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1 Introduction

The theory of metric fixed point yields crucial tools to solve several
differential and integral equations. One of the interesting topics of met-
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ric fixed point theory is the finding ”best proximity point” in case of
not reach the fixed point. On the other hand, instead of the consider-
ing a self-mappings, investigating the fixed point of cyclic mapping is
very interesting and useful in nonlinear analysis (for example, see [20]).
The concept of cyclic contraction mappings in uniformly convex Banach
spaces is defined in [10] by Eldred and Veeramani. In the paper [10]
they proved a best proximity point theorem for cyclic contraction.

The notion of cyclic Meir-Keeler contractions are introduced by Bari
et al, see [4]. Bari et al proved the existence of a best proximity point
for cyclic contractions in metric spaces in the case of two sets. For a
cyclic map f : A ∪ B → A ∪ B, Du and Lakzian [8] introduced a new
class of maps called MT -cyclic contraction with respect to function φ
on A∪B which contains the cyclic contractions maps as a subclass (see
Example A in [8]). Also, Du and Lakzian obtain some new existence
and convergence theorems of best proximity points for cyclic contrac-
tions. Many authors have been investigated the existence, uniqueness
and convergence of iterates to the best proximity point under weaker
assumptions for a map f (see e. g. [2, 10, 16, 30, 31, 32, 41, 42]).

Afterward, Lakzian and Lin in [33] defined the concept of weakMT -
cyclic Kannan contractions with respect to function φ on A ∪ B. Also,
they established some new convergent and existence theorems of best
proximity point theorems for cyclic contractions in uniformly Banach
spaces, this results generalized a theorem by Petrić in [37]. See, also, e.
g. [3, 9, 34, 35] for more details in this field.

Theorem 1.1. [33] Let A and B be nonempty closed subsets of a com-
plete metric space (X, d) such that A ∩ B 6= ∅ and T : A ∪ B → A ∪ B
be a weak MT -cyclic Kannan contraction with respect to ϕ such that

d(Tx, Ty) ≤ 1

2
ϕ(d(x, y))[d(x, Tx) + d(y, Ty)] for any x ∈ A and y ∈ B.

Then T has a unique fixed point in A ∩B.

In this paper, first, we introduce a notion of weak MT -cyclic Reich
type contractions with respect to anMT -function φ. Also, we shall give
some new convergent and existence theorems for best proximity point
theorems for self-mappings defined on a complete metric space. Our
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results improve and generalize some previous theorems in this field (see
[16, 38, 39]). Also, we give some applications on non-linear integral and
differential equations.

2 Preliminaries

Throughout this paper, we denote by N the set of positive integers and
R for the real numbers. Suppose that A and B are nonempty subsets
of a nonempty set E. A map f : A ∪ B → A ∪ B is called a cyclic
map if f(A) ⊂ B and f(B) ⊂ A. Let (X, d) be a metric space and
f : A∪B → A∪B a cyclic map. For any nonempty subsets A and B of
X, let

dist(A,B) = inf{d(x, y) : x ∈ A, y ∈ B}.
A point x ∈ A ∪ B is called a best proximity point for f if d(x, fx) =
dist(A,B). If A ∩ B is non-empty, then dist(A,B) = 0 and the best
proximity point of f is no thing else than the fixed point of f .

For c ∈ R, we recall that

lim sup
x→c

f(x) = inf
ε>0

sup
0<|x−c|<ε

f(x) and lim sup
x→c+

f(x) = inf
ε>0

sup
0<x−c<ε

f(x).

Definition 2.1. [6] A function φ : [0,∞) → [0, 1) is said to be an
MT -function if it satisfies Mizoguchi-Takahashi’s condition (That is
lim sups→t+0 φ(s) < 1 for all t ∈ [0,∞)).

