Module Bounded Approximate Amenability of Banach Algebras

A. Hemmatzadeh
Azarbaijan Shahid Madani University
H. Pourmahmood Aghababa
University of Tabriz
M.H. Sattari *
Azarbaijan Shahid Madani University

Abstract

In this study we continue an investigation of the notion of module approximate amenability of a Banach algebra \mathcal{A} which is a module over another Banach algebra \mathfrak{A}. In fact we introduce the class of module boundedly approximately amenable Banach algebras (m.b.app.am.) . It is shown that the class of module boundedly approximately amenable Banach algebra is different from the class of amenable Banach algebras. Also, we show that for an inverse semigroup S with the set of idempotent $E, l^{1}(S)$ is module boundedly approximately amenable as $l^{1}(E)$-module if and only if S is amenable. Further examples are given of l^{1}-semigroup Banach algebras which are module boundedly approximately amenable but are not amenable.

AMS Subject Classification: MSC 43A07; MSC 46H25.
Keywords and Phrases: module boundedly approximately amenable, module derivation, boundedly approximately inner.

[^0]
1 Introduction

The concept of approximate amenability was introduced by Ghahramani and Loy in 2004 [6]. They showed that the class of approximately amenable Banach algebras is larger than the class of amenable Banach algebras. Also, they proved that the group algebra $L^{1}(G)$ is approximately amenable if and only if G is amenable, but this fails to be true for any discrete semigroup S. In fact for any semigroup S just approximately amenability of $l^{1}(S)$ implies the amenability of S [7]. Also, they introduced the class of boundedly approximately amenable Banach algebras. Ghahramani and Read built a boundedly approximately amenable Banach algebra which has no right bounded approximate identity [8, Corollary 3.2], and so it is not amenable.

Amini considered a Banach algebra \mathcal{A} over another Banach algebra \mathfrak{A} as an \mathfrak{A}-module and introduced the concept of module amenability of Banach algebras [1]. He showed that under some natural conditions, for an inverse semigroup S with the set of idempotent $E, l^{1}(S)$ is $l^{1}(E)$ module amenable if and only if S is amenable. Amini defined a bounded virtual diagonal for \mathcal{A} and proved that existing this diagonal implies the module amenability of \mathcal{A}. Yazdanpanah and Najafi defined the module approximate amenability of Banach algebras [13]. Pourmahmood and Bodaghi investigated the notions of module approximate amenability and module approximate contractibility for Banach algebras [12]. They showed that the classes of module approximately amenable and module approximately contractible Banach algebras are the same. They defined the unital Banach algebra $\mathcal{B}=\mathcal{A} \oplus \mathfrak{A}^{\#}$ as $\mathfrak{A}^{\#}$-module unitization of \mathcal{A} which also is a $\mathfrak{A}^{\#}$-module with compatible actions and proved that the module approximate amenability (contractibility) of \mathcal{A} and \mathcal{B} is equivalent. Similar to module amenability, in approximate version for an inverse semigroup S with the set of idempotent E they concluded that $l^{1}(S)$ is $l^{1}(E)$-module approximately amenable if and only if S is amenable. As amenability, module version of another cohomological notion of Banach algebras such as module approximate biprojectivity and module approximate biflatness are verified recently in [3].

In this paper we consider \mathcal{A} as an \mathfrak{A}-module Banach algebra and introduce the bounded version of \mathfrak{A}-module approximate amenability of \mathcal{A}. Here we show that the module bounded approximate amenability of
\mathcal{A} and \mathcal{B} are equivalent. Also, we prove that the existence of a net in $\left(\mathcal{B} \widehat{\otimes}_{\mathfrak{A} \#} \mathcal{B}\right)^{* *}$ is equivalent to module bounded approximate amenability of \mathcal{B}.

Also, we get that, for an inverse semigroup S with the set of idempotent E, the equivalence relation between amenability of S and module approximate amenability of $l^{1}(S)$ (as an $l^{1}(E)$-module) is true in boundedly version.
Throughout the paper, we shall use the abbreviation m.b.app.am. for module boundedly approximately amenable, b.a.i. for bounded approximate identity, m.b.r.a.i. for multiplier-bounded right approximate identity and m.b.l.a.i. for multiplier-bounded left approximate identity.

2 Notations and preliminaries

We first recall some definitions. Let \mathcal{A} be a Banach algebra, and X be a Banach \mathcal{A}-bimodule. A bounded linear map $D: \mathcal{A} \rightarrow X$ is called a derivation if

$$
D(a \cdot b)=a \cdot D(b)+D(a) \cdot b \quad(a, b \in \mathcal{A})
$$

For each $x \in X$, we define the $\operatorname{map} a d_{x}: \mathcal{A} \rightarrow X$ by

$$
\begin{equation*}
a d_{x}(a)=a \cdot x-x \cdot a \quad(a \in X) \tag{1}
\end{equation*}
$$

It is easy to see that $a d_{x}$ is a derivation. Derivations of this form are called inner derivations.

A derivation $D: \mathcal{A} \rightarrow X$ is said to be boundedly approximately inner if there exists a net $\left(\xi_{i}\right) \subset X$ such that

$$
D(a)=\lim _{i} a d_{\xi_{i}}(a) \quad(a \in \mathcal{A})
$$

and

$$
\exists L>0: \sup \left\|a d_{\xi_{i}}(a)\right\| \leq L\|a\| \quad(a \in \mathcal{A})
$$

A Banach algebra \mathcal{A} is boundedly approximately amenable if every bounded derivation $D: \mathcal{A} \rightarrow X^{*}$ is boundedly approximately inner, for each Banach \mathcal{A}-bimodule X, where X^{*} denotes the first dual of X which is a Banach \mathcal{A}-bimodule in the canonical way.

