Approximate Generalized Additive-Quadratic Functional Equations on Ternary Banach Algebras

S. Jahedi ${ }^{*}$
Shiraz University of Technology
V. Keshavarz
Shiraz University of Technology

Abstract

In this paper, we introduce the concept of j-hom-derivation, $j \in\{1,2\}$ and solve the new generalized additive-quadratic functional equations in the sense of ternary Banach algebras. Moreover, using the fixed point method, we prove its Hyers-Ulam stability.

AMS Subject Classification: 39B82; 17B40; 47H10
Keywords and Phrases: Hyers-Ulam stability, ternary Banach algebra, additive function, quadratic function, fixed point theorem

1 Introduction

A ternary Banach algebra X with $\|$.$\| is a complex Banach algebra$ equipped with a ternary product $(a b c) \rightarrow a b c$ of X^{3} into X. This product is \mathbb{C}-linear in the outer variable, conjugate \mathbb{C}-linear in the middle variable associative in the sense that $a b(c v u)=a(b c v) u=(a b c) v u$ and satisfies $\|a b c\| \leq\|a\| \cdot\|b\| \cdot\|c\|$ and $\|a a a\|=\|a\|^{3}$ (see [23]). Ternary structures and their extensions, known as n-ary algebras have many

[^0]applications in mathematical physics and photonics, such as the quark model and Nambu mechanics [14, 18]. Today, many physical systems can be modeled as a linear system. The principle of additivity has various applications in physics especially in calculating the internal energy in thermodynamic and also the meaning of the superposition principle.

The Hyers-Ulam stability problem which arises from Ulam's question says that for two given fixed functions φ and ψ, the functional equation $\mathcal{F}_{1}(G)=\mathcal{F}_{2}(G)$ is stable if for a function g for which $d\left(\mathcal{F}_{1}(g), \mathcal{F}_{2}(g)\right) \leq \varphi$ holds, there is a function h such that $\mathcal{F}_{1}(h)=\mathcal{F}_{2}(h)$ and $d(g, h) \leq \psi$ [$8,10,20,22$]. In 1941 [10], Hyers solved the approximately additive mappings on the setting of Banach spaces.

The functional equation $f(a+b)=f(a)+f(b)$ is an additive equation and its solution is called an additive mapping.

First, T. M. Rassias [20] and Aoki [1] and then a number of authors extended this result by considering the unbounded Cauchy differences in different spaces. For example see [7, 9, 11, 15]. F. Skof in 1983 [21], proved the stability problem of quadratic functional equation between normed and Banach spaces. The functional equation $g(a+b)+g(a-b)=$ $2 g(a)+2 g(b)$ is called quadratic equation. Cholewa [2] showed that the Skof's theorem is also true for the mappings defined on abelian groups. Later, a lot of research appeared with various generalization of quadratic and different type of functional equations, see $[4,16]$ and the references therein. Also for further study of the Hyers Ulam stability for a large variety of functional equatios such as, trigonometric type, mean value type, hypergeometric differential equations and the functional equation on a complete metric groups the reader is referred to [3, 5, 12, 13].

Consider the generalized additive-quadratic functional equation

$$
\begin{align*}
& 3^{j} f_{j}\left(\frac{a+b+c}{3}\right)+f_{j}(a)+f_{j}(b)+(-1)^{j} f_{j}(c)-2^{j} f_{j}\left(\frac{a+b}{2}\right)-2^{j} f_{j}\left(\frac{b+c}{2}\right) \\
& -(-1)^{j} 2^{j} f_{j}\left(\frac{a+c}{2}\right)=\rho\left[j f_{j}(a+b+c)+j f_{j}(a)-f_{j}(a+b)\right. \\
& \left.-f_{j}(a+c)-(j-1) f_{j}(b+c)\right] \tag{1}
\end{align*}
$$