Obviously, if φ : [0,∞) → [0, 1) is a nondecreasing or nonincreasing
function, then φ is an MT -function. So, in particular, if φ : [0,∞) →
[0, 1) is defined by φ(t) = c, where c ∈ [0, 1), then φ is anMT -function.

Remark 2.2. Note that if φ is an MT -function then clearly ψ := 2φ
3−φ

is an MT -function.

Example 2.3. [6] Let φ : [0,∞)→ [0, 1) be defined by

φ(t) :=

{
sin t
t , if t ∈ (0, π2 ]
0 , otherwise.

Since lim sup
s→0+

φ(s) = 1, φ is not an MT -function.

For some characterizations of MT -functions see e. g. [7].
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3 Best proximity point results for weak MT -
cyclic Reich type contractions

In this section, we present our main results. We, first, introduce the
weak MT -cyclic Reich type contraction with respect to auxiliary MT -
function φ.

Definition 3.1. Let A and B be nonempty subsets of a metric space
(X, d). Suppose that a map f : A ∪B → A ∪B satisfies

(MTR1) f is a cyclic map, i.e. f(A) ⊂ B and f(B) ⊂ A;

(MTR2) there exists an MT -function φ : [0,∞)→ [0, 1) such that

d(fx, fy) ≤ 1

3
φ(d(x, y))[d(x, y) + d(x, fx) + d(y, fy)]

+ (1− φ(d(x, y)))dist(A,B),

for any x ∈ A and y ∈ B, then f is called a weakMT -cyclic Reich type
contraction with respect to φ on A ∪B.
This contraction is said to be cyclic Reich type contraction, if φ ≡ α for
some α ∈ [0, 1).

Note that in the above definition, if A∩B 6= ∅, then dist(A,B) = 0.
and f becomes the mapping from A∩B into A∩B and (MTR2) changes
as follows:

d(fx, fy) ≤ 1

3
φ(d(x, y))[d(x, y) + d(x, fx) + d(y, fy)].

Du and Lakzian in [8] gave an example of a map f which is anMT -
cyclic contraction but not a cyclic contraction. It is easy to see that the
same example is also anMT -cyclic Reich type contraction but it is not
a cyclic Reich type contraction; so the class of MT -cyclic Reich type
contractions are bigger than their cyclic Reich type contractions.

For the main results of this section, we need the following lemmas.

Lemma 3.2. Let A and B be nonempty closed subsets of a metric space.
Let {xn} and {zn} be sequences in A and {yn} be a sequence in B sat-
isfying:
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(i) d(xn, yn)→ dist(A,B).
(ii) d(zn, yn)→ dist(A,B).
Then d(xn, zn)→ 0.

Proof. The proof is similar to [10]. �

Lemma 3.3. Let A and B be nonempty subsets of a metric space X
and f : A ∪B → A ∪B be a map satisfying

d(fx, f2x) ≤ 1

3
φ(d(x, fx))[2d(x, fx) + d(fx, f2x)]

+ (1− φ(d(x, fx)))dist(A,B),

for all x ∈ A∪B and anMT -function φ. Then there is anMT -function
ψ such that

d(f2x, fx) ≤ ψ(d(fx, x))d(fx, x) + (1− ψ(d(fx, x)))dist(A,B).

for each x ∈ A ∪B.

Proof. It sufficient to put ψ = 2φ
3−φ . �

Theorem 3.4. Let A and B be nonempty closed subsets of a complete
metric space X and f : A ∪B → A ∪B be a cyclic map satisfying

d(fx, f2x) ≤ 1

3
φ(d(x, fx))[2d(x, fx) + d(fx, f2x)]

+ (1− φ(d(x, fx)))dist(A,B),

for all x ∈ A ∪B and an MT -function φ. Then

(i) limn→∞ d(fnx, fn+1x) = dist(A,B) for all x ∈ A ∪B.

(ii) limn→∞ d(f2nx, f2n+2x) = 0 = limn→∞ d(f2n−1x, f2n+1x) for all
x ∈ A ∪B.

