{1}(t), \\ \dots,\nu_{m}(t),\nu_{m}'(t), {}^{c}\mathcal{D}^{\beta_{m}}\nu_{m}(t), I^{p_{m}}\nu_{m}(t)), \end{cases}$$

with boundary value conditions $\nu_k^{(j)}(0) = 0$ for $2 \leq j \leq n_k - 1$ and $k = 1, \ldots, m$,

$$\nu_k(\theta_k) = \sum_{i=1}^{n_0} \lambda_{i,k}^{\ c} \mathcal{D}^{\mu_{i,k}} \nu_k(\gamma_{i,k})$$

and $\nu'_k(0) = \nu_k(\eta_k)$ for all k = 1, 2, ..., m, where $\lambda_{i,k} \ge 0, \beta_k, \gamma_{i,k}, \mu_{i,k}, \theta_k, \eta_k \in (0, 1), p_k > 0, m, n_0 \in \mathbb{N}, k = 1, 2, ..., m, i = 1, 2, ..., n_0, {}^{c}\mathcal{D}^{\alpha_k}$ is the Caputo fractional derivative of order $\alpha_k \ge 2, n_k = [\alpha_k] + 1$, and $h_k : [0, 1] \times X^{4m} \to \mathbb{R}$, is singular at some points [0, 1], where $X = C^1[0, 1]$ ([26]).

Regarding the main ideas of above papers, we investigate the noncontrolled multi-singular fractional differential pointwisly defined equation

$${}^{c}\mathcal{D}^{\sigma}w(t) + \mathcal{U}(t, w(t), w'(t), {}^{c}\mathcal{D}^{\beta}w(t), \phi(w(t))) = 0$$
(1)

with boundary conditions w(0) = 0 for $\sigma \in [2,3)$ and $w(0) = w''(0) = w^{(n_0)}(0) = 0$ where $n_0 = [\sigma] - 1$ for $\sigma \in [3,\infty)$ and also $w(\eta) + w^{(n_0)}(0) = 0$

 $\int_0^1 w(s)ds = 0 \text{ where } \sigma \geq 2, \ \eta, \beta \in (0,1), \ \phi: X \to X \text{ is a mapping such that for all } w_1, w_2 \in X, \ \|\phi(w_1) - \phi(w_2)\| \leq a_0 \|w_1 - w_2\| + a_1 \|w_1' - w_2'\| \text{ for some } a_0, a_1 \in [0, \infty), \ ^c \mathcal{D}^{\sigma} \text{ is the Caputo fractional derivative of order } \sigma \text{ and } \mathcal{U}: [0,1] \times \mathbb{R}^4 \to \mathbb{R} \text{ is a function such that } \mathcal{U}(t,..,.,.) \text{ is singular at some points } t \in [0,1]. \text{ In fact, } \mathcal{U} \text{ is stated to be multi-sigular when it is singular at more than one point } t \text{ (see Example 2.1 and 2.2). Likewise, } \ ^c \mathcal{D}^{\alpha} w(t) + \mathcal{U}(t) = 0 \text{ is pointwise defined equation on } [0,1] \text{ if there is the set } E \subset [0,1] \text{ such that its measure of complement } E^c \text{ is zero and equation on } E \text{ is being hold. It's obvious that every equation is a pointwisely defined equation. In this paper, we use } \|.\|_1 \text{ as the norm of } L^1[0,1], \|.\| \text{ as the sup norm } Y = C[0,1] \text{ and } \|w\|_* = \max\{\|w\|, \|w'\|\} \text{ as the norm of } X = C^1[0,1].$

2 Preliminaries

In this section, we introduce some notations and basic facts which are used throughout the paper. The Riemann-Liouville integral of order rwith the lower limit $\mathfrak{b} \geq 0$ for a function $y : (\mathfrak{b}, \infty) \to \mathbb{R}$ is defined by $\mathcal{I}_{\mathfrak{b}^+}^r y(t) = \frac{1}{\Gamma(r)} \int_{\mathfrak{b}}^t (t-s)^{r-1} y(s) ds$ provided that the right-hand side is pointwise defined on (\mathfrak{b}, ∞) . we denote $\mathcal{I}^r y(t)$ for $\mathcal{I}_{0^+}^r y(t)$. Also, The Caputo fractional derivative of order r > 0 of an absolutely continuous function $y : (0, \infty) \to \mathbb{R}$ is defined by ${}^c \mathcal{D}^r y(t) = \frac{1}{\Gamma(n-r)} \int_0^t \frac{y^n(s)}{(t-s)^{r+1-n}} ds$, where n = [r] + 1 ([27]).

Let Ψ be the family of nondecreasing functions $\psi : [0, \infty) \to [0, \infty)$ such that $\sum_{n=1}^{\infty} \psi^n(t) < \infty$ for all t > 0 ([28]). One can check that $\psi(t) < t$ for all t > 0 ([28]). Let $\mathcal{T} : X \to X$ and $\alpha : X \times X \to [0, \infty)$ be two maps. Then \mathcal{T} is called an α -admissible map whenever $\alpha(x, y) \ge 1$ implies $\alpha(\mathcal{T}x, \mathcal{T}y) \ge 1$ ([29]). Let (X, d) be a complete metric space, $\psi \in \Psi$ and $\alpha : X \times X \to [0, \infty)$ a map. A self-map $\mathcal{T} : X \to X$ is called an α - ψ -contraction whenever $\alpha(x, y)d(\mathcal{T}x, \mathcal{T}y) \le \psi(d(x, y))$ for all $x, y \in X$ ([29]). We need the following results.

Lemma 2.1. ([30]) Assume that $0 < n - 1 \le r < n$ and $v \in C[0,1] \cap L^1[0,1]$. Then $\mathcal{I}^{rc}\mathcal{D}^r v(\xi) = v(\xi) + \sum_{i=0}^{n-1} \iota_i \xi^i$ for some constants $\iota_0, \ldots, \iota_{n-1} \in \mathbb{R}$.

Lemma 2.2. ([31])Let X is a Banach space and $C \subseteq X$ is closed and convex. Suppose that Ξ be a relatively open subset of C with $0 \in \Xi$ and let $\mathcal{T} : \Xi \to C$ be a continuous and compact mapping. Then either i) the mapping \mathcal{T} has a fixed point in $\overline{\Xi}$, or ii) there exists $w_0 \in \partial \Xi$ and $\gamma \in (0, 1)$ with $w_0 = \gamma \mathcal{T} w_0$.

Lemma 2.3. ([32]) Let (X, d) be a complete metric space, $\psi \in \Psi$, $\alpha : X \times X \to [0, \infty)$ is a map and $S, \mathcal{T} : X \to X$ are mappings satisfying the following conditions i) for $x, y \in X$, $\alpha(x, y) \ge 1$ implies $\alpha(Sx, \mathcal{T}y) \ge 1$ or $\alpha(\mathcal{T}x, Sy) \ge 1$, ii) there exists $x_0 \in X$ such that $\alpha(x_0, Sx_0) \ge 1$, iii) S and \mathcal{T} are continuous iv) for all $x, y \in X$, $\alpha(x, y)d(Sx, \mathcal{T}y) \le \psi(d(x, y))$ and $\alpha(y, x)d(Sx, \mathcal{T}y) \le \psi(d(x, y))$. Then \mathcal{T} and S have a common fixed point.

3 Main Results

In this section, we declare existence condititions for the problem (6). First of all, we change the differential equation to a integral one, then we prove the existence of a solution for the problem (6).

Lemma 3.1. Let $\sigma \geq 2$, $\eta \in (0,1)$ and $\mathcal{U} \in L^1[0,1]$. Then $w(t) = \int_0^1 \kappa(t,s)\mathcal{U}(s)ds$ is a solution for the pointwise defined problem ${}^c\mathcal{D}^{\sigma}w(t) + \mathcal{U}(t) = 0$ with boundary value conditions w(0) = 0 for $\sigma \in [2,3)$ and $w(0) = w''(0) = w^{(n_0)}(0) = 0$ where $n_0 = [\sigma] - 1$ for $\sigma \in [3,\infty)$ and also $w(\eta) + \int_0^1 w(s)ds = 0$ for all $\sigma \in [2,\infty)$, where

$$\left(\begin{array}{c} \frac{-(t-s)^{\sigma-1}}{\Gamma(\sigma)} + \frac{2t(1-s)^{\sigma}}{(2\eta+1)\Gamma(\sigma+1)} + \frac{2t(\eta-s)^{\sigma-1}}{(2\eta+1)\Gamma(\sigma)} & 0 \le s \le t \le 1, \ s \le \eta \end{array} \right)$$

$$\kappa(t,s) = \begin{cases} \frac{-(t-s)^{\sigma-1}}{\Gamma(\sigma)} + \frac{2t(1-s)^{\sigma}}{(2\eta+1)\Gamma(\sigma+1)} & 0 \le \eta \le s \le t \le 1 \end{cases}$$

$$\frac{2t(1-s)^{\sigma}}{(2\eta+1)\Gamma(\sigma+1)} \qquad \qquad 0 \le t \le s \le 1, \ \eta \le s$$

$$\left(\begin{array}{c} \frac{2t(1-s)^{\sigma}}{(2\eta+1)\Gamma(\sigma+1)} + \frac{2t(\eta-s)^{\sigma-1}}{(2\eta+1)\Gamma(\sigma)} & 0 \le t \le s \le \eta \le 1\end{array}\right)$$