where $\rho \neq 0, \pm 1$ is a complex number and $j \in\{1,2\}$. In this paper, we solve (1) and show that for $j=1$, a function which satisfies (1) is additive
and for $j=2$, it is quadratic. We also prove its Hyers-Ulam stability by using the fixed point method. To do this, we use the Diaz-Margolis fixed point theorem [17].
Theorem 1.1. [17] Let (A, d) be a complete generalized metric space and let $F: A \rightarrow A$ be a strictly contractive mapping with Lipschitz constant $0<L<1$. Then for each given element $a \in A$, either

$$
d\left(F^{i}(a), F^{i+1}(a)\right)=\infty
$$

for all nonnegative integers i or there exists a positive integer i_{0} such that
$1: d\left(F^{i}(a), F^{i+1}(a)\right)<\infty, \quad \forall i \geq i_{0} ;$
2 : the sequence $\left\{F^{i}(a)\right\}$ converges to a unique fixed point b^{*} of F in the set $B=\left\{b \in A \mid d\left(F^{i 0} a, b\right)<\infty\right\} ;$
$3: d\left(b, b^{*}\right) \leq \frac{1}{1-L} d(b, F(b))$ for all $b \in A$.

2 Main Results

Extending the concepts of m-homomorphism, $1 \leq m \leq 4$, and homderivation which has been introduced by M. Eshaghi Gordji et. al [6] and C. Park et. al [19], respectively, we have the following definitions in the case of ternary Banach algebras. Throughout the paper, X is a ternary Banach algebra.

We say that a function f is a j -mapping, $j \in\{1,2\}$ if for $j=1$ it is additive and for $j=2$, the function f is quadratic.
Definition 2.1. A mapping $h: X \rightarrow X$ is called a ternary j-homomorphism, $j \in\{1,2\}$, if h is a j-mapping and

$$
h(a b c)=h(a) h(b) h(c) \quad \forall a, b, c \in X .
$$

Definition 2.2. Let $h: X \rightarrow X$ be a ternary j-homomorphism, $j \in$ $\{1,2\}$. A j-mapping $D: X \rightarrow X$ is called a ternary j-hom-derivation if D satisfies

$$
D(a b c)=D(a) h(b) h(c)+h(a) D(b) h(c)+h(a) h(b) D(c)
$$

for all $a, b, c \in X$.
For $j \in\{1,2\}$ and given mappings $f_{j}: X \rightarrow X$ we define the difference equation

$$
\begin{align*}
& \mathcal{E}^{j} f_{j}(a, b, c)=3^{j} f_{j}\left(\frac{a+b+c}{3}\right)+f_{j}(a)+f_{j}(b)+(-1)^{j} f_{j}(c)-2^{j} f_{j}\left(\frac{a+b}{2}\right) \\
& -2^{j} f_{j}\left(\frac{b+c}{2}\right)-(-1)^{j} 2^{j} f_{j}\left(\frac{a+c}{2}\right)-\rho\left[j f_{j}(a+b+c)+j f_{j}(a)-f_{j}(a+b)\right. \\
& \left.-f_{j}(a+c)-(j-1) f_{j}(b+c)\right] . \tag{2}
\end{align*}
$$

In the following we give the solution of the functional equation (1).
Proposition 2.3. Let $f_{j}: X \rightarrow X$ be a mapping satisfying $\mathcal{E}^{j} f_{j}(a, b, c)=$ $0, j \in\{1,2\}$. Then $f_{j}(0)=0$ and
(i) for $j=1, f_{j}$ is an additive mapping;
(ii) for $j=2, f_{j}$ is a quadratic mapping if f_{j} is even.