(iii) z is a best proximity point if and only if z is a fixed point of f2.

Proof. Let x ∈ A∪B. Then for each n ∈ N, dist(A,B) ≤ d(fnx, fn+1x).
If there exists j ∈ N such that f jx = f j+1x ∈ A ∩ B, then we have
limn→∞ d(fnx, fn+1x)| = 0 and dist(A,B) = 0; therefore (i) is true. So
it suffices to consider the case fn+1x 6= fnx, for each n ∈ N.
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The sequence {d(fnx, fn+1x)} is bounded below and nondecreasing
in (0,∞) and so it is convergent. Since for each x ∈ A ∪B,

d(fnx, fn+1x) ≤ 1

3
φ(d(fn−1x, fnx))[2d(fn−1x, fnx) + d(fnx, fn+1x)]

+ (1− φ(d(fn−1x, fnx)))dist(A,B)

≤ 1

3
φ(d(fn−1x, fnx))[2d(fn−1x, fnx) + d(fnx, fn+1x)]

+
1

3
(1− φ(d(fn−1x, fnx)))[d(fn−1x, fnx)

+ 2d(fnx, fn+1x)],

also,

φ(d(fn−1x, fnx)) + 1)d(fnx, fn+1x) ≤
(φ(d(fn−1x, fnx)) + 1)d(fn−1x, fnx)

and therefore d(fnx, fn+1x) ≤ d(fn−1x, fnx).
Set

t := lim
n→∞

d(fnx, fn+1x). (1)

Since ψ = 2φ
3−φ is an MT -function, by [5, Remark 2.5 (iii)], there

exist rt ∈ [0, 1) and εt > 0 such that ψ(s) ≤ rt for all s ∈ [t, t+ εt). By
(1), there exists ` ∈ N, such that

t ≤ d(fnx, fn+1x) < t+ εt

for all n ∈ N with n ≥ `. Hence ψ(d(fnx, fn+1x)) ≤ rt for all n ≥ `. Let

λ := max{ψ(d(f1x, f2x)), ψ(d(f2x, f3x)), · · · , ψ(d(f `−1x, f `x)), rt}.

Then 0 ≤ ψ(d(fnx, fn+1x)) ≤ λ < 1 for all n ∈ N . Note that by Lemma
3.3

d(fnx, fn+1x) ≤ 1

3
φ(d(fn−1x, fnx))[2d(fn−1x, Tnx) + d(fnx, fn+1x)]

+ (1− φ(d(fn−1x, fnx)))dist(A,B),
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implies that

d(fnx, fn+1x) ≤ ψ(d(fn−1x, fnx))d(fn−1x, fnx)

+ (1− ψ(d(fn−1x, fnx)))dist(A,B)

≤ ψ(d(fn−1x, fnx))d(fn−1x, fnx) + dist(A,B)

≤ λd(fn−1x, fnx) + dist(A,B).

Inductively we conclude that

dist(A,B) ≤ d(fnx, fn+1x) ≤ λnd(x, fx) + dist(A,B). (2)

Since λ ∈ (0, 1), we have limn→∞ λ
n = 0. Therefore (2) implies that

limn→∞ d(fnx, fn+1x) = dist(A,B). So (i) is proved.

For (ii), let x ∈ A ∪ B. Then by (i), limn→∞ d(f2nx, f2n+1x) =
dist(A,B) and limn→∞ d(f2n+2x, f2n+1x) = dist(A,B). Lemma 2.2
concludes that

lim
n→∞

d(f2nx, f2n+2x) = 0,

for any x ∈ A ∪B. Similarly, since

lim
n→∞

d(f2nx, f2n+1x) = dist(A,B) = lim
n→∞

d(f2nx, f2n−1x),

we conclude that limn→∞ d(f2n−1x, f2n+1x) = 0, for any x ∈ A ∪B.