Proof. Let for all $t \in E \subset [0,1]$ the equation ${}^{c}\mathcal{D}^{\sigma}w(t) + \mathcal{U}(t) = 0$ is held, where $m(E^{c}) = 0$ and m is the Lebesgue measure on \mathbb{R} . Also let $\mathcal{U}_{0} \in L^{1}[0,1] \cap C[0,1]$ be a function such that $\mathcal{U}_{0} = \mathcal{U}$ on E. Note that if this problem has a solution then \mathcal{U}_{0} exists, because if $w_{0} \in C[0,1]$ is a solution for the pointwise defined problem, it is enough to consider $\mathcal{U}_{0}(t) = -{}^{c}\mathcal{D}^{\sigma}w_{0}(t)$ for all $t \in [0,1]$, so we have $\mathcal{U}_{0} \in L^{1}[0,1] \cap C[0,1]$ and $\mathcal{U}_{0} = \mathcal{U}|_{E}$. Hence if $t \in E$, we have

$$\begin{split} \mathcal{I}^{\sigma}(\mathcal{U}(t)) &= \frac{1}{\Gamma(\sigma)} \int_{0}^{t} (t-s)^{\sigma-1} \mathcal{U}(s) ds \\ &= \frac{1}{\Gamma(\sigma)} (\int_{[0,t]\cap E} (t-s)^{\sigma-1} \mathcal{U}(s) ds + \int_{[0,t]\cap E^{c}} (t-s)^{\sigma-1} \mathcal{U}(s) ds) \\ &= \frac{1}{\Gamma(\sigma)} \int_{[0,t]\cap E} (t-s)^{\sigma-1} \mathcal{U}_{0}(s) ds \\ &= \frac{1}{\Gamma(\sigma)} (\int_{[0,t]\cap E} (t-s)^{\sigma-1} \mathcal{U}_{0}(s) ds + \int_{[0,t]\cap E^{c}} (t-s)^{\sigma-1} \mathcal{U}_{0}(s) ds) \\ &= \frac{1}{\Gamma(\sigma)} \int_{0}^{t} (t-s)^{\sigma-1} \mathcal{U}_{0}(s) ds = \mathcal{I}^{\sigma}(\mathcal{U}_{0}(t)). \end{split}$$

If $t \in E^c | \{0\}$, then there exists $\{t_n\} \subset E$ such that $t_n \to t^-$ as $n \to \infty$, so

$$\begin{aligned} \mathcal{I}^{\sigma}(\mathcal{U}(t)) &= \frac{1}{\Gamma(\sigma)} \int_{0}^{t} (t-s)^{\sigma-1} \mathcal{U}(s) ds \\ &= \lim_{n \to \infty} \frac{1}{\Gamma(\sigma)} \int_{0}^{t_{n}} (t_{n}-s)^{\sigma-1} \mathcal{U}(s) ds = \lim_{n \to \infty} \mathcal{I}^{\sigma}(\mathcal{U}(t_{n})) \\ &= \lim_{n \to \infty} \mathcal{I}^{\sigma}(\mathcal{U}_{0}(t_{n})) = \lim_{n \to \infty} \frac{1}{\Gamma(\sigma)} \int_{0}^{t_{n}} (t_{n}-s)^{\sigma-1} \mathcal{U}_{0}(s) ds \\ &= \frac{1}{\Gamma(\sigma)} \int_{0}^{t} (t-s)^{\sigma-1} \mathcal{U}_{0}(s) ds = \mathcal{I}^{\sigma}(\mathcal{U}_{0}(t)) \end{aligned}$$

and in the case $t = 0 \in E^c$, we have $\mathcal{I}^{\sigma}(\mathcal{U}(t)) = \mathcal{I}^{\sigma}(\mathcal{U}_0(t)) = 0$. So for all $t \in [0,1]$, $\mathcal{I}^{\sigma}(\mathcal{U}(t)) = \mathcal{I}^{\sigma}(\mathcal{U}_0(t))$. Therefore if ${}^{c}\mathcal{D}^{\sigma}w(t) + \mathcal{U}(t) = 0$ for all $t \in E$, then $\mathcal{I}^{\sigma}({}^{c}\mathcal{D}^{\sigma}w(t)) = \mathcal{I}^{\sigma}(-\mathcal{U}(t))$ for all $t \in [0,1]$, consequently $\mathcal{I}^{\sigma}({}^{c}\mathcal{D}^{\sigma}w(t)) = \mathcal{I}^{\sigma}(-\mathcal{U}_0(t))$ on [0,1]. Thus, regarding Lemma $\left(2.1\right)$ and the boundary conditions, we obtain

$$w(t) = -\frac{1}{\Gamma(\sigma)} \int_0^t (t-s)^{\sigma-1} \mathcal{U}(s) ds + \iota_1 t.$$

Putting $t = \eta$, we have

$$w(\eta) = -\frac{1}{\Gamma(\sigma)} \int_0^{\eta} (\eta - s)^{\sigma - 1} \mathcal{U}(s) ds + \iota_1 \eta.$$

On the other hand,

$$\begin{split} \int_{0}^{1} w(s) ds &= \int_{0}^{1} w(t) dt = -\frac{1}{\Gamma(\sigma)} \int_{0}^{1} \int_{0}^{t} (t-s)^{\sigma-1} \mathcal{U}(s) ds dt + \frac{\iota_{1}}{2} \\ &= -\frac{1}{\Gamma(\sigma)} \int_{0}^{1} \int_{s}^{1} (t-s)^{\sigma-1} dt \mathcal{U}(s) ds + \frac{\iota_{1}}{2} \\ &= -\frac{1}{\Gamma(\sigma)} \int_{0}^{1} (\frac{1}{\sigma} (t-s)^{\sigma}|_{s}^{1}) \mathcal{U}(s) ds + \frac{\iota_{1}}{2} \\ &= -\frac{1}{\Gamma(\sigma+1)} \int_{0}^{1} (1-s)^{\sigma} \mathcal{U}(s) ds + \frac{\iota_{1}}{2}. \end{split}$$

By hypothesis $w(\eta) = -\int_0^1 w(s)ds$, so we have

$$-\frac{1}{\Gamma(\sigma)}\int_0^{\eta} (\eta-s)^{\sigma-1}\mathcal{U}(s)ds + \iota_1\eta = \frac{1}{\Gamma(\sigma+1)}\int_0^1 (1-s)^{\sigma}\mathcal{U}(s)ds - \frac{\iota_1}{2},$$

hence,

$$\iota_1(\eta + \frac{1}{2}) = \frac{1}{\Gamma(\sigma+1)} \int_0^1 (1-s)^{\sigma} \mathcal{U}(s) ds + \frac{1}{\Gamma(\sigma)} \int_0^{\eta} (\eta-s)^{\sigma-1} \mathcal{U}(s) ds.$$

Therefore,

$$\iota_1 = \frac{2}{(2\eta+1)} \left(\frac{1}{\Gamma(\sigma+1)} \int_0^1 (1-s)^{\sigma} \mathcal{U}(s) ds + \frac{1}{\Gamma(\sigma)} \int_0^{\eta} (\eta-s)^{\sigma-1} \mathcal{U}(s) ds\right).$$

So we obtain the following equations

$$\begin{split} w(t) &= -\frac{1}{\Gamma(\sigma)} \int_0^t (t-s)^{\sigma-1} \mathcal{U}(s) ds \\ &+ \frac{2t}{2\eta+1} (\frac{1}{\Gamma(\sigma+1)} \int_0^1 (1-s)^{\sigma} \mathcal{U}(s) ds + \frac{1}{\Gamma(\sigma)} \int_0^{\eta} (\eta-s)^{\sigma-1} \mathcal{U}(s) ds) \\ &= -\frac{1}{\Gamma(\sigma)} \int_0^t (t-s)^{\sigma-1} \mathcal{U}(s) ds + \frac{2t}{(2\eta+1)\Gamma(\sigma+1)} \int_0^1 (1-s)^{\sigma} \mathcal{U}(s) ds \\ &+ \frac{2t}{(2\eta+1)\Gamma(\sigma)} \int_0^{\eta} (\eta-s)^{\sigma-1} \mathcal{U}(s) ds. \end{split}$$

If $\eta \geq t$, then

$$\begin{split} w(t) &= - \frac{1}{\Gamma(\sigma)} \int_0^t (t-s)^{\sigma-1} \mathcal{U}(s) ds \\ &+ \frac{2t}{(2\eta+1)\Gamma(\sigma+1)} (\int_0^t + \int_t^\eta + \int_\eta^1) (1-s)^{\sigma} \mathcal{U}(s) ds \\ &+ \frac{2t}{(2\eta+1)\Gamma(\sigma)} (\int_0^t + \int_t^\eta) (\eta-s)^{\sigma-1} \mathcal{U}(s) ds. \end{split}$$

If $\eta \leq t$ then

$$\begin{split} w(t) &= - \frac{1}{\Gamma(\sigma)} \left(\int_0^{\eta} + \int_{\eta}^t \right) (t-s)^{\sigma-1} \mathcal{U}(s) ds \\ &+ \frac{2t}{(2\eta+1)\Gamma(\sigma+1)} \left(\int_0^{\eta} + \int_{\eta}^t + \int_t^1 \right) (1-s)^{\sigma} \mathcal{U}(s) ds \\ &+ \frac{2t}{(2\eta+1)\Gamma(\sigma)} \int_0^{\eta} (\eta-s)^{\sigma-1} \mathcal{U}(s) ds. \end{split}$$

So $w(t) = \int_0^1 \kappa(t,s) \mathcal{U}(s) ds$ can be written, where

$$\kappa(t,s) = \begin{cases} \frac{-(t-s)^{\sigma-1}}{\Gamma(\sigma)} + \frac{2t(1-s)^{\sigma}}{(2\eta+1)\Gamma(\sigma+1)} + \frac{2t(\eta-s)^{\sigma-1}}{(2\eta+1)\Gamma(\sigma)} & 0 \le s \le t \le 1, \ s \le \eta \\\\ \frac{-(t-s)^{\sigma-1}}{\Gamma(\sigma)} + \frac{2t(1-s)^{\sigma}}{(2\eta+1)\Gamma(\sigma+1)} & 0 \le \eta \le s \le t \le 1 \\\\ \frac{2t(1-s)^{\sigma}}{(2\eta+1)\Gamma(\sigma+1)} & 0 \le t \le s \le 1, \ \eta \le s \\\\ \frac{2t(1-s)^{\sigma}}{(2\eta+1)\Gamma(\sigma+1)} + \frac{2t(\eta-s)^{\sigma-1}}{(2\eta+1)\Gamma(\sigma)} & 0 \le t \le s \le \eta \le 1. \end{cases}$$

Lemma 3.2. Let $\kappa(t,s)$ be given in Lemma (3.1). Then for all $t, s \in [0,1]$, $\kappa(t,s)$ has the following properties i) $|\kappa(t,s)| \leq A_{\sigma,\eta}t(1-t)^{\sigma-1}$, ii) $|\frac{\partial\kappa(t,s)}{\partial t}| \leq A_{\sigma,\eta}(1-t)^{\alpha-1}$, where $A_{\sigma,\eta} = \frac{2(1+\sigma)}{(2\eta+1)\Gamma(\sigma+1)}$.