Proof. First of all, note that $\mathcal{E}^{j} f_{j}(0,0,0)=0$ implies that $f_{j}(0)=0$.
(i) Suppose $j=1$. Let $a=0$ and $b=0$ in (2). Then

$$
\begin{equation*}
3 f_{1}\left(\frac{c}{3}\right)=f_{1}(c) \tag{3}
\end{equation*}
$$

Putting $a=0$ and replacing c by b in (2) and using (3), we obtain $f_{1}(2 b)-2 f_{1}(b)=\rho\left[f_{1}(2 b)-2 f_{1}(b)\right]$. Since $\rho \neq 0, \pm 1$,

$$
\begin{equation*}
f_{1}(2 b)=2 f_{1}(b) \tag{4}
\end{equation*}
$$

Again putting $a=0$ in (2) and using (3), (4) we get $\rho\left[f_{1}(b+c)-f_{1}(b)-\right.$ $\left.f_{1}(c)\right]=0$. So

$$
f_{1}(b+c)=f_{1}(b)+f_{1}(c),
$$

i.e., f_{1} is additive.
(ii) Suppose $j=2$ and f_{2} is an even mapping satisfying $\mathcal{E}^{2} f_{2}(a, b, c)=0$. So from $\mathcal{E}^{2} f_{2}(a, b,-a)=0$ we have

$$
\begin{align*}
9 f_{2}\left(\frac{b}{3}\right)+f_{2}(b)+2 f_{2}(a) & -4 f_{2}\left(\frac{a+b}{2}\right)-4 f_{2}\left(\frac{b-a}{2}\right) \\
& =\rho\left[2 f_{2}(b)+2 f_{2}(a)-f_{2}(a+b)-f_{2}(b-a)\right] . \tag{5}
\end{align*}
$$

Letting and $b=0$ replacing a by $2 a$ in (5), we get

$$
\begin{equation*}
f_{2}(2 a)=4 f_{2}(a) \tag{6}
\end{equation*}
$$

APPROXIMATE GENERALIZED ADDITIVE-QUADRATIC...

Again in (5) putting $a=0$ and using (6), we have

$$
\begin{equation*}
9 f_{2}\left(\frac{b}{3}\right)=f_{2}(b) . \tag{7}
\end{equation*}
$$

Finally, by applying (6) and (7) in $\mathcal{E}^{2} f_{2}(a, b, c)=0$,

$$
f_{2}(a+b)+f_{2}(a-b)=2 f_{2}(a)+2 f_{2}(b) .
$$

This completes the proof.
Assume $j \in\{1,2\}$ and $\delta, \sigma: X^{3} \rightarrow[0, \infty)$ are two functions satisfying conditions

$$
\begin{align*}
& \delta\left(\frac{a}{2}, \frac{b}{2}, \frac{c}{2}\right) \leq \frac{k}{2^{j}} \delta(a, b, c) \tag{8}\\
& \sigma\left(\frac{a}{2}, \frac{b}{2}, \frac{c}{2}\right) \leq \frac{k}{2^{3 j}} \sigma(a, b, c) \tag{9}
\end{align*}
$$

for all $a, b, c \in X$ and some $0<k<1$. Therefore $\delta(0,0,0)=0$ and $\sigma(0,0,0)=0$. Clearly, by induction one can obtain that

$$
\begin{aligned}
& 2^{n j} \delta\left(\frac{a}{2}, \frac{b}{2}, \frac{c}{2}\right) \leq k^{n} \delta(a, b, c), \\
& 2^{3 n j} \sigma\left(\frac{a}{2}, \frac{b}{2}, \frac{c}{2}\right) \leq k^{n} \sigma(a, b, c)
\end{aligned}
$$

for all $n \in \mathbb{N}$. If $f_{j}: X \rightarrow X$ is a function such that $\left\|\mathcal{E}^{j} f_{j}(a, b, c)\right\| \leq$ $\delta(a, b, c)$ then we have $f_{j}(0)=0$.