Now we prove (iii). Let z be a fixed point of f2 but it is not a best
proximity point of f , i.e. dist(A,B) < d(z, fz). Then by Lemma 3.3 we
have

d(z, fz) = d(f2z, fz)

≤ ψ(d(z, fz))d(z, fz) + (1− ψ(d(z, fz)))dist(A,B)

< ψ(d(z, fz))d(z, fz) + (1− ψ(d(z, fz)))d(z, fz)

= d(z, fz),

a contradiction.

Now, if z is a best proximity point of f , i.e. d(z, fz) = dist(A,B),
then by a similar method as above we get d(f2z, fz) = dist(A,B). So
by Lemma 3.2, f2z = z which show that (iii) is true. �



8 S. BAROOTKOOB, H. LAKZIAN AND Z. D. MITROVIĆ

Theorem 3.5. Let A and B be nonempty closed subsets of a complete
metric space (X, d) and f : A∪B → A∪B be an weakMT -cyclic Reich
type contraction with respect to an MT -function φ. Then f has a best
proximity point z in A. In this case z is a fixed point of f2 and fz is a
best proximity point of f in B.

Proof. First of all, we show that {f2nx} is a Cauchy sequence, for each
x ∈ A ∪B. For this, by Lemma 3.2, it sufficient to show that

lim
n→∞

lim
m→∞

d(f2mx, f2n+1x) = dist(A,B).

Now since d(f2mx, f2n+1x) ≤ 1
3φ(d(f2m−1x, f2nx))[d(f2m−1x, f2nx) +

d(f2m−1x, f2mx)+d(f2n+1x, f2nx)]+(1−φ(d(f2m−1x, f2nx)))dist(A,B),
the part (i) of Lemma 3.4 implies that

lim
n,m

d(f2mx, f2n+1x) ≤ lim
n,m

1

3
φ(d(f2m−1x, f2nx))d(f2m−1x, f2nx)

+ (1− 1

3
φ(d(f2m−1x, f2nx)))dist(A,B).

Then by an inductive method we conclude that

dist(A,B) ≤ lim
n,m

d(f2mx, f2n+1x)

≤ lim
n,m

1

32n+1
φ1 · · ·φ2n+1d(f2m−2nx, x)

+ lim
n,m

(1− 1

32n+1
φ1 · · ·φ2n+1)dist(A,B)

= dist(A,B).

Where φi = φ(d(f2m−ix, f2n+1−ix)), for each positive integer i. There-
fore limn,m d(f2mx, f2n+1x) = dist(A,B).

Now if we consider x ∈ A, then since A is closed, it is complete and
so by the Cauchyness of {f2nx}, there is z ∈ A such that {f2nx} is
convergent to z (We have a similar proof when x ∈ B). Now we have
by Lemma 3.4-(i)

dist(A,B) ≤ d(f2n−1x, z) ≤ d(f2n−1x, f2nx)+d(f (2n)x, z)→ dist(A,B).
(3)
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Therefore limn d(f2n−1x, z) = dist(A,B).
On the other hand

d(z, fz) ≤ d(z, f2nx) + d(f2nx, fz)

≤ d(z, f2nx)

+
1

3
φ(d(f2n−1x, z))[d(f2n−1x, z) + d(f2n−1x, f2nx) + d(z, fz)]

+ (1− φ(d(f2n−1x, z)))dist(A,B).

Then by taking a limit and applying Lemma 3.4-(i) and 3, we conclude
that

(1− 1

3
φ(d(f2n−1x, z)))d(z, fz) ≤ (1− 1

3
φ(d(f2n−1x, z)))dist(A,B).

it follows that dist(A,B) ≤ d(z, fz) ≤ dist(A,B). Therefore z is a best
proximity point of f in A. Now Lemma 3.4-(iii) says that z is a fixed
point of f2 and so d(fz, f2z) = d(fz, z) = dist(A,B). That is fz is a
best proximity point of f in B. �

The following example shows that the best proximity point in the
last theorem may be not unique.