Proof. i) For all $t, s \in [0, 1]$ we have

$$\begin{aligned} |\kappa(t,s)| &\leq \frac{2t(1-s)^{\sigma}}{(2\eta+1)\Gamma(\sigma+1)} + \frac{2t(\eta-s)^{\sigma-1}}{(2\eta+1)\Gamma(\sigma)} \\ &= \frac{2t(1-s)^{\sigma}+2t\sigma(\eta-s)^{\sigma-1}}{(2\eta+1)\Gamma(\sigma+1)} \leq \frac{2t(1-s)^{\sigma}+2t\sigma(1-s)^{\sigma-1}}{(2\eta+1)\Gamma(\sigma+1)} \\ &= \frac{2t(1-s)^{\sigma-1}(1-s+\sigma)}{(2\eta+1)\Gamma(\sigma+1)} \leq \frac{2t(1-t)^{\sigma-1}(1+\sigma)}{(2\eta+1)\Gamma(\sigma+1)} \\ &= A_{\sigma,\eta}t(1-t)^{\sigma-1}. \end{aligned}$$

ii) By differentiating from the $\kappa(t, s)$ with respect to t, it is deduced that

$$\frac{\partial \kappa}{\partial t}(t,s) = \frac{-(\sigma-1)(t-s)^{\sigma-2}}{\Gamma(\sigma)} + \frac{2(1-s)^{\sigma}}{(2\eta+1)\Gamma(\sigma+1)} + \frac{2(\eta-s)^{\sigma-1}}{(2\eta+1)\Gamma(\sigma)}$$

for $0 \leq s < t < 1$ and $s \leq \eta$,

$$\frac{\partial \kappa}{\partial t}(t,s) = \frac{-(\sigma-1)(t-s)^{\sigma-2}}{\Gamma(\sigma)} + \frac{2(1-s)^{\sigma}}{(2\eta+1)\Gamma(\sigma+1)}$$

for $0 \le \eta \le s < t < 1$,

$$\frac{\partial \kappa}{\partial t}(t,s) = \frac{-(\sigma-1)(t-s)^{\sigma-2}}{\Gamma(\sigma)} + \frac{2(1-s)^{\sigma}}{(2\eta+1)\Gamma(\sigma+1)}$$

for $0 \le \eta \le s < t < 1$,

$$\frac{\partial \kappa}{\partial t}(t,s) = \frac{2(1-s)^{\sigma}}{(2\eta+1)\Gamma(\sigma+1)}$$

for $0 < t < s \le 1$ and $\eta \le s$, and finally

$$\frac{\partial \kappa}{\partial t}(t,s) = \frac{2(1-s)^{\sigma}}{(2\eta+1)\Gamma(\sigma+1)} + \frac{2(\eta-s)^{\sigma-1}}{(2\eta+1)\Gamma(\sigma)}$$

for $0 < t < s \le \eta \le 1$, hence

$$\begin{aligned} |\frac{\partial \kappa(t,s)}{\partial t}| &\leq \frac{2(1-s)^{\sigma}}{(2\eta+1)\Gamma(\sigma+1)} + \frac{2(\eta-s)^{\sigma-1}}{(2\eta+1)\Gamma(\sigma)} \\ &= \frac{2(1-s)^{\sigma}+2\sigma(\eta-s)^{\sigma-1}}{(2\eta+1)\Gamma(\sigma+1)} \leq \frac{2(1-s)^{\sigma}+2\sigma(1-s)^{\sigma-1}}{(2\eta+1)\Gamma(\sigma+1)} \\ &= \frac{2(1-s)^{\sigma-1}(1-s+\sigma)}{(2\eta+1)\Gamma(\sigma+1)} \leq \frac{2(1-t)^{\sigma-1}(1+\sigma)}{(2\eta+1)\Gamma(\sigma+1)} \\ &= A_{\sigma,\eta}(1-t)^{\sigma-1}, \end{aligned}$$

for all $t, s \in [0, 1]$ that $t \neq s, t \neq 0$ and $t \neq 1$. In the case t = s, t = 0 or t = 1, the same result is obtained. \Box Now, let $\mathcal{F} : X \to X$ be defined as

$$\begin{split} \mathcal{F}w(t) &= \int_0^1 \kappa(t,s)\mathcal{U}(s,w(s),w'(s),\ ^c\mathcal{D}^\beta w(s),\phi(w(s)))ds \\ &= -\frac{1}{\Gamma(\sigma)}\int_0^t (t-s)^{\sigma-1}\mathcal{U}(s,w(s),w'(s),\ ^c\mathcal{D}^\beta w(s),\phi(w(s)))ds \\ &+ \frac{2t}{(2\eta+1)\Gamma(\sigma+1)}\int_0^1 (1-s)^\sigma\mathcal{U}(s,w(s),w'(s),\ ^c\mathcal{D}^\beta w(s),\phi(w(s)))ds \\ &+ \frac{2t}{(2\eta+1)\Gamma(\sigma)}\int_0^\eta (\eta-s)^{\sigma-1}\mathcal{U}(s,w(s),w'(s),\ ^c\mathcal{D}^\beta w(s),\phi(w(s)))ds, \end{split}$$

where $0 < \beta < 1$ and $\phi : X \to X$ is a mapping such that

$$\|\phi(w_1) - \phi(w_2)\| \le a_0 \|w_1 - w_2\| + a_1 \|w_1' - w_2'\|,$$

for all $w_1, w_2 \in X$ and some $a_0, a_1 \in [0, \infty)$. By taking $l_0 = a_0 + a_1$, it can be seen that $\|\phi(w_1) - \phi(w_2)\| \leq l_0 \|w_1 - w_2\|_*$, for all $w_1, w_2 \in X$. According to the definition of Caputo derivative, for all $t \in [0, 1]$ and $w_1, w_2 \in X$ it follows

$$\begin{aligned} |^{c}\mathcal{D}^{\beta}w_{1}(t) - {}^{c}\mathcal{D}^{\beta}w_{2}(t)| &\leq \frac{1}{\Gamma(1-\beta)}\int_{0}^{t}(t-s)^{-\beta}|w_{1}'(s) - w_{2}'(s)|ds| \\ &\leq \frac{\|w_{1}' - w_{2}'\|}{\Gamma(2-\beta)}t^{1-\beta}, \end{aligned}$$

 \mathbf{SO}

$$\|{}^{c}\mathcal{D}^{\beta}w_{1} - {}^{c}\mathcal{D}^{\beta}w_{2}\| \leq \frac{\|w_{1}' - w_{1}'\|}{\Gamma(2-\beta)} \leq \frac{\|w_{1} - w_{2}\|_{*}}{\Gamma(2-\beta)}$$

Now, we consider $\mathcal{F} : X \to X$, to prove that the pointwise problem (1) has a solution in X. For this, by lemma (3.1), we indicate that \mathcal{F} has a fixed point in X. In the next results, by using some functions which are called control functions, we will control the singularity and then, investigate the existence of a sloution for the singular fractional differential problem.

Theorem 3.3. Let $\mathcal{U}: [0,1] \times (C[0,1])^4 \to \mathbb{R}$ be a singular function at some points $t \in [0,1]$ such that $\mathcal{U}(t,\mathcal{O},\mathcal{O},\mathcal{O},\mathcal{O}) \in L^1[0,1]$ where \mathcal{O} is the zero function on [0,1], i.e for all $s \in [0,1]$, $\mathcal{O}(s) = 0$. Assume that there exists a nondecreasing mapping $\Lambda: X^4 \to \mathbb{R}^+ := [0,\infty)$ such that $\frac{\Lambda(z,z,z,z)}{z} \to q_0 < \infty$ as $z \to 0^+$ and $\frac{\Lambda(z,z,z,z)}{z} \to 0$ as $z \to \infty$. If the inequality

$$\begin{aligned} &|\mathcal{U}(t, w_1, w_2, w_3, w_4) - \mathcal{U}(t, z_1, z_2, z_3, z_4)| \\ &\leq b(t)\Lambda(w_1 - z_1, w_2 - z_2, w_3 - z_3, w_4 - z_4), \end{aligned}$$

be established for almost all $t \in [0, 1]$, all $(w_1, w_2, w_3, w_4), (z_1, z_2, z_3, z_4) \in X^4$ and some $b \in L^1[0, 1]$, then the poinwise defined problem (1) has a solution.