To prove the following results, we consider two cases. For $j=1$, suppose that f_{j} and g_{j} are odd and in case $j=2$ assume f_{j} and g_{j} are even.
Theorem 2.4. Let $j \in\{1,2\}$ and $f_{j}: X \rightarrow X$ be a function satisfying

$$
\begin{equation*}
\left\|\mathcal{E}^{j} f_{j}(a, b, c)\right\| \leq \delta(a, b, c) \tag{10}
\end{equation*}
$$

where $\delta: X^{3} \rightarrow[0, \infty)$ fulfills (8). Then there exist unique ternary j-mappings $h_{j}: X \rightarrow X$ such that

$$
\begin{aligned}
& \left\|f_{1}(a)-h_{1}(a)\right\| \leq \frac{k}{2(1-k)} \delta(0, a,-a) \\
& \left\|f_{2}(a)-h_{2}(a)\right\| \leq \frac{k}{2(1-k)} \delta(a, 0,-a) .
\end{aligned}
$$

Proof. Let \mathfrak{A} be the set of all functions $g: X \rightarrow X$ with $g(0)=0$. Define the mapping $Q_{j}: \mathfrak{A} \rightarrow \mathfrak{A}$ by $Q_{j}(g)(a)=2^{j} g\left(\frac{a}{2}\right), j \in\{1,2\}$ and for every $g, h \in \mathfrak{A}$ and $x \in X$ define

$$
\begin{aligned}
& d_{1}(g, h)=\inf \{\alpha>0:\|g(a)-h(a)\| \leq \alpha \delta(0, a,-a)\} \\
& d_{2}(g, h)=\inf \{\alpha>0:\|g(a)-h(a)\| \leq \alpha \delta(a, 0,-a)\}
\end{aligned}
$$

where $\inf \emptyset=+\infty$. It is easy to show that for each $j \in\{1,2\}, d_{j}$ is a generalized metric on \mathfrak{A} and $\left(\mathfrak{A}, d_{j}\right)$ is a complete generalized metric space. Let $g, h \in \mathfrak{A}$. Then

$$
\begin{gathered}
\left\|Q_{1}(g)(a)-Q_{1}(h)(a)\right\| \leq 2 d_{1}(g, h) \frac{k}{2} \delta(0, a,-a) \\
\left\|Q_{2}(g)(a)-Q_{2}(h)(a)\right\| \leq 2^{2} d_{2}(g, h) \frac{k}{2^{2}} \delta(a, 0,-a)
\end{gathered}
$$

Then $d_{j}\left(Q_{j}(g), Q_{j}(h)\right) \leq k d_{j}(g, h)$, i.e., Q_{j} is a contraction mapping. In case $j=1$, put $a=0$ and $c=-b$ in (10), then

$$
\left\|f_{1}(b)-2 f_{1}\left(\frac{b}{2}\right)\right\| \leq \frac{1}{2} \delta(0, b,-b)
$$

In case $j=2$, by setting $b=0$ and $c=-a$ in (10) we have

$$
\left\|f_{2}(a)-2^{2} f_{2}\left(\frac{a}{2}\right)\right\| \leq \frac{1}{2} \delta(a, 0,-a) .
$$

Above relations imply that $d_{j}\left(f_{j}, Q_{j}\left(f_{j}\right)\right) \leq \frac{1}{2}$. Hence by Theorem 1.1, there exist a positive integer n_{0} and a unique fixed point h_{j} of Q_{j} in the set $\Omega=\left\{g \in \mathfrak{A}: d\left(Q_{j}^{n_{0}}\left(f_{j}\right), g\right)<\infty\right\}$ and $\lim _{n \rightarrow \infty} Q_{j}^{n}\left(f_{j}\right)(a)=h_{j}(a)$. So, for all $a \in X, Q_{j}\left(h_{j}\right)(a)=h_{j}(a)$ and $\lim _{n \rightarrow \infty} 2^{j n} f_{j}\left(\frac{a}{2^{n}}\right)=h_{j}(a)$. Also we have $d_{j}\left(f_{j}, h_{j}\right) \leq \frac{k}{2(1-k)}$. This implies that

$$
\begin{aligned}
\left\|f_{1}(a)-h_{1}(a)\right\| & \leq \frac{k}{2(1-k)} \delta(0, a,-a) \\
\left\|f_{2}(a)-h_{2}(a)\right\| & \leq \frac{k}{2(1-k)} \delta(a, 0,-a) .
\end{aligned}
$$