Example 3.6. Let X = R2, A = [0, 1] × [0, 1] and B = [2, 3] × [0, 1].
For each x, y, x′, y′ ∈ R, define

d((x, y), (x′, y′)) = max{|x− x′|, |y − y′|};

and f : A ∪B → A ∪B by

f((x, y)) =

{
(2, y) if (x, y) ∈ A
(1, y) if (x, y) ∈ B

Then it is easy to see that dist(A,B) = 1 and for each MT -function φ
and (x, y), (x′, y′) ∈ A ∪B) we have

d((f((x, y)), f((x′, y′)) ≤ 1

3
φ(d((x, y), (x′, y′)))[d((x, y), (x′, y′))

+ d((x, y), f((x, y))) + d((x′, y′), f((x′, y′)))]

+ (1− φ(d((x, y), (x′, y′))))dist(A,B).

Note that (1, y) is a best proximity point of f in A and (2, y) = f((1, y))
is a best proximity point of f in B, for each y ∈ [0, 1].
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The following theorem can be obtain immediately from Lemma 3.4
and Theorem 3.5.

Theorem 3.7. Let A and B be nonempty closed subsets of a complete
metric space (X, d). Let f : A ∪B → A ∪B be a a cyclic map. Suppose
that there exists a decreasing function τ : [0,∞)→ [0, 1) such that

d(fx, fy) ≤ 1

3
τ(d(x, y))[d(x, y) + d(x, fx) + d(y, fy)]

+ (1− τ(d(x, y)))dist(A,B), (x, y ∈ A ∪B).

Then

(i) f has a unique best proximity point z in A .

(ii) The sequence {f2nx} converges to z for any starting point x ∈ A .

(iii) z is the unique fixed point of f2 .

(iv) fz is a best proximity point of f in B .

Remark 3.8. If in Theorems 3.5 and 3.7 we put φ(t) = τ(t) = k, for
all t ∈ [0,∞), where k ∈ [0, 1), then φ and τ are MT -function and
decreasing function, respectively and so we can obtain Theorem 10 in
[16] as the special case.

In the case that dist(A,B) = 0, we can obtain the following corollary
that generalize Reich theorem [38].

Corollary 3.9. Suppose that A and B are nonempty closed subsets of a
complete metric space (X, d) such that A∩B 6= ∅ and f : A∪B → A∪B
is a weak MT -cyclic Reich type contraction with respect to φ. Then f
has a unique fixed point z in A ∩B.

Proof. By Theorem 3.5, f has a best proximity point z in A. That is
d(z, fz) = dist(A,B) = 0 and so fz = z. This says that z is a fixed
point of f and also belongs to B.
Therefore it sufficient to show that z is unique. Suppose that v is another
point, i.e. d(v, z) 6= 0, such that fv = v. Then we have
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d(v, z) = d(fv, fz)

≤ 1

3
φ(d(v, z))[d(v, z) + d(fv, v) + d(z, fz)]

=
1

3
φ(d(v, z))[d(v, z)].

Thus, φ(d(v, z)) ≥ 3, a contradiction. Thus, v = z. �

Remark 3.10. If in Corollary 3.9, we put φ(t) = k, for all t ∈ [0,∞),
where k ∈ [0, 1), then one can obtain Reich’s theorem in [38] as the
special case. Regarding the analogy, we omit corollary and remark for
Reich’s theorem in [39].

We give an examples illustrating Corollary 3.9.