Proof. Let ϵ be arbitrary. Regarding to the properties $\lim_{z\to 0^+} \frac{\Lambda(z,z,z,z)}{z} = q_0 < \infty$, there exists $0 < \delta(\epsilon) \le \epsilon$ such that for all $z \in (0, \delta(\epsilon)]$, $\frac{\Lambda(z,z,z,z)}{z} < q_0 + \epsilon$, and so $\Lambda(z,z,z,z) < (q_0 + \epsilon)z$. Hence taking $z = \delta(\epsilon) := \delta$, we have

$$\Lambda(\delta, \delta, \delta, \delta) < (q_0 + \epsilon)\delta < (q_0 + \epsilon)\epsilon.$$
(2)

Now, let $\{w_n\}_{n\geq 1}$ be a sequence such that $w_n \to w$ in X as $n \to \infty$. So $||w_n - w||_* \to 0$ as $n \to \infty$. Therefore, there exists $m \in \mathbb{N}$ such that $n \geq m$ implies

$$||w_n - w||_* = max\{||w_n - w||, ||w'_n - w'||\} < \frac{\delta}{l_1},$$

where $l_1 := max\{1, \frac{1}{\Gamma(2-\beta)}, a_0 + a_1\}$. So it is concluded that $||w_n - w|| < \frac{\delta}{l_1}$ and $||w'_n - w'|| < \frac{\delta}{l_1}$, for all $n \ge m$. Hence for all $t \in [0, 1]$ and $n \ge m$, we have

$$\begin{aligned} &|\mathcal{F}w_{n}(t) - \mathcal{F}w(t)| \\ &\leq \int_{0}^{1} |\kappa(t,s)| \left| \mathcal{U}(s,w_{n}(s),w_{n}'(s),^{c}\mathcal{D}^{\beta}w_{n}(s),\phi(w_{n}(s))) \right| \\ &-\mathcal{U}(s,w(s),w'(s),^{c}\mathcal{D}^{\beta}w(s),\phi(w(s))) \right| ds \\ &\leq \int_{0}^{1} A_{\sigma,\eta}t(1-t)^{\sigma-1} \left| \mathcal{U}(s,w_{n}(s),w_{n}'(s),^{c}\mathcal{D}^{\beta}w_{n}(s),\phi(w_{n}(s))) \right| \\ &-\mathcal{U}(s,w(s),w'(s),^{c}\mathcal{D}^{\beta}w(s),\phi(w(s))) \right| ds \\ &\leq \int_{0}^{1} A_{\sigma,\eta}t(1-t)^{\sigma-1}b(s)\Lambda((w_{n}-x)(s),(w_{n}'-w')(s),\\ &({}^{c}\mathcal{D}^{\beta}w_{n} - {}^{c}\mathcal{D}^{\beta}w)(s),\phi(w_{n}(s)) - \phi(w(s))) ds \\ &\leq A_{\sigma,\eta}t(1-t)^{\sigma-1}\int_{0}^{1}b(s)\Lambda(\|w_{n}-w\|,\|w_{n}'-w'\|,\frac{\|w_{n}'-w'\|}{\Gamma(2-\beta)},\\ &a_{0}\|w_{n}-w\|+a_{1}\|w_{n}'-w'\|) ds \end{aligned}$$

$$\leq A_{\sigma,\eta}t(1-t)^{\sigma-1}\Lambda(\frac{\delta}{l_1},\frac{\delta}{l_1},\frac{\delta}{l_1}\Gamma(2-\beta),(a_0+a_1)\frac{\delta}{l_1})\int_0^1 b(s)ds$$

$$\leq m_1A_{\sigma,\eta}t(1-t)^{\sigma-1}\Lambda(l_1\frac{\delta}{l_1},l_1\frac{\delta}{l_1},l_1\frac{\delta}{l_1},l_1\frac{\delta}{l_1})$$

$$= m_1A_{\sigma,\eta}t(1-t)^{\sigma-1}\Lambda(\delta,\delta,\delta,\delta) \leq m_1A_{\sigma,\eta}t(1-t)^{\sigma-1}(q_0+\epsilon)\epsilon,$$

where $m_1 = \int_0^1 b(s) ds$. So $\|\mathcal{F}w_n - \mathcal{F}_w\| \le m_1 A_{\sigma,\eta}(q_0 + \epsilon)\epsilon$, for all $n \ge m$. In a similar manner for all $t \in [0, 1]$ and $n \ge m$, it is resulted that

$$\begin{aligned} &|\mathcal{F}'w_n(t) - \mathcal{F}'w(t)| \\ &\leq \int_0^1 \left|\frac{\partial\kappa(t,s)}{\partial t}\right| \left| \mathcal{U}(s,w_n(s),w'_n(s),^c \mathcal{D}^\beta w_n(s),\phi(w_n(s))) \right| \\ &- \mathcal{U}(s,w(s),w'(s),^c \mathcal{D}^\beta w(s),\phi(w(s))) \right| ds \\ &\leq m_1 A_{\sigma,\eta} (1-t)^{\sigma-1} (q_0+\epsilon)\epsilon. \end{aligned}$$

Hence $\|\mathcal{F}'w_n - \mathcal{F}'w\| \leq m_1 A_{\sigma,\eta}(q_0 + \epsilon)\epsilon$, for all $n \geq m$. Using the above inequalities as well as *-norm definition, we conclude that

$$\|\mathcal{F}w_n - \mathcal{F}w\|_* = \max\{\|\mathcal{F}w_n - \mathcal{F}w\|, \|F'w_n - \mathcal{F}'w\|\} \le m_1 A_{\sigma,\eta}(q_0 + \epsilon)\epsilon$$

for all $n \ge m$, and since $\epsilon > 0$ is arbitrary, it is deduced that $\mathcal{F}w_n \to \mathcal{F}w$ in X as $w_n \to w$ in X, so \mathcal{F} is a continuous mapping on X. Now, put $m_2 = \int_0^1 |\mathcal{U}(s, \mathcal{O}, \mathcal{O}, \mathcal{O}, \mathcal{O})| ds$. Since $\lim_{z\to\infty} \frac{\Lambda(z, z, z, z)}{z} = 0$, therefore

$$\lim_{z \to \infty} \frac{m_2 + m_1 \Lambda(z, z, z, z)}{z} = 0$$

So for $\epsilon > 0$, there exists $r(\epsilon) > 0$ such that $z \ge r(\epsilon)$ implies that

$$\frac{m_2 + m_1 \Lambda(z, z, z, z)}{z} < \epsilon.$$

Thus, for all $z \ge r(\epsilon)$, we have $m_2 + m_1\Lambda(z, z, z, z) < \epsilon z$. Choose an $\epsilon_0 > 0$ such that $0 < \epsilon_0 < \frac{1}{A_{\sigma,\eta}l_1}$ and let $r_0 := r(\epsilon_0)$, then, for all $z \ge r_0$ the following inequality is held:

$$m_2 + m_1 \Lambda(z, z, z, z) < \epsilon_0 z,$$

By putting $z = r_0 l_1$, in the above inequality, we have

$$m_2 + m_1 \Lambda(r_0 l_1, r_0 l_1, r_0 l_1, r_0 l_1) < \epsilon_0 r_0 l_1 < \frac{r_0}{A_{\sigma,\eta}}$$

Now, let $\Xi = \{ w \in X : ||w||_* < r_0 \}$, $\lambda \in (0, 1)$ and $w_0 \in \partial \Xi$ be such that $w_0 = \lambda \mathcal{F} w_0$, then for all $t \in [0, 1]$, we have

$$\begin{split} |w_{0}(t)| &= |\lambda \mathcal{F}w_{0}(t)| \leq \int_{0}^{1} |\kappa(t,s)| \\ \times \left| \mathcal{U}(s,w_{0}(s),w_{0}'(s),^{c} \mathcal{D}^{\beta}w_{0}(s),\phi(w_{0}(s))) \right| ds \\ &\leq A_{\sigma,\eta}t(1-t)^{\sigma-1} \bigg(\int_{0}^{1} \left| \mathcal{U}(s,w_{0}(s),w_{0}'(s),^{c} \mathcal{D}^{\beta}w_{0}(s),\phi(w_{0}(s))) \right| \\ -\mathcal{U}(s,\mathcal{O}(s),\mathcal{O}(s),\mathcal{O}(s),\mathcal{O}(s)) \bigg| ds \\ &+ \int_{0}^{1} |\mathcal{U}(s,\mathcal{O}(s),\mathcal{O}(s),\mathcal{O}(s),\mathcal{O}(s))| ds \bigg) \leq A_{\sigma,\eta}t(1-t)^{\sigma-1} \\ \times \bigg(\int_{0}^{1} b(s)\Lambda(x_{0}(s),w_{0}'(s),^{c} \mathcal{D}^{\beta}w_{0}(s),\phi(w_{0}(s))) ds + m_{2} \bigg) \\ &\leq A_{\sigma,\eta}t(1-t)^{\sigma-1} \bigg(\Lambda(||w_{0}||,||w_{0}'||,||^{c} \mathcal{D}^{\beta}w_{0}||,||\phi(w_{0}(s))||) \\ \times \int_{0}^{1} b(s) ds + m_{2} \bigg) \leq A_{\sigma,\eta}t(1-t)^{\sigma-1} \\ \times \bigg(\Lambda(l_{1}||w_{0}||_{*},l_{1}||w_{0}||_{*},l_{1}||w_{0}||_{*},l_{1}||w_{0}||_{*})m_{1} + m_{2} \bigg), \end{split}$$

consequently

$$\begin{aligned} \|w_0\| &= \lambda \|\mathcal{F}w_0\| &\leq A_{\sigma,\eta} \bigg(\Lambda(l_1 r_0, l_1 r_0, l_1 r_0, l_1 r_0) m_1 + m_2 \bigg) \\ &< A_{\sigma,\eta} \frac{r_0}{A_{\sigma,\eta}} = r_0. \end{aligned}$$