Let \mathcal{A} and \mathfrak{A} be Banach algebras such that \mathcal{A} is a Banach \mathfrak{A}-bimodule with compatible actions as follows:

$$
\alpha \cdot(a b)=(\alpha \cdot a) b, \quad(a b) \cdot \alpha=a(b \cdot \alpha) \quad(a, b \in \mathcal{A}, \alpha \in \mathfrak{A}) .
$$

Let X be a left Banach \mathcal{A}-module and a Banach \mathfrak{A}-bimodule with the following compatible actions:

$$
\alpha \cdot(a \cdot x)=(\alpha \cdot a) \cdot x, \quad(a \cdot x) \cdot \alpha=a \cdot(x \cdot \alpha), \quad a \cdot(\alpha \cdot x)=(a \cdot \alpha) \cdot x,
$$

for all $x \in X, a \in \mathcal{A}$ and $\alpha \in \mathfrak{A}$ then X is called a left Banach \mathcal{A} - \mathcal{A} module, right and \mathcal{A} - \mathfrak{A}-bimodule are defined similarly. Moreover, if α. $x=x \cdot \alpha$ for all $\alpha \in \mathfrak{A}$ and $x \in X$, then X is called a commutative Banach \mathcal{A} - \mathfrak{A}-module. Some examples of commutative and non-commutative \mathcal{A} -\mathfrak{A}-modules are given in [11]. If X is a (commutative) Banach \mathcal{A} - \mathfrak{A} module, then X^{*} is too, where the actions of \mathcal{A} and \mathfrak{A} on X^{*} are defined as usual:

$$
\begin{array}{lll}
<F \cdot \alpha, x>=<F, \alpha \cdot x> & , & <\alpha \cdot F, x>=<F, x \cdot \alpha> \\
<F \cdot a, x>=<F, a \cdot x> & , & <a \cdot F, x>=<F, x \cdot a>
\end{array}
$$

for all $\alpha \in \mathfrak{A}, a \in \mathcal{A}, x \in X$ and $F \in X^{*}$.
Note that, in general, \mathcal{A} is not an \mathcal{A} - \mathfrak{A}-module because \mathcal{A} does not satisfy in the compatibility condition $a \cdot(\alpha \cdot b)=(a \cdot \alpha) \cdot b$ for all $\alpha \in \mathfrak{A}$ and $a, b \in \mathcal{A}$. But when A is a commutative Banach \mathfrak{A}-module and acts on itself by multiplication, it is an $\mathcal{A}-\mathfrak{A}$-module.

Let \mathcal{A} and \mathfrak{A} be Banach algebras such that \mathcal{A} is a Banach \mathfrak{A}-bimodule with compatible actions and X be a Banach $\mathcal{A}-\mathfrak{A}$-module. A ($\mathfrak{A}-$)module derivation is a bounded map $D: \mathcal{A} \rightarrow X$ such that

$$
\begin{aligned}
D(a \pm b) & =D(a) \pm D(b) \\
D(a \cdot b) & =a \cdot D(b)+D(a) \cdot b
\end{aligned}
$$

and

$$
D(\alpha \cdot a)=\alpha \cdot D(a), \quad D(a \cdot \alpha)=D(a) \cdot \alpha \quad(\alpha \in \mathfrak{A}, a \in \mathcal{A})
$$

Although D is not necessarily \mathbb{C}-linear, but still its boundedness implies its norm continuity. When X is a commutative \mathfrak{A}-bimodule, each $x \in X$ defines an inner module derivation as follows

$$
\begin{equation*}
a d_{x}(a)=a \cdot x-x \cdot a \quad(a \in A) \tag{2}
\end{equation*}
$$

Remark that if \mathcal{A} is a left (right) essential \mathfrak{A}-module, then every \mathfrak{A}-module derivation is also a derivation [12], in fact, it is \mathbb{C}-linear. If for any commutative Banach \mathcal{A} - \mathfrak{A}-module X, each module derivation $D: \mathcal{A} \rightarrow X^{*}$ is inner, then \mathfrak{A} is called module amenable (as an \mathfrak{A} module).

Definition 2.1. Let \mathcal{A} and \mathfrak{A} be Banach algebras and \mathcal{A} be an \mathfrak{A} bimodule with compatible actions. Then \mathcal{A} is module boundedly approximately amenable (m.b.app.am.) as an \mathfrak{A}-module if for any commutative Banach \mathcal{A} - \mathfrak{A}-module X, each module derivation $D: \mathcal{A} \rightarrow X^{*}$ is boundedly approximately inner;

Note that a left Banach \mathfrak{A}-module X is called left \mathfrak{A}-essential if the linear span of $\mathfrak{A} \cdot X=\{\alpha \cdot x: \alpha \in \mathfrak{A}, x \in X\}$ is dense in X. Right essential \mathfrak{A}-modules and two-sided essential \mathfrak{A}-bimodules are defined similarly.

Proposition 2.2. Let \mathcal{A} be b.app.am. that is essential as one-sided Banach \mathfrak{A}-module. Then \mathcal{A} is m.b.app.am..

Proof. According to descriptions above Definition 2.1 and our assumptions any module derivation is a derivation, so we conclude our proof.

We will give Example $4.3-(i)$ to show that the converse is not true in general.

Let $\mathcal{A} \widehat{\otimes} \mathcal{A}$ be the projective tensor product of \mathcal{A} which is a Banach \mathcal{A}-bimodule and a Banach \mathfrak{A}-bimodule. Now consider the module projective tensor product $\mathcal{A} \widehat{\otimes}_{\mathfrak{A}} \mathcal{A}$ which is the quotient space $(\mathcal{A} \widehat{\otimes} \mathcal{A}) / I_{\mathcal{A}}$ where $I_{\mathcal{A}}$ is the closed linear span of $\{a \cdot \alpha \otimes b-a \otimes \alpha \cdot b: \quad \alpha \in \mathfrak{A}, a, b \in$ $\mathcal{A}\}$. Also, consider the closed ideal $J_{\mathcal{A}}$ of \mathcal{A} generated by the elements $(a \cdot \alpha) b-a(\alpha \cdot b)$ for $a, b \in \mathcal{A}$ and $\alpha \in \mathfrak{A}$.