Example 3.11. Let Γ be a locally compact group and X = Lp(Γ).
Consider the compact subsets K and K ′ in Γ such that K ∩ K ′ = ∅
and |K| = |K ′|, where |K| = λ(K) and λ is the Haar measure of Γ.
Suppose A = {αχK ;α ∈ C} and B = {αχK′ ;α ∈ C}, where χK is
the characteristic function on the set K. Then A ∩ B = {0}. Define
f : A ∪B → A ∪B by

fx =

{
α
2χK′ if x ∈ A
α
2χK if x ∈ B

Then it is easy to see that for each MT -function φ with 3
5 ≤ φ < 1, we

have

‖fx− fy‖p ≤
1

3
φ(‖x− y‖p)[‖x− y‖p + ‖x− fx‖p + ‖y − fy‖p],

for all x, y ∈ A ∪B. Also, 0 ∈ A ∩B is the unique fixed point of f .

Corollary 3.12. Let A and B be nonempty closed subsets of a complete
metric space (X, d). Suppose that f : A ∪B → A ∪B satisfies

d(fx, fy) ≤ φ(d(x, y)) max{d(x, y),
1

2
(d(x, fx) + d(y, fy)),

1

3
(d(x, y)

+ d(x, fx) + d(y, fy))}
+ (1− φ(d(x, y)))dist(A,B), (x, y ∈ A ∪B).
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Then f has a best proximity point z in A. In this case z is a fixed
point of f2 and fz is a best proximity point of f in B.

Proof. We have three cases:
1. if max{d(x, y), 1

2(d(x, fx)+d(y, fy)), 1
3(d(x, y)+d(x, fx)+d(y, fy))} =

d(x, y), then the proof can imply from Theorem 2.1 in [8];
2. if max{d(x, y), 1

2(d(x, fx)+d(y, fy)), 1
3(d(x, y)+d(x, fx)+d(y, fy))} =

1
2(d(x, fx)+d(y, fy)), then the proof can imply from Theorem 3.8 in [33];
3. if max{d(x, y), 1

2(d(x, fx)+d(y, fy)), 1
3(d(x, y)+d(x, fx)+d(y, fy))} =

1
3(d(x, y) + d(x, fx) + d(y, fy)), then the proof can imply from Theorem
3.5.

�

Corollary 3.13. Let A and B be nonempty closed subsets of a complete
metric space (X, d). Let f : A ∪B → A ∪B be a a cyclic map. Suppose
that there exists a decreasing function τ : [0,∞)→ [0, 1) such that

d(fx, fy) ≤τ(d(x, y)) max{d(x, y),
1

2
(d(x, fx) + d(y, fy)),

1

3
(d(x, y)

+ d(x, fx) + d(y, fy))}
+(1− τ(d(x, y)))dist(A,B), (x, y ∈ A ∪B).

Then

(i) f has a unique best proximity point z in A .

(ii) The sequence {f2nx} converges to z for any starting point x ∈ A .

(iii) z is the unique fixed point of f2 .

(iv) fz is a best proximity point of f in B .

Remark 3.14. In Corollaries 3.12 and 3.13 if φ = τ = k, where k ∈
[0, 1) then we can obtain Corollary 15 in [16] as special case.

4 Applications

Let Ω be a locally compact group. Consider C0(Ω), of all continuous
functions from Ω to C which vanishes at infinity, with the metric

d(f, g) = ‖f − g‖u = sup{|f(ξ)− g(ξ)|; ξ ∈ ω} (f, g ∈ C0(Ω)).
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Define ‖.‖1 : C0(Ω)→ R+ ∪ {0} by

‖f‖1 =

∫
Ω
|f(x)|dx (f ∈ C0(Ω)).

Where dx is used for dλ(x) and λ is the left Haar measure on Ω. See
[12] for more studying.

Theorem 4.1. Let A and B be nonempty closed subsets of C0(Ω). Con-
sider ϕ,ψ ∈ C0(Ω), α ∈ C, a bounded continuous map K : Ω × Ω → C
with a bound β and a cyclic map T : A∪B → A∪B which is defined by
Tf(ξ) = ϕ(ξ) +α

∫
ΩK(ξ, %)ψ(f(%))d% such that for some MT -function

φ we have

3|α|β‖ψ ◦ f − ψ ◦ g‖1 ≤ φ(‖f − g‖)‖f − g‖ (f ∈ A, g ∈ B). (4)

Then T has a best proximity point f0 in A which is also a fixed point of
T 2.