But for each $j \in\{1,2\}$,

$$
\begin{aligned}
\left\|\mathcal{E}^{j} h_{j}(a, b, c)\right\| & =\lim _{n \rightarrow \infty} 2^{j n}\left\|\mathcal{E}^{j} f_{j}\left(\frac{a}{2^{n}}, \frac{b}{2^{n}}, \frac{c}{2^{n}}\right)\right\| \\
& \leq \lim _{n \rightarrow \infty} 2^{j n} \delta\left(\frac{a}{2^{n}}, \frac{b}{2^{n}}, \frac{c}{2^{n}}\right) \\
& \leq \lim _{n \rightarrow \infty} k^{n} \delta(a, b, c) \\
& =0 .
\end{aligned}
$$

Hence by Proposition 2.3, for each $j \in\{1,2\}, h_{j}$ is a j-mappings and the proof is complete.

Now, we are going to prove Hyers-Ulam stability of ternary j-homderivations in ternary Banach algebras corresponding to the functional equation (1), by using the fixed point method.

Theorem 2.5. Assume $\delta, \sigma: X^{3} \rightarrow[0, \infty)$ are two functions which satisfying conditions (8) and (9) for some constant $k \in(0,1)$. Suppose that f_{j} and g_{j} fulfill the following relations

$$
\begin{gather*}
\left\|\mathcal{E}^{j} f_{j}(a, b, c)\right\| \leq \delta(a, b, c) \tag{11}\\
\left\|\mathcal{E}^{j} g_{j}(a, b, c)\right\| \leq \delta(a, b, c) \tag{12}\\
\left\|f_{j}(a b c)-f_{j}(a) f_{j}(b) f_{j}(c)\right\| \leq \sigma(a, b, c) \tag{13}\\
\| g_{j}(a b c)-g_{j}(a) f_{j}(b) f_{j}(c)-f_{j}(a) g_{j}(b) f_{j}(c) \\
-f_{j}(a) f_{j}(b) g_{j}(c) \| \leq \sigma(a, b, c) . \tag{14}
\end{gather*}
$$

for all $a, b, c \in X$. Then there exist unique ternary j-homomorphisms $H_{j}: X \rightarrow X$ and unique ternary j-hom-derivations $D_{j}: X \rightarrow X$ such that

$$
\begin{align*}
& \left\|f_{1}(a)-H_{1}(a)\right\| \leq \frac{k}{2(1-k)} \delta(0, a,-a) \tag{15}\\
& \left\|f_{2}(a)-H_{2}(a)\right\| \leq \frac{k}{2(1-k)} \delta(a, 0,-a) \tag{16}\\
& \left\|g_{1}(a)-D_{1}(a)\right\| \leq \frac{k}{2(1-k)} \delta(0, a,-a) \tag{17}
\end{align*}
$$

$$
\begin{equation*}
\left\|g_{2}(a)-D_{2}(a)\right\| \leq \frac{k}{2(1-k)} \delta(a, 0,-a) \tag{18}
\end{equation*}
$$

for all $a \in X$ and some $0<k<1$.
Proof. Let \mathfrak{A}, d_{j} and $Q_{j}, j \in\{1,2\}$, be those as defined in the proof of Theorem 2.4. Similar to the proof of Theorem 2.4, there exist unique j-mappings H_{j}, D_{j} from X into X such that

$$
\begin{align*}
& H_{j}(a)=\lim _{n \rightarrow \infty} Q_{j}^{n}\left(f_{j}\right)(a)=\lim _{n \rightarrow \infty} 2^{j n} f_{j}\left(\frac{a}{2^{n}}\right) \tag{19}\\
& D_{j}(a)=\lim _{n \rightarrow \infty} Q_{j}^{n}\left(g_{j}\right)(a)=\lim _{n \rightarrow \infty} 2^{j n} g_{j}\left(\frac{a}{2^{n}}\right) \tag{20}
\end{align*}
$$