Likewise, for all $t \in [0, 1]$, it is inferred that

$$\begin{split} |w_{0}'(t)| &= |\lambda \mathcal{F}' w_{0}(t)| \\ &\leq \int_{0}^{1} |\frac{\partial \kappa(t,s)}{\partial t}| \left| \mathcal{U}(s,w_{0}(s),w_{0}'(s),^{c} \mathcal{D}^{\beta} w_{0}(s),\phi(w_{0}(s))) \right| ds \\ &\leq A_{\sigma,\eta}(1-t)^{\sigma-1} \bigg(\int_{0}^{1} \left| \mathcal{U}(s,w_{0}(s),w_{0}'(s),^{c} \mathcal{D}^{\beta} w_{0}(s),\phi(w_{0}(s))) \right| \\ &- \mathcal{U}(s,\mathcal{O}(s),\mathcal{O}(s),\mathcal{O}(s),\mathcal{O}(s)) \bigg| ds \\ &+ \int_{0}^{1} |\mathcal{U}(s,\mathcal{O}(s),\mathcal{O}(s),\mathcal{O}(s),\mathcal{O}(s))| ds \bigg) \leq A_{\sigma,\eta}(1-t)^{\sigma-1} \\ &\times \bigg(\int_{0}^{1} b(s)\Lambda(w_{0}(s),w_{0}'(s),^{c} \mathcal{D}^{\beta} w_{0}(s),\phi(w_{0}(s))) ds + m_{2} \bigg) \\ \leq & A_{\sigma,\eta}(1-t)^{\alpha-1} \bigg(\Lambda(\|w_{0}\|,\|w_{0}'\|,\|^{c} \mathcal{D}^{\beta} w_{0}\|,\|\phi(w_{0}(s))\|) \\ &\times \int_{0}^{1} b(s) ds + m_{2} \bigg) \leq A_{\sigma,\eta}(1-t)^{\sigma-1} \\ &\times \bigg(\Lambda(l_{1}\|w_{0}\|_{*},l_{1}\|w_{0}\|_{*},l_{1}\|w_{0}\|_{*},l_{1}\|w_{0}\|_{*})m_{1} + m_{2} \bigg), \end{split}$$

 \mathbf{SO}

$$\begin{aligned} \|w_0'\| &= \lambda \|\mathcal{F}'w_0\| &\leq A_{\sigma,\eta} \left(\Lambda(l_1r_0, l_1r_0, l_1r_0, l_1r_0)m_1 + m_2 \right) \\ &< A_{\sigma,\eta} \frac{r_0}{A_{\sigma,\eta}} = r_0. \end{aligned}$$

Hence, $r_0 = ||w_0||_* = \max\{||w_0||, ||w_0'||\} < r_0$ which is a contradiction. Therefore, regarding to theorem (2.2), $\mathcal{F} : X \to X$ has a fixed point in X, so the pointwise defined fractional differential equation (1) has a solution. \Box

The final result is illustrated by the following example.

Example 3.4. Let $\sigma_1, ..., \sigma_n \in (0, 1)$ such that $\sum_{i=1}^n \sigma_i < 1, \, \delta_1, ..., \delta_n \in [0, 1],$

$$d(t) = \frac{1}{(t - \delta_1)^{\sigma_1} (t - \delta_2)^{\sigma_2} \dots (t - \delta_n)^{\sigma_n}},$$

$$c(t) = \begin{cases} 0 & t \in [0,1] \cap Q \\ 1 & t \in (0,1) \cap Q^c. \end{cases}$$

 $b(t) = \frac{1}{c(t)}$ and

$$\mathcal{U}(t, w_1, w_2, w_3, w_4) = b(t)(\sum_{i=1}^4 \frac{|w_i|}{1 + |w_i|}) + d(t).$$

Consider the pointwise defined equation

$${}^{c}\mathcal{D}^{\sqrt{11}}w(t) + \mathcal{U}(t, w(t), w'(t), {}^{c}\mathcal{D}^{\frac{2}{3}}w(t), \int_{0}^{t}w(s)ds) = 0$$
(3)

with boundary condition w(0) = w''(0) = 0 and $w(\eta) + \int_0^1 w(s)ds = 0$, in which $\eta \in (0, 1)$ is fixed. Then, for all $(w_1, w_2, w_3, w_4), (z_1, z_2, z_3, z_4) \in X^4$ and almost $t \in [0, 1]$ we have

$$\begin{aligned} & \left| \mathcal{U}(t, w_1, w_2, w_3, w_4) - \mathcal{U}(t, z_1, z_2, z_3, z_4) \right| \\ &= b(t) \left| \sum_{i=1}^4 \left(\frac{|w_i|}{1 + |w_i|} - \frac{|z_i|}{1 + |z_i|} \right) \right| \le b(t) \sum_{i=1}^4 \frac{|w_i - z_i|}{1 + |w_i - z_i|} \\ &= b(t) \Lambda(w_1 - z_1, w_2 - z_2, w_3 - z_3, w_4 - z_4), \end{aligned}$$

where

$$\Lambda(z_1, z_2, z_3, z_4) = \sum_{i=1}^4 \frac{|z_i|}{1 + |z_i|}$$

Simply speaking, $\lim_{z\to 0^+}\frac{\Lambda(z,z,z,z)}{z}=4<\infty$, $\lim_{z\to\infty}\frac{\Lambda(z,z,z,z)}{z}=0$ and $b(t)\in L^1[0,1].$ Note that if $\phi(w(t))=\int_0^t w(s)ds$, then

$$|\phi(w(t)) - \phi(z(t))| \le \int_0^t |w(s) - z(s)| ds \le ||w - z||t,$$

for all $t \in [0, 1]$, so $\|\phi(w) - \phi(z)\| \le \|w - z\|$. Therefore all the conditions of Theorem (3.3) are held, so by therem (3.3), the pointwisedefined equation (3) has a solution.

Now, we want to consider two pointwise defined differential equaions

$${}^{c}\mathcal{D}^{\sigma}w(t) + \mathcal{U}(t, w(t), w'(t), {}^{c}\mathcal{D}^{\beta}w(t), \phi(w(t))) = 0$$

$$\tag{4}$$

and

$${}^{c}\mathcal{D}^{\sigma}z(t) + \mathcal{V}(t, z(t), z'(t), {}^{c}\mathcal{D}^{\gamma}z(t), \phi(z(t))) = 0,$$
(5)

when $\sigma \geq 2$, $\gamma, \beta \in (0,1)$, $\phi : X \to X$ is a mapping such that for all $w_1, w_2 \in X$, $\|\phi(w_1) - \phi(w_2)\| \leq a_0 \|w_1 - w_2\| + a_1 \|w'_1 - w'_2\|$, for some $a_0, a_1, \in [0, \infty)$ and $\mathcal{U}, \mathcal{V} : [0, 1] \times X^4 \to \mathbb{R}$ are two functions that are singular at some set with measure zero, under boundary conditions w(0) = z(0) = 0 for $\sigma \in [2, 3)$ and

$$w(0) = w''(0) = w^{(n_0)}(0) = z(0) = z''(0) = z^{(n_0)}(0) = 0$$

where $n_0 = [\sigma] + 1$ for $\sigma \in [3, \infty)$ and also $w(\eta) + \int_0^1 w(s)ds = z(\eta) + \int_0^1 z(s)ds = 0$. We will show that under some conditions, these two equations have the same solution.

For this, we define $\mathcal{F}, \mathcal{S}: X \to X$ as

$$\mathcal{F}w(t) = \int_0^1 \kappa(t,s)\mathcal{U}(s,w(s),w'(s),{}^c\mathcal{D}^\beta w(s),\phi(w(s)))ds$$

and

$$\mathcal{S}z(t) = \int_0^1 \kappa(t,s) \mathcal{V}(s,z(s),z'(s),{}^c \mathcal{D}^{\gamma} z(s), \phi(z(s))) ds$$

where $\kappa(t, s)$ is the Green function that defined by lemma (3.1). We will prove that \mathcal{F} and \mathcal{S} has a common fixed point, so two equations (4) and (5) have a same solution.

Theorem 3.5. Let $\mathcal{U}, \mathcal{V} : [0,1] \times X^4 \to \mathbb{R}$ are continuous on $E \subset X$ with $m(E^c) = 0$ and there exist $b, \theta \in L^1[0,1]$, nondecreasing mapping $\Lambda : X^4 \to \mathbb{R}$ such that

$$\lim_{\|z_i\| \to 0} \frac{|\mathcal{V}(t, z_1, z_2, z_3, z_4)|}{\|z_i\|} \le \theta(t)$$

and $|\mathcal{U}(t, w_1, w_2, w_3, xw_4)| \le b(t)\Lambda(w_1, w_2, w_3, w_4)$ for all $(w_1, w_2, w_3, w_4) \in X^4$, $1 \le i \le 4$ and almost all $t \in [0, 1]$. Also let

$$\lim_{z \to 0^+} \frac{\Lambda(z, z, z, z)}{z} = q_0,$$

A. MALEKPOUR AND M. SHABIBI

$$\begin{split} m_1 &:= \int_0^1 b(s) ds < \frac{1}{A_{\sigma,\eta}} \text{ and } m_2 := \int_0^1 \theta(s) ds < \frac{1}{l_2 A_{\sigma,\eta}}, \text{ where} \\ l_1 &= \max\{1, \frac{1}{\Gamma(2-\beta)}, a_0 + a_1\}, l_2 = \max\{1, \frac{1}{\Gamma(2-\gamma)}, a_0 + a_1\} \text{ and } q_0 \in [0, \frac{1}{l_1}). \\ \text{If for all } (w_1, w_2, w_3, w_4), (z_1, z_2, z_3, z_4) \in X^4 \text{ that} \\ (w_1, w_2, w_3, w_4) \neq (z_1, z_2, z_3, z_4), \text{ almost all } t \in [0, 1] \text{ and all } 1 \le i \le 4 \end{split}$$

$$\lim_{(\|w_i\|,\|z_i\|)\to(0^+,0^+)}\frac{\mathcal{U}(t,w_1,w_2,w_3,w_4)-\mathcal{V}(t,z_1,z_2,z_3,z_4)}{\max\|w_i-z_i\|}=0$$

then the pointwise defined equations (4) and (5) have a common solution.