It follows that $I_{\mathcal{A}}$ and $J_{\mathcal{A}}$ are both \mathcal{A}-submodules and \mathfrak{A}-submodules of $(\mathcal{A} \widehat{\otimes} \mathcal{A})$ and \mathcal{A}, respectively. Both of the quotients $\mathcal{A} \widehat{\otimes}_{\mathfrak{A}} \mathcal{A}$ and $\mathcal{A} / J_{\mathcal{A}}$ are \mathcal{A}-modules and \mathfrak{A}-modules. Also, $\left(\mathcal{A} \widehat{\otimes}_{\mathfrak{A}} \mathcal{A}\right)$ is a \mathcal{A} - \mathfrak{A}-module if \mathcal{A} is a \mathcal{A} - \mathfrak{A}-module. Moreover, when \mathcal{A} acts on $A / J_{\mathcal{A}}$ canonically, then $\mathcal{A} / J_{\mathcal{A}}$ is a Banach \mathcal{A} - \mathfrak{A}-module

Consider $\omega_{\mathcal{A}}: \mathcal{A} \widehat{\otimes} \mathcal{A} \longrightarrow \mathcal{A}$ defined by $\omega_{\mathcal{A}}(a \otimes b)=a b,(a, b \in \mathcal{A})$ and extended by linearity. Then both ω and its second conjugate $\omega^{* *}$ are

A. HEMMATZADEH, H. P. AGHABABA AND M.H. SATTARI

\mathcal{A}-module homomorphisms. We define $\tilde{\omega}_{\mathcal{A}}:\left(\mathcal{A} \widehat{\otimes}_{\mathfrak{A}} \mathcal{A}\right)=(\mathcal{A} \widehat{\otimes} \mathcal{A}) / I_{\mathcal{A}} \longrightarrow$ $\mathcal{A} / J_{\mathcal{A}}$ by

$$
\tilde{\omega}_{\mathcal{A}}\left(a \widehat{\otimes} b+I_{\mathcal{A}}\right)=a b+J_{\mathcal{A}} \quad, \quad(a, b \in \mathcal{A})
$$

We denote bythe first Arens product on $\mathcal{A}^{* *}$, the second dual of \mathcal{A}. We assume that $\mathcal{A}^{* *}$ is equipped with the first Arens product.

For a Banach algebra \mathfrak{A}, its unitization, denoted by $\mathfrak{A}^{\#}$, is the Banach algebra $\mathfrak{A} \oplus \mathbb{C}$ with the multiplication

$$
(u, \alpha)(v, \beta)=(u v+\beta u+\alpha v, \alpha \beta) \quad(u, v \in \mathfrak{A}, \alpha, \beta \in \mathbb{C})
$$

Let \mathcal{A} be a Banach algebra and a Banach \mathfrak{A}-bimodule with compatible actions and let $\mathcal{B}=\left(\mathcal{A} \oplus \mathfrak{A}^{\#}, \bullet\right)$, where the multiplication \bullet is defined through

$$
(a, u) \bullet(b, v)=(a b+a \cdot v+u \cdot b, u v) \quad\left(a, b \in \mathcal{A}, u, v \in \mathfrak{A}^{\#}\right)
$$

\mathcal{B} is called the module unitization of \mathcal{A}. Consider the module actions of $\mathfrak{A}^{\#}$ on \mathcal{B} as follows:

$$
u \cdot(a, v)=(u \cdot a, u v), \quad(a, v) \cdot u=(a \cdot u, v u) \quad\left(a \in \mathcal{A}, \quad u, v \in \mathfrak{A}^{\#}\right)
$$

Then \mathcal{B} is a unital Banach algebra and a Banach $\mathfrak{A}^{\#}$-bimodule with compatible actions.

Proposition 2.3. Let \mathcal{A} be a Banach algebra and an \mathfrak{A}-bimodule with compatible actions. Then the following are equivalent:
(i) \mathcal{A} is $\mathfrak{A}^{\#}$-module boundedly approximately amenable;
(ii) \mathcal{B} is $\mathfrak{A}^{\#}$-module boundedly approximately amenable;

If, in addition \mathcal{A} is a left or right essential \mathfrak{A}-module, then (i) and (ii) are equivalent to
(iii) \mathcal{A} is \mathfrak{A}-module boundedly approximately amenable.

Proof. Since every $\mathfrak{A}^{\#}$-module derivation on \mathcal{B} reduces to a $\mathfrak{A}^{\#}$-module derivation from \mathcal{A}, by vanishing on $\mathfrak{A}^{\#}$, the proposition can be proved in essentially the same way as [12, Theorem 3.1].

The following lemma which is analogous to [12, Lemma 3.2], will be used in the proof of Theorem 3.1 implicitly.

Lemma 2.4. If \mathcal{A} has a bounded approximate identity, then it is module boundedly approximately amenable iff every \mathfrak{A}-module derivation D : $\mathcal{A} \rightarrow X^{*}$ is boundedly approximately inner for each commutative \mathcal{A} -pseudo-unital Banach \mathcal{A} - \mathfrak{A}-module X.

3 Bounded approximate module amenability of Banach algebras

In this section we provide some equivalent conditions for the module bounded approximate amenability in terms of diagonal for \mathcal{B} with results related to the existence of bounded approximate identity for \mathcal{A}. It is shown that if $\mathcal{A}^{* *}$ is m.b.app.am., so is \mathcal{A} when \mathcal{A} is a Banach \mathcal{A} - \mathfrak{A}-module and $\left(\mathcal{A} \widehat{\otimes}_{\mathfrak{A}} \mathcal{A}\right)$ is commutative as \mathcal{A} - \mathfrak{A}-module. Finally, the $l^{1}(E)$-module bounded approximate amenability of $l^{1}(S)$ and $l^{1}(S)^{* *}$ are characterized where S is an inverse semigroups with the set of idempotent elements E.

Note that Example 6.1 in [6] is a non-amenable Banach algebra that is boundedly approximately amenable [7, Remark 5.2]. So two notions 'bounded approximate amenability' and 'amenability' do not coincide. Since these are the special cases of module bounded approximate amenability and module amenability with $\mathfrak{A}=\mathbb{C}$, respectively, then module bounded approximate amenability and module amenability are different notions.