and satisfying (15), (16), (17) and (18) as desired. Mappings $H_{j}, j=$ $\{1,2\}$, are ternary j-homomorphisms. In fact, by (13) and (19), we have

$$
\begin{aligned}
& \left\|H_{j}(a b c)-H_{j}(a) H_{j}(b) H_{j}(c)\right\| \\
& =\lim _{n \rightarrow \infty} 2^{3 n j}\left\|f_{j}\left(\frac{a b c}{2^{3 n}}\right)-f_{j}\left(\frac{a}{2^{n}}\right) f_{j}\left(\frac{b}{2^{n}}\right) f_{j}\left(\frac{c}{2^{n}}\right)\right\| \\
& \leq \lim _{n \rightarrow \infty} 2^{3 n j} \sigma\left(\frac{a}{2^{n}}, \frac{b}{2^{n}}, \frac{c}{2^{n}}\right) \\
& \leq \lim _{n \rightarrow \infty} k^{n} \sigma(a, b, c) \\
& =0 .
\end{aligned}
$$

It follows (14) and (20) imply that D_{j} is a ternary j-hom-derivations. In fact,

$$
\begin{aligned}
& \left\|D_{j}(a b c)-D_{j}(a) H_{j}(b) H_{j}(c)-H_{j}(a) D_{j}(b) H_{j}(c)-H_{j}(a) H_{j}(b) D_{j}(c)\right\| \\
& =\lim _{n \rightarrow \infty} 2^{3 n j} \| g_{j}\left(\frac{a b c}{2^{3 n}}\right)-g_{j}\left(\frac{a}{2^{n}}\right) f_{j}\left(\frac{b}{2^{n}}\right) f_{j}\left(\frac{c}{2^{n}}\right) \\
& -f_{j}\left(\frac{a}{2^{n}}\right) g_{j}\left(\frac{b}{2^{n}}\right) f_{j}\left(\frac{c}{2^{n}}\right)-f_{j}\left(\frac{a}{2^{n}}\right) f_{j}\left(\frac{b}{2^{n}}\right) g_{j}\left(\frac{c}{2^{n}}\right) \| \\
& \leq \lim _{n \rightarrow \infty} 2^{3 n j} \sigma\left(\frac{a}{2^{n}}, \frac{b}{2^{n}}, \frac{c}{2^{n}}\right) \\
& \leq \lim _{n \rightarrow \infty} k^{n} \sigma(a, b, c) \\
& =0
\end{aligned}
$$

Now, the proof is complete.

In Theorem 2.4 and Theorem 2.5, by taking $k=2^{j-r}, r \in \mathbb{R}$ and

$$
\delta(a, b, c)=\sigma(a, b, c)=s\left(\|a\|^{r}+\|b\|^{r}+\|c\|^{r}\right)
$$

where $a, b, c \in X$ and s is a nonnegative real number, we obtain the following result.

Corollary 2.6. Let $j \in\{1,2\}, r>j$ and s be two elements of \mathbb{R}_{+}. Suppose that $\delta(a, b, c)=\sigma(a, b, c)=s\left(\|a\|^{r}+\|b\|^{r}+\|c\|^{r}\right)$. Assume $f_{j}, g_{j}: X \rightarrow X$, are functions satisfying (11), (12), (13) and (14).
Then there exist ternary j-homomorphisms H_{j} and ternary j-hom-derivations D_{j} such that

$$
\left\{\begin{array}{l}
\left\|f_{j}(a)-H_{j}(a)\right\| \leq \frac{2^{j} s}{2^{r}-2^{j}}\|a\|^{r} \\
\left\|g_{j}(a)-D_{j}(a)\right\| \leq \frac{2^{j} s}{2^{r}-2^{j}}\|a\|^{r} .
\end{array}\right.
$$