Proof. Since

$$\lim_{z \to 0^+} \frac{\Lambda(z, z, z, z)}{z} = q_0$$

so for each $\epsilon > 0$, there exists $0 < \delta(\epsilon) \le \epsilon$ such that $z \in (0, \delta(\epsilon)]$ implies that

$$\frac{\Lambda(z, z, z, z)}{z} < q_0 + \epsilon,$$

therefore

$$\Lambda(z, z, z, z) < (q_0 + \epsilon)z$$

Let $\epsilon_1 > 0$ be such that $q_0 + \epsilon_1 < \frac{1}{l_1}$, then for all $z \in (0, \delta_1 := \delta(\epsilon_1)]$ it is concluded that

$$\Lambda(z, z, z, z) < (q_0 + \epsilon_1)z,$$

consequently

$$\Lambda(l_1 z, l_1 z, l_1 z, l_1 z) < (q_0 + \epsilon_1) l_1 z < z,$$

for all $z \in (0, \frac{\delta_1}{l_1}]$. On the other hand for all $w \in X$ and $t \in [0, 1]$, we have

$$\begin{aligned} |\mathcal{F}w(t)| &\leq \int_{0}^{1} |\kappa(t,s)| \left| \mathcal{U}(s,w(s),w'(s),{}^{c}\mathcal{D}^{\beta}w(s),\phi(w(s))) \right| ds \\ &\leq \int_{0}^{1} A_{\sigma,\eta}t(1-t)^{\sigma-1}b(s)\Lambda(w(s),w'(s),{}^{c}\mathcal{D}^{\beta}w(s),\phi(w(s))) ds \\ &\leq A_{\sigma,\eta}t(1-t)^{\sigma-1}\int_{0}^{1}b(s)\Lambda(\|w\|,\|w'\|,\|{}^{c}\mathcal{D}^{\beta}w\|,\|\phi(w)\|) ds \\ &\leq A_{\sigma,\eta}t(1-t)^{\sigma-1}\Lambda(\|w\|,\|w'\|,\frac{\|w'\|}{\Gamma(2-\beta)},a_{0}\|w\|+a_{1}\|w'\|)\int_{0}^{1}b(s) ds \\ &\leq A_{\sigma,\eta}t(1-t)^{\sigma-1}\Lambda(l_{1}\|w\|_{*},l_{1}\|w\|_{*},l_{1}\|w\|_{*},l_{1}\|w\|_{*})m_{1}. \end{aligned}$$

So, if $||w||_* \in (0, \frac{\delta_1}{l_1}]$, then

$$|\mathcal{F}w(t)| \le A_{\sigma,\eta} t (1-t)^{\sigma-1} ||w||_* m_1 \le ||w||_* t (1-t)^{\sigma-1}$$

thus, it is resulted that $\|\mathcal{F}w\| \leq \|w\|_*$. Also we have

$$\begin{aligned} |\mathcal{F}'w(t)| &\leq \int_{0}^{1} |\frac{\partial\kappa(t,s)}{\partial t}| |\mathcal{U}(s,w(s),w'(s),^{c}\mathcal{D}^{\beta}w(s),\phi(w(s)))| ds \\ &\leq \int_{0}^{1} A_{\sigma,\eta}(1-t)^{\sigma-1}b(s)\Lambda(w(s),w'(s),^{c}\mathcal{D}^{\beta}w(s),\phi(w(s))) ds \\ &\leq A_{\sigma,\eta}(1-t)^{\sigma-1}\int_{0}^{1}b(s)\Lambda(\|w\|,\|w'\|,\|^{c}\mathcal{D}^{\beta}w\|,\|\phi(w)\|) ds \\ &\leq A_{\sigma,\eta}(1-t)^{\sigma-1}\Lambda(\|w\|,\|w'\|,\frac{\|w'\|}{\Gamma(2-\beta)},a_{0}\|w\|+a_{1}\|w'\|)\int_{0}^{1}b(s) ds \\ &\leq A_{\sigma,\eta}(1-t)^{\sigma-1}\Lambda(l_{1}\|w\|_{*},l_{1}\|w\|_{*},l_{1}\|w\|_{*},l_{1}\|w\|_{*})m_{1}. \end{aligned}$$

Therefore, if $||w||_* \in (0, \frac{\delta_1}{l_1}]$, then

$$|\mathcal{F}'w(t)| \le A_{\sigma,\eta}(1-t)^{\sigma-1} ||w||_* m_1 \le ||w||_* (1-t)^{\sigma-1},$$

so, we conclude that $\|\mathcal{F}'w\| \leq \|w\|_*$. Hence if $\|w\|_* \in (0, \frac{\delta_1}{l_1}]$ then

$$\|\mathcal{F}w\|_{*} = \max\{\|\mathcal{F}w\|, \|\mathcal{F}'w\|\} \le \|w\|_{*}.$$
(6)

By the assumptions, for all $1 \le i \le 4$ and almost all $t \in [0, 1]$,

$$\lim_{\|z_i\| \to 0} \frac{|\mathcal{V}(t, z_1, z_2, z_3, z_4)|}{\|z_i\|} \le \theta(t),$$

so, for each $\epsilon > 0$ there exists $\delta(\epsilon) > 0$, such that $||z_i|| \in (0, \delta(\epsilon)]$ implies

$$|\mathcal{V}(t, z_1, z_2, z_3, z_4)| \le (\theta(t) + \epsilon) ||z_i||.$$

Thus, for $\epsilon > 0$, there exists $\delta(\epsilon) > 0$ such that $l_2 ||z|| \in (0, \delta(\epsilon)]$, it follows

$$\begin{aligned} |\mathcal{V}(t,z,z',{}^{c}\mathcal{D}^{\gamma}z,\phi(z))| &\leq (\theta(t)+\epsilon) \max\{||z||,||z'||,||^{c}\mathcal{D}^{\gamma}z||,||\phi(z)||\}\\ &\leq (\theta(t)+\epsilon)l_{2}||z||_{*}. \end{aligned}$$

Since $m_2 < \frac{1}{l_2 A_{\sigma,\eta}}$, there exists $\epsilon_2 > 0$ such that $m_2 + \epsilon_2 < \frac{1}{l_2 A_{\sigma,\eta}}$. Put $\delta_2 := \delta(\epsilon_2)$, so if $||z|| \in (0, \frac{\delta_2}{l_2}]$, then we have

$$|\mathcal{V}(t,z,z',{}^{c}\mathcal{D}^{\gamma}z,\phi(z))| \leq (\theta(t)+\epsilon_{2})l_{2}||z||_{*}.$$

Thus, for $z \in X$ in which $||z|| \in (0, \frac{\delta_2}{l_2}]$, we conclude that

$$\begin{aligned} |\mathcal{S}z(t)| &\leq \int_{0}^{1} |\kappa(t,s)| |\mathcal{V}(s,z(s),z'(s),{}^{c}\mathcal{D}^{\gamma}z(s),\phi(z(s)))| ds \\ &\leq \int_{0}^{1} A_{\sigma,\eta} t(1-t)^{\alpha-1} (\theta(s)+\epsilon_{2}) l_{2} ||z||_{*} ds \\ &= t(1-t)^{\sigma-1} A_{\sigma,\eta} (\int_{0}^{1} \theta(s) ds + \epsilon_{2}) l_{2} ||z||_{*} \\ &= t(1-t)^{\sigma-1} A_{\sigma,\eta} (m_{2}+\epsilon_{2}) l_{2} ||z||_{*} \\ &\leq t(1-t)^{\sigma-1} ||z||_{*}, \end{aligned}$$

so $\|Sz\| \le \|z\|_*$. Also for all $t \in [0,1]$ and $z \in X$ in which $\|z\| \in (0, \frac{\delta_2}{l_2}]$, we have

$$\begin{aligned} |\mathcal{S}'z(t)| &\leq \int_{0}^{1} |\frac{\partial \kappa(t,s)}{\partial t}| |\mathcal{V}(s,z(s),z'(s),{}^{c}\mathcal{D}^{\gamma}z(s),\phi(z(s)))| ds \\ &\leq \int_{0}^{1} A_{\sigma,\eta}(1-t)^{\alpha-1}(\theta(s)+\epsilon_{2})l_{2} ||z||_{*} ds \\ &= (1-t)^{\sigma-1} A_{\sigma,\eta} (\int_{0}^{1} \theta(s) ds + \epsilon_{2})l_{2} ||z||_{*} \\ &= (1-t)^{\sigma-1} A_{\sigma,\eta} (m_{2}+\epsilon_{2})l_{2} ||z||_{*} \\ &\leq (1-t)^{\sigma-1} ||z||_{*}, \end{aligned}$$

so $\|\mathcal{S}'z\| \leq \|z\|_*$. Therefore,

$$\|\mathcal{S}z\|_{*} = \max\{\|\mathcal{S}z\|, \|\mathcal{S}'z\|\} \le \|z\|_{*}.$$
(7)

Likewise, through the given assumptions for almost all $t \in [0, 1]$, we have

$$\lim_{(\|w_i\|,\|z_i\|)\to(0^+,0^+)}\frac{\mathcal{U}(t,w_1,w_2,w_3,w_4)-\mathcal{V}(t,z_1,z_2,z_3,z_4)}{max\|w_i-z_i\|}=0.$$

Put $||w_k - z_k|| := \max_{1 \le j \le 4} ||w_i - z_i||$ for some $1 \le k \le 4$, then for each $\epsilon > 0$ there exists $\delta(\epsilon) > 0$ such that $||w_i||, ||z_i|| \in (0, \delta]$ implies

$$|\mathcal{U}(t, w_1, w_2, w_3, w_4) - \mathcal{V}(t, z_1, z_2, z_3, z_4)| < \epsilon ||w_k - z_k||.$$