Now we prove a proposition for m.b.app.am. Banach algebras, as follows:

Theorem 3.1. Let \mathcal{A} be a Banach algebra and a Banach \mathfrak{A}-bimodule with compatible actions. Let also $\mathcal{B} \widehat{\otimes}_{\mathfrak{A} \#} \mathcal{B}$ be commutative as a $\mathfrak{A}^{\#_{-}}$ module. Then the following are equivalent:
(i) \mathcal{B} is m.b.app.am. as a $\mathfrak{A}^{\#}$-module;
(ii) There exist a net $\left(M_{i}\right) \subset\left(\mathcal{B} \widehat{\otimes}_{\mathfrak{A} \#} \mathcal{B}\right)^{* *}$ and $L>0$ such that for all $b \in B, b \cdot M_{i}-M_{i} \cdot b \longrightarrow 0,\left\|b \cdot M_{i}-M_{i} \cdot b\right\| \leq L\|b\|, \tilde{\omega}_{\mathcal{B}}^{* *}\left(M_{i}\right) \rightarrow 1_{\mathcal{B}}$ and $\tilde{\omega}_{\mathcal{B}}^{* *}\left(M_{i}\right)$ is bounded;
(iii) \quad There exist a net $\left(M_{i}\right) \subset\left(\mathcal{B}_{\otimes_{\mathfrak{A}} \# \mathcal{B}}\right)^{* *}$ and $L>0$ such that for

$$
\begin{aligned}
& \text { all } b \in \mathcal{B}, b \cdot M_{i}-M_{i} \cdot b \longrightarrow 0,\left\|b \cdot M_{i}-M_{i} \cdot b\right\| \leq L\|b\| \text { and } \\
& \tilde{\omega}_{\mathcal{B}}^{* *}\left(M_{i}\right)=1_{\mathcal{B}}
\end{aligned}
$$

Proof. $(\mathbf{i}) \Longrightarrow($ iii $)$: Let $F=1 \otimes_{\mathfrak{A} \#}$. It is straightforward to check that the inner derivation $D_{F}: \mathcal{B} \rightarrow\left(\mathcal{B} \widehat{\otimes}_{\mathfrak{A} \#} \mathcal{B}\right)^{* *}$ satisfies $D_{F}(\mathcal{B}) \subset \operatorname{ker} \tilde{\omega}_{\mathcal{B}}^{* *}=$ $\left(\operatorname{ker} \tilde{\omega}_{\mathcal{B}}\right)^{* *}$, and so there exist a net $\left(N_{i}\right) \subset\left(\operatorname{ker} \tilde{\omega}_{\mathcal{B}}^{* *}\right)$ and a constant $k>0$ such that $D_{N_{i}}(b) \longrightarrow D_{F}(b)$ and $\left\|D_{N_{i}}(b)\right\| \leq k\|b\|$ for all $b \in \mathcal{B}$. Letting $M_{i}=F-N_{i}$ for all i, we have

$$
\begin{gathered}
\tilde{\omega}_{\mathcal{B}}^{* *}\left(M_{i}\right)=\tilde{\omega}_{\mathcal{B}}^{* *}(F)-\tilde{\omega}_{\mathcal{B}}^{* *}\left(N_{i}\right)=1_{\mathcal{B}}-0=1_{\mathcal{B}} \\
b \cdot M_{i}-M_{i} \cdot b=D_{F}(b)-D_{N_{i}}(b) \longrightarrow 0
\end{gathered}
$$

and

$$
\begin{aligned}
\left\|b \cdot M_{i}-M_{i} \cdot b\right\| & \leq\left\|D_{F}(b)\right\|+\left\|D_{N_{i}}(b)\right\| \\
& \leq\left(\left\|D_{F}\right\|+k\right)\|b\|
\end{aligned}
$$

Therefore (iii) holds for $L=\left\|D_{F}\right\|+k$.
(iii) $\Longrightarrow(\mathbf{i i})$: is obvious.
$(\mathbf{i i}) \Longrightarrow(\mathbf{i})$: It is similar to [12, Theorem 3.3], with this additional notion that $\sup _{i}\left\|\tilde{\omega}_{\mathcal{B}}^{* *}\left(M_{i}\right)\right\|<\infty$. So we have

$$
\begin{aligned}
\left\|a d_{f_{i}}(b)\right\| & \leq\|F\|\left\|b \cdot M_{i}-M_{i} \cdot b\right\|+\|D(b)\|\left\|\tilde{\omega}_{\mathcal{B}}^{* *}\left(M_{i}\right)\right\| \\
& \leq\|D\|\|b\| L+\|D\|\|b\| \sup _{i}\left\|\tilde{\omega}_{\mathcal{B}}^{* *}\left(M_{i}\right)\right\|
\end{aligned}
$$

for all i and $b \in \mathcal{B}$. So $\left\|a d_{f_{i}}(b)\right\| \leq K\|b\|$ for all $b \in \mathcal{B}$, where $K=$ $\|D\|\left(L+\sup _{i}\left\|\tilde{\omega}_{\mathcal{B}}^{* *}\left(M_{i}\right)\right\|\right)$.

Remark that by using [4, Lemma 3.1] we can conclude that when \mathcal{A} is m.b.app.am. as a commutative Banach \mathfrak{A}-module, it has left and right approximate identity.