Proof. if f ∈M and g ∈ N , then 4 implies that 2|α|β‖ψ ◦f −ψ ◦g‖1 ≤
2
3φ(‖f − g‖)‖f − g‖ and so |α|β‖ψ ◦ f −ψ ◦ g‖1 ≤ 2

3φ(‖f − g‖)‖f − g‖−
|α|β‖ψ ◦ f − ψ ◦ g‖1. Therefore since 1

3φ ≤ 1 and for each x, y ∈ Ω,
|K(x, y)| ≤ β, we have for each ξ ∈ Ω;

d(Tf, Tg) = ‖Tf − Tg‖

= sup
ξ∈Ω
|α
∫

Ω
K(ξ, %)(ψ(f(%))− ψ(g(%)))d%|

≤ |α|β‖ψ ◦ f − ψ ◦ g‖1

≤ 2

3
φ(‖f − g‖)‖f − g‖ − |α|β‖ψ ◦ f − ψ ◦ g‖1

≤ 2

3
φ(‖f − g‖)‖f − g‖ − 1

3
φ(‖f − g‖)|α|β‖ψ ◦ f − ψ ◦ g‖1

≤ 2

3
φ(‖f − g‖)‖f − g‖

− 1

3
φ(‖f − g‖)|α|

∫
Ω
|K(ξ, %)||ψ(f(%))− ψ(g(%))|d%

≤ 1

3
φ(‖f − g‖)(2‖f − g‖

− |α|
∫

Ω
|K(ξ, %)||ψ(f(%))− ψ(g(%))|d%).
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Hence

d(Tf, Tg) ≤ 1

3
φ(‖f − g‖)(2‖f − g‖

− |α|‖
∫

Ω
K(., %)|ψ(f(%))− ψ(g(%))|d%‖)

≤ 1

3
φ(‖f − g‖)(‖f − g‖

+ ‖f − g − |α|
∫

Ω
K(., %)|ψ(f(%))− ψ(g(%))|d%‖)

≤ 1

3
φ(‖f − g‖)(‖f − g‖

+ ‖f − g − |α|
∫

Ω
K(., %)ψ(f(%))− ψ(g(%))d%‖)

≤ 1

3
φ(‖f − g‖)(‖f − g‖+ ‖f − ϕ− α

∫
Ω
K(., %)ψ(g(%))d%‖

+ ‖g − ϕ− α
∫

Ω
K(., %)ψ(f(%))d%‖)

=
1

3
φ(‖f − g‖)(‖f − g‖+ ‖f − Tg‖+ ‖g − Tf‖)

≤ 1

3
φ(‖f − g‖)(‖f − g‖+ ‖f − Tg‖+ ‖g − Tf‖)

+ (1− φ(‖f − g‖)dist(A,B).

Therefore T is a weak MT -cyclic Reich type contraction with respect
to φ and the results follows from Theorem 3.7. �

Corollary 4.2. (i) With conditions of Theorem 4.1, the integral equa-
tion

f(ξ) = ϕ(ξ) + α

∫
Ω
K(ξ, %)ψ(ϕ(%) + α

∫
Ω
K(%, η)ψ(f(η))dη))d%

(5)
has a solution.

(ii) If in addition A ∩B 6= ∅, then the integral equation

f(ξ) = ϕ(ξ) + λ

∫
Ω
K(ξ, %)ψ(f(%))d% (6)

has a solution.
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Proof. (i) Obviously the fixed point of f2 is the solution of 5.