Let $0 < \epsilon_3 < \frac{1}{A_{\sigma,\eta}}$ and $\delta_3 := \delta(\epsilon_3)$, then if $||w||, ||z|| \in (0, \frac{\delta_3}{l_3}]$, we have

$$\begin{aligned} &|\mathcal{U}(t, w, w', {}^{c}\mathcal{D}^{\beta}w, \phi(w)) - \mathcal{V}(t, z, z', {}^{c}\mathcal{D}^{\gamma}z, \phi(z))| \\ &< \epsilon_{3} \max\{\|w - z\|, \|w' - z'\|, \|{}^{c}\mathcal{D}^{\beta}w - {}^{c}\mathcal{D}^{\gamma}z\|, \|\phi(w) - \phi(z)\|\} \\ &\leq \epsilon_{3}l_{3}\|w - z\|_{*}, \end{aligned}$$

where $l_3 = \max\{l_1, l_2, |\frac{1}{\Gamma(2-\beta)} - \frac{1}{\Gamma(2-\gamma)}|\} = \max\{l_1, l_2\}$. So if $||w||, ||z|| \in (0, \delta_3]$, then

$$|\mathcal{U}(t,w,w',{}^{c}\mathcal{D}^{\beta}w,\phi(w)) - \mathcal{V}(t,z,z',{}^{c}\mathcal{D}^{\gamma}z,\phi(z))| \le \epsilon_{3} \|w-z\|_{*}.$$
 (8)

Now, let $\delta_M = \min\{\frac{\delta_1}{l_1}, \frac{\delta_2}{l_2}, \delta_3\}$, define $\alpha : X^2 \to [0, \infty)$ as

$$\alpha(x,y) = \begin{cases} 1 & \|w\|_*, \|z\|_* \in (0, \delta_M] \\ 0 & other \ wise \end{cases}$$

and $\psi : \mathbb{R} \to \mathbb{R}$ as $\psi(t) = \epsilon_3 A_{\sigma,\eta} t$. So, $\psi \in \Psi$ is obvious. If $\alpha(w, z) \geq 1$ then $||w||_*, ||z||_* \in (0, \delta_M]$, so by (7), $||\mathcal{S}w||_* \leq ||x||_* \leq \delta_M$. Likewise, via (6), $||\mathcal{F}y||_* \leq ||y||_* \leq \delta_M$, so $\alpha(\mathcal{S}w, \mathcal{F}z) \geq 1$. If $w \in X$ be such that $||w||_* \leq \delta_M$, then $||\mathcal{S}w||_* \leq \delta_M$, so it is concluded that there exists $w_0 \in X$ such that $\alpha(w_0, \mathcal{S}w_0) \geq 1$. To check the continuity \mathcal{F} , let $E \subset [0,1]$ be a set which $\mathcal{U}(t, ..., ..., ...)$ is not continuous on that, then m(E) = 0 where m is the Lebesgue measure in \mathbb{R} , and let $w_n \to w$ as $n \to \infty$. So for all $t \in [0, 1]$ we have

$$\begin{split} \lim_{n \to \infty} \mathcal{F}w_n(t) &= \lim_{n \to \infty} \int_0^1 \kappa(t, s) \mathcal{U}(s, w_n(s), w'_n(s), ^c \mathcal{D}^\beta w_n(s), \phi(w_n(s))) ds \\ &= \lim_{n \to \infty} \int_{E^c} \kappa(t, s) \mathcal{U}(s, w_n(s), w'_n(s), ^c \mathcal{D}^\beta w_n(s), \phi(w_n(s))) ds \\ &+ \lim_{n \to \infty} \int_E \kappa(t, s) \mathcal{U}(s, w_n(s), w'_n(s), ^c \mathcal{D}^\beta w_n(s), \phi(w_n(s))) ds \\ &= \int_{E^c} \kappa(t, s) \mathcal{U}(s, w(s), w'(s), ^c \mathcal{D}^\beta w(s), \phi(w(s))) ds \\ &= \int_0^1 \kappa(t, s) \mathcal{U}(s, w(s), w'(s), ^c \mathcal{D}^\beta w(s), \phi(w(s))) ds \\ &= \mathcal{F}w(t). \end{split}$$

Similarly, $\lim_{n\to\infty} \mathcal{F}'w_n(t) = \mathcal{F}'w(t)$ is obtained for all $t \in [0, 1]$, so it is concluded that \mathcal{F} is a continuous mapping in $(X, \|.\|_*)$. On the other hand, for all $t \in [0, 1]$ we deduce that

$$\begin{aligned} \left| \mathcal{F}w(t) - \mathcal{S}z(t) \right| &\leq \int_0^1 |\kappa(t,s)| \left| \mathcal{U}(s,w(s),w'(s),^c \mathcal{D}^\beta w(s),\phi(w(s))) \right| \\ &- \mathcal{V}(s,z(s),z'(s),^c \mathcal{D}^\beta z(s),\phi(z(s))) \right| ds \\ &\leq A_{\sigma,\eta} t(1-t)^{\sigma-1} \int_0^1 \left| \mathcal{U}(s,w(s),w'(s),^c \mathcal{D}^\beta w(s),\phi(w(s))) \right| \\ &- \mathcal{V}(s,z(s),z'(s),^c \mathcal{D}^\beta z(s),\phi(z(s))) \right| ds. \end{aligned}$$

Therefore, when $||w||_*, ||z||_* \in (0, \delta_M]$, by (8), it implies that

$$|\mathcal{F}w(t) - \mathcal{S}z(t)| \leq A_{\sigma,\eta}t(1-t)^{\sigma-1}\epsilon_3 ||w-z||_*,$$

consequently

$$\|\mathcal{F}w - \mathcal{S}z\| \leq A_{\sigma,\eta}\epsilon_3 \|x - y\|_* = \psi(\|w - z\|_*).$$

In a similar manner, we have

$$\|\mathcal{F}'w - \mathcal{S}'z\| \leq A_{\sigma,\eta}\epsilon_3 \|w - z\|_* = \psi(\|w - z\|_*),$$

hence

$$\|\mathcal{F}w - \mathcal{S}z\|_* = \max\{\|\mathcal{F}'w - \mathcal{S}'z\|, \|\mathcal{F}w - \mathcal{S}z\|\} \le \psi(\|w - z\|_*).$$

Therefore, regarding Lemma (2.3), both equations (4) and (5) have a common solution. \Box

Example 3.6. Consider the following pointwise defined equations

$${}^{c}\mathcal{D}^{\frac{5}{2}}w(t) + \frac{0.5}{p(t)}(\|w(t)\|^{2} + \|w'(t)\|^{2} + \|^{c}\mathcal{D}^{\frac{1}{2}}w(t)\|^{2} + \|\int_{0}^{t}w(s)ds\|^{2}) = 0$$

and

$${}^{c}\mathcal{D}^{\frac{5}{2}}z(t) + \frac{0.3}{\sqrt{t}}(\|z(t)\| + \|z'(t)\| + \|{}^{c}\mathcal{D}^{\frac{1}{3}}z(t)\| + \|\int_{0}^{t} z(s)ds\|) = 0$$

with boundary conditions w(0) = z(0) = 0 and $w(\frac{1}{2}) + \int_0^1 w(s)ds = z(\frac{1}{2}) + \int_0^1 z(s)ds = 0$, where

$$p(t) = \begin{cases} 1 & t \in [0,1] | \{\delta_1, ..., \delta_k\} \\ 0 & t \in \{\delta_1, ..., \delta_k\}. \end{cases}$$

Put $\Lambda(w_1, w_2, w_3, w_4) = \sum_{i=1}^4 ||w_i||^2$, $\phi(w(t)) = \int_0^t w(s) ds$, $b(t) = \frac{0.5}{p(t)}$,

 $\mathcal{U}(t, w_1, w_2, w_3, w_4) = \Lambda(w_1, w_2, w_3, w_4),$

 $\theta(t) = \frac{0.3}{\sqrt{t}}$ and

$$\mathcal{V}(t, z_1, z_2, z_3, z_4) = \theta(t) \Sigma_{i=1}^4 ||z_i||_{2}$$

 $\begin{aligned} \text{then } \|\phi(w) - \phi(z)\| &\leq \|w - z\|, \, l_1 = \max\{1, \frac{1}{\Gamma(2 - \frac{1}{2})}\} = \frac{2}{\sqrt{\pi}}, \\ l_2 &= \max\{1, \frac{1}{\Gamma(2 - \frac{1}{3})}\} = \frac{1}{\Gamma(\frac{5}{3})}, \, q_0 = \lim_{z \to 0^+} \frac{\Lambda(z, z, z, z)}{z} = 0 < \frac{1}{l_1}, \end{aligned}$

$$A_{\sigma,\eta} = \frac{2(1+\frac{5}{2})}{(1+1)\Gamma(\frac{5}{2}+1)} = \frac{28}{15\sqrt{\pi}},$$

A. MALEKPOUR AND M. SHABIBI

 $\begin{array}{l} b, \theta \in L^1[0,1], \ m_1 = \int_0^1 b(s) ds = 0.5 < \frac{1}{A_{\sigma,\eta}}, \ m_2 = \int_0^1 \theta(s) ds = 0.6 < \\ \frac{1}{l_2 A_{\sigma,\eta}} \ \text{and for all} \ (w_1, w_2, w_3, w_4), (z_1, z_2, z_3, z_4) \in X^4 \ \text{that} \ (w_1, w_2, w_3, w_4) \neq \\ (z_1, z_2, z_3, z_4), \ \text{almost all} \ t \in [0,1] \ \text{and all} \ 1 \leq i \leq 4 \end{array}$

$$\lim_{\substack{(\|w_i\|,\|z_i\|)\to(0^+,0^+)\\(\|w_i\|,\|z_i\|)\to(0^+,0^+)}} \frac{|\mathcal{U}(t,w_1,w_2,w_3,w_4) - \mathcal{V}(t,z_1,z_2,z_3,z_4)|}{max\|w_i - z_i\|} \\ \leq |b(t) - \theta(t)| \lim_{\substack{(\|w_i\|,\|z_i\|)\to(0^+,0^+)\\(\|w_i\|,\|z_i\|)\to(0^+,0^+)}} \frac{\sum_{i=1}^4 |\|w_i\|^2 - \|z_i\||}{max\|x_i - z_i\|} \\ = |b(t) - \theta(t)| \lim_{\substack{(\|w_i\|,\|z_i\|)\to(0^+,0^+)\\(\|w_i\|,\|z_i\|)\to(0^+,0^+)}} \frac{\sum_{i=1}^4 |\|w_i\|(\|w_i\| - \|z_i\|)|}{max\|w_i - z_i\|} \\ \leq |b(t) - \theta(t)| \lim_{\substack{(\|w_i\|,\|z_i\|)\to(0^+,0^+)\\(\|w_i\|,\|z_i\|)\to(0^+,0^+)}} \frac{\sum_{i=1}^4 \|w_i\|\|w_i - z_i\|}{max\|w_i - z_i\|} \\ \leq |b(t) - \theta(t)| \lim_{\substack{\|w_i\|\to0^+\\(\|w_i\|,\|z_i\|)\to0^+}} \sum_{i=1}^4 \|w_i\| = 0.$$

Hence, based on Theorem (3.5) there is a common solution for both mentioned equations.