Theorem 3.2. Suppose that \mathcal{A} is a Banach algebra and a Banach \mathfrak{A} bimodule with compatible actions which is m.b.app.am.. Also, let $\mathcal{B} \widehat{\otimes}_{\mathfrak{A} \#} \mathcal{B}$ be commutative as Banach $\mathfrak{A}^{\#}$-module. Then exist a constant $L>0$, nets $\left(m_{i}\right) \subset\left(\mathcal{A}_{\mathbb{\otimes}_{\mathfrak{A}}} \mathcal{A}\right)^{* *}$ and $\left(a_{i}\right),\left(b_{i}\right) \subset \mathcal{A}^{* *}$ such that for all $a \in \mathcal{A}$ we have
(i) $\tilde{\omega}_{\mathcal{A}}^{* *}\left(m_{i}\right)=a_{i}+b_{i} ;$
(ii) $b_{i} \cdot a \longrightarrow a,\left\|b_{i} \cdot a\right\| \leq L\|a\|$ for all i;
(iii) $a \cdot a_{i} \longrightarrow a,\left\|a \cdot a_{i}\right\| \leq L\|a\|$ for all i;
(iv) $a \cdot m_{i}-m_{i} \cdot a+a_{i} \otimes a-a \otimes b_{i} \longrightarrow 0$, $\left\|a \cdot m_{i}-m_{i} \cdot a+a_{i} \otimes a-a \otimes b_{i}\right\| \leq L\|a\|$ for all i.

Proof. By Theorem 3.1 there is a net $\left(M_{i}\right) \subset\left(\mathcal{B} \widehat{\otimes}_{\mathfrak{A} \#} \mathcal{B}\right)^{* *}$ and a constant $L>0$ satisfying $b \cdot M_{i}-M_{i} \cdot b \longrightarrow 0,\left\|b \cdot M_{i}-M_{i} \cdot b\right\| \leq L\|b\|$ and $\tilde{\omega}_{\mathcal{B}}^{* *}\left(M_{i}\right)=1_{\mathcal{B}}$ for all $b \in \mathcal{B}$. Following

$$
\begin{aligned}
\left(\mathcal{B} \widehat{\otimes}_{\mathfrak{A} \#} \mathcal{B}\right)^{* *} & =\left(\left(\mathcal{A} \oplus \mathfrak{A}^{\#}\right) \widehat{\otimes}_{\mathfrak{A} \#}\left(\mathcal{A} \oplus \mathfrak{A}^{\#}\right)\right)^{* *} \\
& =\left(\mathcal{A} \widehat{\otimes}_{\mathfrak{A} \#} \mathcal{A}\right)^{* *} \oplus\left(\mathcal{A} \widehat{\otimes}_{\mathfrak{A} \#} \mathfrak{A}^{\#}\right)^{* *} \\
& \oplus\left(\mathfrak{A}^{\#} \widehat{\otimes}_{\mathfrak{A} \#} \mathcal{A}\right)^{* *} \oplus\left(\mathfrak{A}^{\#} \widehat{\otimes}_{\mathfrak{A} \#} \mathfrak{A}^{\#}\right)^{* *},
\end{aligned}
$$

we can write

$$
M_{i}^{\prime}=m_{i}-\left(a_{i} \otimes_{\mathfrak{A} \#} 1_{\mathfrak{A} \#}\right)-\left(1_{\mathfrak{A} \neq} \otimes_{\mathfrak{A} \#} b_{i}\right)+\left(t_{i} \otimes_{\mathfrak{A} \#} 1_{\mathfrak{A} \#}\right),
$$

for some $\left(m_{i}\right) \subset\left(\mathcal{A} \widehat{\otimes}_{\mathfrak{A} \#} \mathcal{A}\right)^{* *},\left(a_{i}\right),\left(b_{i}\right) \subset \mathcal{A}^{* *}$, and $\left(t_{i}\right) \subset\left(\mathfrak{A}^{\#}\right)^{* *}$. Applying $\tilde{\omega}_{\mathcal{B}}^{* *}\left(M_{i}\right)=1_{\mathcal{B}}$ yields

$$
\tilde{\omega}_{\mathcal{A}}^{* *}\left(m_{i}\right)-a_{i}-b_{i}+t_{i}=1_{\mathcal{B}}=(0,1) \in\left(\mathcal{A} \oplus \mathfrak{A}^{\#}\right)
$$

This follows that $\tilde{\omega}_{\mathcal{A}}^{* *}\left(m_{i}\right)-a_{i}-b_{i}=0$, and $t_{i}=1$, for all i. Also, we have

$$
\begin{align*}
a \cdot M_{i}^{\prime}-M_{i}^{\prime} \cdot a & =\left(\left(a \cdot m_{i}-m_{i} \cdot a\right)+\left(a_{i} \otimes_{\mathfrak{A} \#} a\right)-\left(a \otimes_{\mathfrak{A} \#} b_{i}\right)\right) \\
& +\left(1_{\mathfrak{A} \#} \otimes_{\mathfrak{A} \#} b_{i} a-1_{\mathfrak{A} \#} \otimes_{\mathfrak{A} \#} a\right) \\
& +\left(-a a_{i} \otimes_{\mathfrak{R} \#} 1_{\mathfrak{A} \neq}+a \otimes_{\mathfrak{R} \#} 1_{\mathfrak{A} \neq}\right) \longrightarrow 0, \tag{3}
\end{align*}
$$

for all $a \in \mathcal{A}$. Hence

$$
\begin{gathered}
\left(\left(a \cdot m_{i}-m_{i} \cdot a\right)+\left(a_{i} \otimes_{\mathfrak{A} \#} a\right)-\left(a \otimes_{\mathfrak{A} \#} b_{i}\right)\right) \longrightarrow 0, \\
\quad\left(1_{\mathfrak{A} \#} \otimes_{\mathfrak{A} \#} b_{i} a-1_{\mathfrak{R} \#} \otimes_{\mathfrak{A} \neq} a\right) \longrightarrow 0, \\
\left(-a a_{i} \otimes_{\mathfrak{A} \#} 1_{\mathfrak{A} \neq}+a \otimes_{\mathfrak{A} \neq} 1_{\mathfrak{A} \#}\right) \longrightarrow 0,
\end{gathered}
$$

we may conclude

$$
\begin{array}{lll}
1_{\mathfrak{A} \#} \otimes_{\mathfrak{A} \#}\left(b_{i} a-a\right) \longrightarrow 0 & \Longrightarrow \quad & b_{i} a \longrightarrow a, \\
\left(a a_{i}-a\right) \otimes_{\mathfrak{A} \#} 1_{\mathfrak{A} \#} \longrightarrow 0 & \Longrightarrow \quad a a_{i} \longrightarrow a,
\end{array}
$$

for all $a \in \mathcal{A}$. The left side of 3 is bounded by $L\|a\|$ for all i and $a \in \mathcal{A}$, then we get

$$
\begin{gathered}
\left\|a \cdot m_{i}-m_{i} \cdot a+a_{i} \otimes a-a \otimes b_{i}\right\|<L\|a\|, \\
\left\|b_{i} a\right\| \leq L\|a\|, \\
\left\|a a_{i}\right\| \leq L\|a\| .
\end{gathered}
$$