References

[1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66.
[2] P. W. Cholewa, Remarks on the stability of functional equations, Aequations Mathematicae, 27 (1984), 76-86.
[3] G. Choi, S. M. Jung and Y. H. Lee, Aproximation prpperties of solutions of a mean type functional inequalities, J. Nonlinear Sci. appl. , 10 (2017), 4507-4514.
[4] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg, 62 (1992), 59-64.
[5] E. Elqourachi and Th. M. Rassias, On a functional equation of trigonometric type, Mathematics, 6 (2018), doi: 10.3390/math6050083
[6] M. Eshaghi Gordji, Z. Alizadeh, H. Khodaei and C. Park, On approximate homomorphisms: a fixed point approach, Mathematical Sciences, 6 (2012), doi.org/10.1186/2251-7456-6-59.
[7] M. Eshaghi Gordji, H. Khodaei and Th. M. Rassias, Fixed points and generalized stability for quadratic and quartic mappings in C^{*} algebras, J. Fixed Point Theory Appl., 17 (2018), 703-715.
[8] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436.
[9] I. Hwang and C. Park, Bihom derivations in Banach algebras, J. Fixed Point Theory Appl., 21 (2019), doi.org/10.1007/s11784-019-$0722-\mathrm{y}$.
[10] D. H. Hyers, On the stability of the linear functional equation, Proceedings of the National Academy of Sciences of the United States of America, 27 (1941), 222-224.
[11] S. Jahedi, V. Keshavarz, C. Park and S. Yun, Stability of ternary Jordan bi-derivations on C^{*}-ternary algebras for bi-Jensen functional equation, J. Comput. Anal. Appl. 26 (2019), 140-145 .
[12] S. M. Jung, D. Popa and M. Th. Rassias, On the stability of the linear functional equation in a single variable on complete metric groups, J. Global Optim., (2013), doi: 10.1007/s10898-013-0083-9.
[13] S. M. Jung, M. Th. Rassias and C. Mortici, On a functional equation of trigonometric type, Applied Mathematics Computation, 252 (2015), 294-303.
[14] R, Kerner, Ternary algebraic structures and their applications in physics. Pierre et Marie Curie University, Paris; Proc. BTLP, 23rd International Conference on Group Theoretical Methods in Physics, Dubna, Russia (2000).
[15] V. Keshavarz, S. Jahedi and M. Eshaghi Gordji, Ulam-Hyers stability of C^{*}-ternary 3-Jordan derivations, South East Aisian Bull. Math., 45 (2021), 55-64.
[16] H.-M. Kim and H.-Y. Shin, Refined stability of additive and quadratic functional equations in modular spaces, J. Inequal Appl., 146 (2017), doi.org/10.1186/s13660-017-1422-z.
[17] B. Margolis, J.B. Diaz, A fixed point theorem of the alternative for contractions on the generalized complete metric space, Bull. Amer. Math. Soc., 126 (1968), 305-309.
[18] Y. Nambu, Generalized Hamiltonian mechanics, Phys. Rev., 7 (1973), 2405-2412.
[19] C. Park, J. Rye Lee and X. Zhang, Additive s-functional inequality and hom-derivations in Banach algebras, J. Fixed Point Theory Appl., 21 (2019), doi.org/10.1007/s11784-018-0652-0.
[20] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300.
[21] F. Skof, Proprietá locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano, 53 (1983), 113-129.
[22] S. M. Ulam, Problems in Modern Mathematics, Chapter VI, Sscience ed. Wiley, New York, 1940.
[23] H. Zettl, A characterization of ternary rings of operators, Adv. Math., 48 (1983), 117-143.

Sedigheh Jahedi

Department of Mathematics
Associate Professor of Mathematics
Shiraz University of Technology
Shiraz, Iran
E-mail: jahedi@sutech.ac.ir

Vahid Keshavarz
Department of Mathematics
PhD student
Shiraz University of Technology
Shiraz, Iran
E-mail: v.keshavarz68@yahoo.com

[^0]: Received: April 2021; Accepted: July 2021

 * Corresponding Author