(ii) In this case the best proximity of f is a fixed point of f and
obviously it is the solution of 6. �

Example 4.3. Let ψ ∈ C0(Ω), α ≥ 0, K : Ω × Ω → C be a bounded
continuous map with a bound β and with nonneqative range which sat-
isfy in equation 4 and ψ(ξ) ≥ 0 for each ξ ≤ 0 and ψ(ξ) ≤ 0 for each
ξ ≥ 0. Then the equation 5 has a solution. Since it suficient to consider
A = C+

0 (Ω) and B = C−0 (Ω) of positive and negative functions of C0(Ω),
respectively. Then Obviously f is a cyclic map. Therefore conditions of
Corollary 4.2 (i) hold.

Example 4.4. Let ϕ,ψ ∈ C+
0 (Ω) ∪ {0}, α ≥ 0, K : Ω × Ω → C be a

bounded continuous map with a bound β and with nonneqative range
which satisfy in equation 4. Then the equations 5 and 6 have solution.
Since if we put A = C+

0 (Ω) and B = C0(Ω), then obviously f is a cyclic
map and A ∩B 6= ∅.

Remark 4.5. When A ∩ B 6= ∅, then with conditions of Theorem 4.1
for S = T |M : M → N , there exists an f0 ∈ M such that ‖f0 − Sf0‖ =
dist(A,B) = min{‖f − Sf‖; f ∈M}.

Theorem 4.6. Let (X, d) = (C(R), ‖.‖), with ‖f‖ = sup{|f(x);x ∈ R},
for each f ∈ C(R). Consider the integrable map h : R × R → R+

and S ∈ C(R) such that limx→∞
∫ x

0 h(t, S(x))dt < 1
3α for some α > 0.

Then the differential equation ∂2f
∂x2

= −αf(x)h2(x, S(x)) has a solution
f ∈ C(R).

Proof. Put A = C+(R) and B = C−(R). Then dist(A,B) = 0 and since
h is positive, f : C(R) → C(R) with ff(x) = −α

∫ x
0 f(t)g(t, S(x))dt is

cyclic and
∫ x

0 h(t, S(x))dt is increasing. So

sup{|
∫ x

0
h(t, S(x))dt|;x ∈ R} = limx→∞

∫ x

0
h(t, S(x))dt <

1

3α
.
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Now φ = 3α limx→∞
∫ x

0 h(t, S(x))dt is anMT -function and we have for
each f, g ∈ C(R);

‖Tf − Tg‖ = α sup{|
∫ x

0
(f(t)− g(t))h(t, S(x))dt|;x ∈ R}

≤ α‖f − g‖ sup{|
∫ x

0
h(t, S(x))dt|;x ∈ R}

=
1

3
φ(‖f − g‖)‖f − g‖

≤ 1

3
φ(‖f − g‖)(‖f − g‖+ ‖f − Tg‖+ ‖g − Tf‖).

That is f is a weak MT -cyclic Reich contraction with respect to φ on
A ∪ B. Now Theorem 3.7 implies that f2 has a fixed point f ∈ C(R)
which obviously it is the solution of the above differential equation. �

Suggestion. Many studies have investigated in the fixed point
theory on partial metric spaces. See e. g. [1, 11, 13, 14, 15, 17, 18, 19,
21, 22, 23, 24, 25, 26, 27, 28, 29, 36, 40]. It can also be interesting to
study the results of this paper and the results in [3, 33, 34, 35] on partial
metric spaces and recommended for further work.
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volving simulation functions with w0-distance, RACSAM, (2018),
doi:10.1007/s13398-018-0512-1.

[33] I.-J. Lin, H. Lakzian, Best proximity point theorems for weakMT -
cyclic Kannan contractions, Fundamen. J. Math. Appl., 1(1) (2018),
1-9.

[34] I.-J. Lin, H. Lakzian and Y. Chou, On best proximity point the-
orems for new cyclic maps, Int. Math. Forum, 7(37)(2012), 1839-
1849.



20 S. BAROOTKOOB, H. LAKZIAN AND Z. D. MITROVIĆ
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