Theorem 3.3. Suppose that \mathcal{A} is a Banach algebra and a Banach \mathfrak{A} bimodule with compatible actions which is m.b.app.am. and has both m.b.l.a.i. and m.b.r.a.i.. Also $\mathcal{B} \widehat{\otimes}_{\mathfrak{A} \#} \mathcal{B}$ is commutative as Banach $\mathfrak{A}^{\#}$ module. Then \mathcal{A} has a b.a.i..

Proof. Let $\left(f_{\gamma}\right)$ and $\left(e_{\beta}\right)$ be left and right multiplier-bounded approximate identities for \mathcal{A}, respectively. So there is $K>0$ such that

$$
\begin{equation*}
\left\|a \cdot e_{\beta}\right\| \leq K\|a\|, \quad\left\|f_{\gamma} \cdot a\right\| \leq K\|a\| \tag{4}
\end{equation*}
$$

for all $a \in \mathcal{A}$ and for all β, γ. From this relation and projective tensor norm we have
$\left\|f_{\gamma} \cdot m\right\|_{\widehat{\otimes}}=\left\|\sum_{n=1}^{\infty} f_{\gamma} \cdot a_{n} \otimes b_{n}\right\|_{\widehat{\otimes}} \leq K \sum_{n=1}^{\infty}\left\|a_{n}\right\|\left\|b_{n}\right\| \quad(m \in \mathcal{A} \widehat{\otimes} \mathcal{A})$
for any representation $m=\sum_{n=1}^{\infty} a_{n} \otimes b_{n}$, and so $\left\|f_{\gamma} \cdot m\right\|_{\widehat{\mathbb{\otimes}}} \leq K\|m\|_{\widehat{\otimes}}$. By passing to the quotient we have $\left\|f_{\gamma} \cdot m\right\|_{\widehat{\otimes}_{\mathfrak{2} \#}} \leq K\|m\|_{\widehat{\otimes}_{\mathfrak{2}} \#}$ for all $m \in\left(\mathcal{A} \widehat{\otimes}_{\mathfrak{A} \#} \mathcal{A}\right)$ and all γ, where the index $\widehat{\otimes}_{\mathfrak{A} \#}$ in the norm, denotes the norm on $\mathcal{A} \widehat{\otimes}_{\mathfrak{A} \#} \mathcal{A}$ that from now on, it will be omitted.

According to Goldestine's Theorem for any $T \in\left(\mathcal{A} \widehat{\otimes}_{\mathfrak{A} \#} \mathcal{A}\right)^{* *}$ there exists a net $\left(m_{j}\right) \subseteq \mathcal{A} \widehat{\otimes}_{\mathfrak{A} \#} \mathcal{A}$ such that $m_{j} \xrightarrow{w^{*}} T$ and $\sup _{j}\left\|m_{j}\right\| \leq\|T\|$.

Using this and the ω^{*}-continuity of the left module action of \mathcal{A} on $\left(A \widehat{\otimes}_{\mathfrak{R} \#} A\right)^{* *}$ yield

$$
f_{\gamma} \cdot m_{j} \xrightarrow{w^{*}} f_{\gamma} \cdot T, \quad\left\|f_{\gamma} \cdot m_{j}\right\| \leq K\left\|m_{j}\right\| \leq K\|T\| .
$$

So $\left\|f_{\gamma} \cdot T\right\| \leq K\|T\|$. By the same argument we have

$$
\begin{equation*}
\left\|m \cdot e_{\beta}\right\| \leq K\|m\|, \quad\left\|T \cdot e_{\beta}\right\| \leq K\|T\|, \tag{5}
\end{equation*}
$$

for all $m \in \mathcal{A} \widehat{\otimes}_{\mathfrak{A} \#} \mathcal{A}$ and $T \in\left(\mathcal{A} \widehat{\otimes}_{\mathfrak{A} \#} \mathcal{A}\right)^{* *}$.
Let the nets $\left(a_{i}\right)$ and $\left(b_{i}\right)$ and the constant L satisfy in the previous theorem. Suppose, on the contrary, that the net $\left(f_{\gamma}\right)$ is unbounded. According to Theorem 3.2-(iv) for every i and γ we have

$$
\left\|f_{\gamma} \cdot m_{i}-m_{i} \cdot f_{\gamma}-f_{\gamma} \otimes b_{i}+a_{i} \otimes f_{\gamma}\right\| \leq L\left\|f_{\gamma}\right\| .
$$

Applying (5) gives

$$
\left\|\left(f_{\gamma} \cdot m_{i}-m_{i} \cdot f_{\gamma}-f_{\gamma} \otimes b_{i}+a_{i} \otimes f_{\gamma}\right) \cdot e_{\beta}\right\| \leq K L\left\|f_{\gamma}\right\|,
$$

for all i, β and γ. Utilizing this relation, the triangle inequality and left-multiplier boundedness of the net $\left(f_{\gamma}\right)$ we get

$$
\begin{align*}
\left\|f_{\gamma}\right\|\left\|b_{i} \cdot e_{\beta}\right\| & \leq K L\left\|f_{\gamma}\right\|+\left\|f_{\gamma} \cdot\left(m_{i} \cdot e_{\beta}\right)\right\|+\left\|m_{i} \cdot\left(f_{\gamma} \cdot e_{\beta}\right)\right\| \\
& +\left\|a_{i} \cdot\left(f_{\gamma} \cdot e_{\beta}\right)\right\| \tag{6}\\
& \leq K L\left\|f_{\gamma}\right\|+2 K\left\|m_{i}\right\|\left\|e_{\beta}\right\|+K\left\|a_{i}\right\|\left\|e_{\beta}\right\|,
\end{align*}
$$

for all i, β and γ. So we have

$$
\left\|b_{i} \cdot e_{\beta}\right\| \leq K L+\frac{1}{\left\|f_{\gamma}\right\|}\left(2 K\left\|m_{i}\right\|\left\|e_{\beta}\right\|+K\left\|a_{i}\right\|\left\|e_{\beta}\right\|\right) .
$$