Corollary 3.7. Let $\mathcal{U} : [0,1] \times X^4 \to \mathbb{R}$ be continuous on set $E \in X$ with $m(E^c) = 0$, there exists $b \in L^1[0,1]$ and nondecreasing mapping $\Lambda : X^4 \to \mathbb{R}$ such that $|\mathcal{U}(t, w_1, w_2, w_3, w_4)| \leq b(t)\Lambda(w_1, w_2, w_3, w_4)$ for all $(w_1, w_2, w_3, w_4) \in X^4$ and almost all $t \in [0,1]$, also let

$$\lim_{z \to 0^+} \frac{\Lambda(z, z, z, z)}{z} = q_0$$

 $m_1 := \int_0^1 b(s) ds < \frac{1}{A_{\sigma,\eta}}$, where $l_1 = \max\{1, \frac{1}{\Gamma(2-\beta)}, a_0 + a_1\}$ and $q_0 \in [0, \frac{1}{l_1})$. Then, the pointwise defined equation (4) has a solution.

Proof. In theorem (3.5), let for all $t \in [0, 1]$ and $(w_1, w_2, w_3, w_4) \in X^4$,

$$\mathcal{V}(t, w_1, w_2, w_3, w_4) = \mathcal{U}(t, w_1, w_2, w_3, w_4).$$

Indicating all conditions of Theorem (3.5) is feasible. Therefore, the pointwise defined equation (4) has a solution.

 \square

24

4 Conclusion

Investigating of a solution for fractional differential equations has a specific importance, among which the singular ones have a significant role. In this paper, we consider a solution for a singular differential equation, then allocate some conditions to prove the existence of a common solution for two singular differential equations. Used new methods in this article, can help to examine other fractional differential equations.

References

- R. P. Agarwal, D. O'regan, S. Stanek, Positive solutions for Dirichlet problem of singular nonlinear fractional differential equations, Journal of Mathematical Analysis and Applications, 371 (2010) 57-68.
- [2] Z. Bai, W. Sun, Existence and multiplicity of positive solutions for singular fractional boundary value problems, Computer mathematics with applications, 63 (2012) 1369-1381.
- [3] Y. Wang, L. Liu, Necessary and sufficient condition for the existence of positive solution to singular fractional differential equations, Advances in Difference Equations, 2014 207 (2015).
- [4] A. Salim, Mo. Benchohra, E. Karapınar, J. E. Lazreg*Existence and Ulam stability for impulsive generalized Hilfer-type fractional differential equations*, Advances in Difference Equations, 2020, 601 (2020).
- [5] B. Alqahtani, H. Aydi, E. Karapınar, V. Rakočević A Solution for Volterra Fractional Integral Equations by Hybrid Contractions, Mathematics, 2019 7(8) 694.
- [6] S. Rezapour, H. Mohammadi, A. Jajarmi A new mathematical model for Zika virus transmission, Advances in Difference Equations, 2020 589 (2020).
- [7] S. M. Aydogan, D. Baleanu, A. Mousalou, S. Rezapour On approximate solutions for two higher-order Caputo-Fabrizio fractional

integro-differential equations, Advances in Difference Equations, 2017 221 (2017).

- [8] Z. Bai, T. Qui, Existence of positive solution for singular fractional differential equation, *Applied Mathematics and Computation*, 215 (2009) 2761-2767.
- [9] A. Malekpour, M. Shabibi and R. Nouraee, Existence of a solution for a multi singular pointwise defined fractional differential system, Journal Of Mathematical Extension, 2020 15 (2021).
- [10] D. Baleanu, Kh. Ghafarnezhad, Sh. Reazapour and M. Shabibi, On a strong-singular fractional differential equation, Advances in Difference Equations, 2020 350 (2020).
- [11] A. Mansouri, Sh. Rezapour, Investigating a Solution of a Multi-Singular Pointwise Defined Fractional Integro-Differential Equation with Caputo Derivative Boundary Condition, Journal Of Mathematical Extension, 2020 14 (2020).
- [12] A. Mansouri, M. Shabibi, On the existence of a solution for a bidealing singular fractional intergro-differential equation, Journal Of Mmathematical Extension, 2020 15 (2021).
- [13] M. Shabibi, M. Postolache, Sh. Rezapour and S. M. Vaezpour, Investigation of a multi- singular pointwise defined fractional integodifferential equation, Journal of Mathematical Analysis and Applications, 7 (2017) 61-77.
- [14] D. Baleanu, A. Jajarmi, H. Mohammadi, S. Rezapour A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative, Chaos, Solitons and Fractals, 134 109705 (2020).
- [15] S. B. Chikh, A. Amara, S. Etemad, S. Rezapour On Ulam-Hyers-Rassias stability of a generalized Caputo type multiorder boundary value problem with four-point mixed integroderivative conditions, Advances in Difference Equations, 2020 680 (2020).

- [16] A. Boutiara, S. Etemad, A. Hussain, S. Rezapour The generalized U-H and U-H stability and existence analysis of a coupled hybrid system of integro-differential IVPs involving φ-Caputo fractional operators, Advances in Difference Equations, 2021 95 (2021).
- [17] H. Mohammadi, D. Baleanu, S. Etemad, S. Rezapour Criteria for existence of solutions for a Liouville-Caputo boundary value problem via generalized Gronwall's inequality, Journal of Inequalities and Applications, 36 1-19 (2021).
- [18] D. Baleanu, S. Etemad, S. Rezapour On a fractional hybrid integrodifferential equation with mixed hybrid integral boundary value conditions by using three operators., Alexandria Engineering Journal, 59(5) 3019-3027 (2020).
- [19] H. Mohammadi, S. Rezapour, S. Etemad, D. Baleanu Two sequential fractional hybrid differential inclusions, Advances in Difference Equations, 2020 385 (2020).
- [20] H. Mohammadi, S. Kumar. S. Rezapour, S. Etemad A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control, Chaos, Solitons and Fractals, 144 110668 (2021).
- [21] A. Cabada, G. Wang, Positive solution of nonlinear fractional differential equations with integral boundary value conditions, Journal of Mathematical Analysis and Applications, 389 (2012) 403-411.
- [22] S. W. Vong, Positive solutions of singular fractional differential equations with integral boundary conditions, Mathematical computer modelling, 57 (2013) 1053-1059.
- [23] Y. Liu, P. J. Y. Wong, Global existence of solutions for a system of singular fractional differential equations with impulse effects, Journal of Applied Mathematics and Informatics, 33 (2015) 327-342.
- [24] D. Baleanu, Kh. Ghafarnezhad, Sh. Reazapour and M. Shabibi, On the existence of solution of a three steps crisis integro-differential equation, Advances in Difference Equations, 2018 135 (2018).

A. MALEKPOUR AND M. SHABIBI

- [25] D. Chergui, T.E.Oussaeif and M.Ahcene, Existence and uniqueness of solutions for nonlinear fractional differential equations depending on lower-order derivative with non-separated type integral boundary conditions, *AIMS Mathematics*, 4 (2019) 112–133, .
- [26] A. Mansouri, Sh. Rezapour and M. Shabibi, On the existence of solutions for a multi-singular pointwise defined fractional system, *Advances in Difference Equations*, 2020 646 (2020).
- [27] I. Podlubny, *Fractional differential equations*, Academic Press (1999).
- [28] M. Usman, K. Tayyab, E. Karapinar, A new approach to α - ψ contractive non-self multivalued mappings, Journal of Inequalities and Applications, 2014 71 (2014).
- [29] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for α-ψcontractive type mappings, Nonlinear Analysis, 75 (2012) 2154-2165.
- [30] S. G. Samko, A. A. Kilbas, O. I. Marichev, *Fractional integral and derivative; theory and applications*, Gordon and Breach (1993).
- [31] E. Zeidler, Nonlinear Functional Analysis and Its Applications-I: Fixed- point Theorems, Springer, New York, NY, USA, 1986.
- [32] H. Afshari, M. Sajjadmanesh, Fixed point theorems for αcontractive mappings, Sahand Communications in Mathematical Analysis 2 (2015) 65-72.

Abdolhamid Malekpour

Ph.D Student of Mathematics
Department of Mathematics, South Tehran Branch, Islamic Azad University
Tehran, Iran
E-mail: St_ah_malekpour@azad.ac.ir

Mehdi Shabibi

Assistant Professor of Mathematics Department of Mathematics, Meharn Branch, Islamic Azad University Mehran, Iran E-mail: mehdi_math1983@yahoo.com