For fixed i and β, our assumption regarding unboundedness of $\left(f_{\gamma}\right)$ implies:

$$
\left\|b_{i} \cdot e_{\beta}\right\| \leq K L
$$

Taking limits with respect to i, according to Theorem 3.2, we obtain $\left\|e_{\beta}\right\| \leq K L$ for each β. Using $\left(e_{\beta}\right)$ as a right approximate identity and $\left(f_{\gamma}\right)$ as a m.b.l.a.i and then, applying the latter inequality we find out

$$
\left\|f_{\gamma}\right\|=\lim _{\beta}\left\|f_{\gamma} \cdot e_{\beta}\right\| \leq \lim _{\beta} K\left\|e_{\beta}\right\| \leq K^{2} L
$$

for all γ. This contradicts our assumption that the net $\left(f_{\gamma}\right)$ is unbounded.

A similar argument shows that the net $\left(e_{\beta}\right)$ is also bounded. Therefore, \mathcal{A} has a bounded approximate identity.

Remark 3.4. Ghahramani and Read made a Banach algebra \mathcal{A} which was b.app.am, but they proved that $\mathcal{A} \oplus \mathcal{A}^{o p}$ is not app.am [8, Theorem 4.1]. So the direct sum of two m.b.app.am. Banach algebras is not necessarily m.b.app.am..

Proposition 3.5. Suppose that \mathcal{A} is a Banach \mathcal{A} - \mathfrak{A}-module and $\left(\mathcal{A} \widehat{\otimes}_{\mathfrak{A}} \mathcal{A}\right)$ is a commutative Banach $\mathcal{A}-\mathfrak{A}$-module. If $\mathcal{A}^{* *}$ is m.b.app.am., so is \mathcal{A}.

Proof. Consider Theorem 3.1 for $\mathcal{B}^{* *}$, since the role of $\mathcal{B}^{* *}$ for $\mathcal{A}^{* *}$ is the same as the role of \mathcal{B} for \mathcal{A}. We follow the notations of [12, Proposition 3.7], the proof is similar to the proof of this proposition with these additional assumptions:
(i) $\tilde{\omega}_{\mathcal{B}^{* *}}^{* *}\left(\theta_{j}\right)$ is bounded;
(ii) $\left\|b \cdot \theta_{j}-\theta_{j} \cdot b\right\|<L\|b\|$ for all $b \in \mathcal{B}^{* *}$ and $L>0$.

Since Ω_{u} is a bounded mapping, T is canonical embedding and Ω_{u} and T and their adjoints are $\mathcal{B}-\mathfrak{A} \#$-module homomorphisms, then for $M_{j}=T^{*}\left(\Omega_{u}^{* *}\left(\theta_{j}\right)\right)$ exists a $C>0$ such that $\left\|b \cdot M_{j}-M_{j} \cdot b\right\| \leq C\|b\|$, for all $b \in \mathcal{B}$.

Actually λ and its adjoint are $\mathcal{B}-\mathfrak{A}^{\#}$-module homomorphisms, so according to the proof of [12, Proposition 3.7] we have $\tilde{\omega}_{\mathcal{B}}^{* *}\left(M_{j}\right)=$ $\lambda^{* *}\left(\tilde{\omega}_{\mathcal{B}^{* *}}^{* *}\left(\theta_{j}\right)\right)$. Moreover λ and its adjoint are continuous, so $\tilde{\omega}_{\mathcal{B}}^{* *}\left(M_{j}\right)$ is bounded.

We can get m.b.app.am. version of Johnson's Theorem for inverse semigroups. For an inverse semigroups S with the set of idempotent elements E, in fact E is a commutative subsemigroup of S, so $l^{1}(E)$ is a commutative subalgebra of $l^{1}(S)$. Suppose that $l^{1}(E)$ acts on $l^{1}(S)$ and its second dual with trivial left action $\delta_{e} \cdot \delta_{s}=\delta_{s}$ and the right action $\delta_{s} \cdot \delta_{e}=\delta_{s e}=\delta_{s} * \delta_{e}$ for all $e \in E$ and $s \in S$. So $l^{1}(S)$ is a Banach $l^{1}(E)$-module with compatible actions [1]. Hence the closed ideal $J_{l^{1}(S)}$ of $\mathcal{A}=l^{1}(S)$ is the closed linear span of $\left\{\delta_{\text {set }}-\delta_{s t} \quad: s, t \in S, e \in E\right\}$.

Now consider the equivalence relation \approx on S as $s \approx t$ if and only if $\delta_{s}-\delta_{t} \in J_{l^{1}(S)}$, for all $s, t \in S$. We can bring our intended propositions.

The next proposition holds because the m.am version ([1, Theorem $3.1]$) and m.app.am version ([12, Theorem 3.9]) hold.

Proposition 3.6. Let S be an inverse semigroup with the idempotent elements set E. Then $l^{1}(S)$ is m.b.app.am. as $l^{1}(E)$-module iff S is amenable.

Applying both results ([11, Theorem 2.11]) and ([12, Theorem 3.10]) yields the following proposition.

Proposition 3.7. Suppose that S is an inverse semigroup with the set of idempotent elements E. Then $l^{1}(S)^{* *}$ is m.b.app.am. as $l^{1}(E)$-module iff $\underset{\approx}{\approx}$ is finite.

4 Examples

Example 4.1. Let $\left(\mathcal{A}_{n}\right)$ be a sequence of amenable Banach algebras. According to [7, Remark 5.2] the Banach algebra $\mathcal{C}=c_{0}-\oplus_{n=1}^{\infty} \mathcal{A}_{n}^{\#}$ is b.app.am. Then \mathcal{C} is m.b.app.am. as \mathbb{C}-module. If their amenability constant $M\left(\mathcal{A}_{n}\right)$ (the infimum of the norms of virtual diagonals of \mathcal{A}_{n}) tends to ∞, then \mathcal{C} is not amenable.

Example 4.2. Suppose that $K\left(l^{1}\right)$ is the Banach algebra of all compact operators on $l^{1}=\left\{\left(x_{i}\right):\|x\|_{1}=\sum\left|x_{i}\right|<\infty, x_{i} \in \mathbb{C}\right\}$. According to [8, Lemma 2.4] the Banach algebra $\mathcal{A}^{(n)}=\left(K\left(l^{1}\right),\|.\|_{n}\right)$ has a l.b.a.i with the bound 1 but the smallest bound of any r.b.a.i in $\mathcal{A}^{(n)}$ is $n+1$. Thus the Banach algebra $\mathcal{A}=c_{0}-\oplus_{n=1}^{\infty} \mathcal{A}^{(n)}$ has a l.b.a.i but has no m.b.r.a.i. We can consider $\mathcal{A}=c_{0}-\oplus_{n=1}^{\infty} \mathcal{A}^{(n)}$ as a (commutative) Banach \mathbb{C}-module which is m.b.app.am. but has no b.a.i. (so according to [1, Proposition 2.2] is not m.am).

In the next example we see some Banach algebras that are m.b.app.am. but are not b.app.am in the classical case.

Example 4.3. (i) Suppose that \mathcal{C} is the bicyclic semigroup in two generators, then by $[2], \frac{\mathcal{C}}{\approx} \simeq \mathbb{Z}$. So $\frac{\mathcal{C}}{\approx}$ is infinite. Applying Proposition $3.7, l^{1}(\mathcal{C})^{* *}$ is not m.b.app.am. as $l^{1}(E)$-module.
\mathcal{C} is amenable semigroup [5, Examples]. So by Proposition 3.6, $l^{1}(\mathcal{C})$ is m.b.app.am. as $l^{1}(E)$-module. However according to [9, Theorem], $l^{1}(\mathcal{C})$ is not b.app.am..
(ii) Suppose that G is a group and I is a non-empty set and $S=$ $M(G, I)$ is the Brandt inverse semigroup corresponding to the group G and the index set I. It is shown in [11, Example 3.2] that $\underset{\approx}{\frac{S}{\approx}}$ is trivial group. According to Proposition $3.7 l^{1}(S)^{* *}$ is m.b.app.am. Therefore $l^{1}(S)$ is m.b.app.am as $l^{1}(E)$-module by Proposition 3.5. However we can get from [10, Theorem 4.5]that $l^{1}(S)$ is b.app.am iff $l^{1}(S)$ is amenable iff I is finite and G is amenable.

Acknowledgements

The authors express their sincere thanks to the reviewer for the careful reading of the manuscript and very helpful suggestions that improved the manuscript.

References

[1] M. Amini, Module amenability for semigroup algebras, Semigroup Forum., 69(2) (2004), 243-254.
[2] M. Amini, A. Bodaghi and D. Ebrahimi Bagha, Module amenability of the second dual and module topological center of semigroup algebras, Semigroup Forum, 80(2)(2010), 302-312.
[3] A. Bodaghi and S. Grailoo Tanha, Module approximate biprojectivity and module approximate bifatness of Banach algebras, Rend. Circ. Mat. Palermo, II. Ser, (2021). 70:409425.
[4] A. Bodaghi and A. Jabbari, Module pseudo amenability of Banach algebras, An. Stiint. Univ. Al. I. Cuza. Iasi. Mat. (N. S), 63(3)(2017), 449-461.
[5] J. Duncan, I. Namioka, Amenability of inverse semigroups and their semigroup algebras, Proc. R. Soc. Edinb. A, 80 (1978), 309-321
[6] F. Ghahramani and R. J. Loy, Generalized notions of amenability, J. Funct. Anal., 208(1)(2004), 229-260
[7] F. Ghahramani, R. J. Loy and Y. Zhang, Generalized notions of amenability, II, J. Funct. Anal., 254(7)(2008), 1776-1810.
[8] F. Ghahramani and C. J. Read, Approximate identities in approximate amenability, J. Funct. Anal., 262 (9)(2012), 3929-3945.
[9] F. Gheoraghe and Y. Zhang, A note on the approximate amenability of semigroup algebras, Semigroup Forum, 79(2009), 349-354.
[10] M. Maysami Sadr and A. Pourabbas, Approximate amenability of Banach category algebras with application to semigroup algebras, Semigroup Forum, 79(1)(2009), 55-64.
[11] H. Pourmahmood-Aghababa, (Super) module amenability, module topological centre and semigroup algebras, Semigroup Forum, 81(2)(2010), 344-356.
[12] H. Pourmahmood-Agababa and A. Bodaghi, Module approximate amenability of Banach Algebras, Bull. Iran. Math. Soc., 39(6)(2013), 1137-1158.
[13] T. Yazdanpanah and H. Najafi, Module Approximate Amenability for Semigroup Algebras, J. Applied Sciences., 9 (2009), 1482-1488.

Amineh Hemmatzadeh

Ph. D. Student Mathematics
Department of Mathematics
Azarbaijan Shahid Madani University
Tabriz, Iran
E-mail: a.hemmatzadeh@azaruniv.ac.ir

Hasan Pourmahmood Aghababa

Associate Professor of Mathematics
Department of Mathematics
University of Tabriz
Tabriz, Iran
E-mail: pourmahmood@gmail.com, h-p-aghababa@tabriz.ac.ir

16 A. HEMMATZADEH, H. P. AGHABABA AND M.H. SATTARI

Mohammad Hossein Sattari
Assistant Professor of Mathematics
Department of Mathematics
Azarbaijan Shahid Madani University
Tabriz, Iran
E-mail: sattari@azaruniv.ac.ir

[^0]: Received: February 2021; Accepted: May 2021
 *Corresponding Author

