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Abstract. In this paper some random fixed point theorems Fréchet
spaces have been introduced. Some of them will be the stochastic ana-
logue of the well known fixed point theorems. Also as their applications
we see some notable results of fixed points in Banach and linear topo-
logical spaces.
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1. Introduction

Random operator theory is an interesting subject needed to study of
various classes of random equations. The initiated point in the study of
random fixed point theorems belongs to Prague school of probabilistic
in 1950s. The interest in this subject enhanced after publication of the
survey paper by Bharucha Ried [1]. Random fixed point theory has re-
ceived much attention in the recent years (see [3], [12], [13] and [15]).
Some important stochastic analogue cases of well known fixed point the-
orems have been introduced by some authors (see [8], [10], [5], [14] and
[17]). The main purpose of this article is to prove the stochastic analogue
of some well known results such as Markov-kakutani and Krasnoselskii
fixed point theorems. Moreover as their applications, we see some other
interesting results.
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2. Preliminaries

Let (X, τ) be a Hausdorff locally convex space. A family {pα : α ∈ I} of
seminorms on X is called an associated family for τ if the family {γU :
γ > 0} forms a base of neighborhoods of zero for τ , where U =

⋂n
i=1 Uαi

and Uαi = {x : pαi(x) < 1}. A family {pα : α ∈ I} of seminorms
on X is called an augmented associated family for τ if {pα : α ∈ I}
is an associated family such that max{pα, pβ} ∈ {pα : α ∈ I}, for
any α, β ∈ I. We will denote by A(τ) and A∗(τ), the associated and
augmented associated semi norms {pα : α ∈ I}, respectively. As a well
known result, there always exists a family {pα : α ∈ I} of semi norms
on X such that {pα : α ∈ I} = A∗(τ)(see [6], P. 203). A subset M of X
is τ -bounded in X if and only if each pα is bounded on M .
For any τ -bounded subset M of X we can choose a number λα > 0 such
that M ⊆ λαUα, where Uα = {x : pα(x) 6 1} and α ∈ I. It is easy to
show that B =

⋂
α λαUα is τ -bounded, τ -closed, absolutely convex and

contains M . Also the linear span XB of B in X is
⋃∞

n=1 nB and the
Minkowski linear functional is a norm which is denoted by ‖.‖B. This
means that (XB, ‖.‖B) is a normed space with closed unit ball B and
for each x ∈ XB, ‖x‖B = supα pα( x

λα
). To see the details one can refer

to [6] and [16].
Let A and B be two self maps on M . Then A is called:

i) A∗(τ)-non expansive if for all x, y ∈M

pα(Ax−Ay) 6 pα(x− y), ∀pα ∈ A∗(τ).

ii) A∗(τ)-B-non expansive if for all x, y ∈M

pα(Ax−Ay) 6 pα(Bx−By), ∀pα ∈ A∗(τ).

Throughout this paper for simplicity, we shall call A∗(τ)-non expansive
(A∗(τ)-B-non expansive) maps by expansive (B-non expansive) maps.
Let {xn} be a sequence in X. Then {xn} is Cauchy if and only for each
pα, pα(xn − xm) −→ 0 as m,n −→∞.
Let C be a nonempty convex subset of X and q ∈ C. A self mapping T
on C is said to be affine if

T (λx+ (1− λ)y) = λT (x) + (1− λ)T (y),
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for all x, y ∈ C and λ ∈ (0, 1). Also T is said to be affine with respect
to q if

T (λx+ (1− λ)q) = λT (x) + (1− λ)T (q),

for all x ∈ C and λ ∈ (0, 1). There is an example of an affine mapping
with respect to a point which is not affine (see[18]).
Let X be a topological vector space. A subset A ⊆ X is said to be star-
shaped if there exists an element x ∈ A such that tx+ (1− t)y ∈ A, for
all t ∈ [0, 1] and for all y ∈ A. Such an element is called a star-point of
A. The set of all star-points of A is called the star-core of A.
Let (Ω, A) be a measurable space and X be a metric space. A map-
ping f : Ω × X −→ X is called a random operator if for any x ∈ X,
f(., x) is measurable. Some authors consider the random operator as
f : Ω×K −→ X (see [2]), where K is a non empty subset of X. A mea-
surable mapping ξ : Ω −→ X is called a random fixed point of a random
operator f : Ω×X −→ X, if for each ω ∈ Ω, ξ(ω) = f(ω, ξ(ω)). Clearly
ξx(ω) = x is a random fixed point for f : Ω × X −→ X if and only
if, x ∈ X, is a fixed point for f(ω, .), for any ω ∈ Ω. A random opera-
tor f : Ω × X −→ X is continuous (respectively, non expansive, g-non
expansive(for self mapping g of X)) if for each ω ∈ Ω, f(ω, .) is con-
tinuous (respectively, non expansive, g-non expansive), see [11]. Two
maps f, g : X −→ X are called commutative, if for each x ∈ X,
f(g(x)) = g(f(x)). Random operators f, g : Ω ×X −→ X is said to be
commutative, if f(ω, .) and g(ω, .) are commutative for each ω ∈ Ω. The
random operator T : Ω×X −→ X is called affine with respect to p ∈ X
(resp. demiclosed at p) if for each ω ∈ Ω, T (ω, .) is affine with respect
p (resp. demiclosed at p). The other definitions such as linearity, in-
variant property, compactness, demicompactness, weakly compactness
and closeness can be introduced similarly. Throughout this paper we
denote by RF (T ), the set of random fixed points of a random operator
T : Ω×X −→ X.

Theorem 2.1. (Markov-Kakutani) ([4]) Let X be a nonempty, compact
and convex subset of a Hausdorff locally convex space and let A be a
commutating family of continuous affine mappings. Then there exists an
element x ∈ X such that f(x) = x, for each f ∈ A.
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Theorem 2.2. ([14]) Let X be separable closed and convex subset of a
Hilbert space H and A,B : Ω×X −→ H be random operators such that
A is contraction and B is compact and continuous. Then there exists a
measurable map φ : Ω −→ X such that for each ω ∈ Ω

‖T (ω, φ(ω))− φ(ω)‖ = min{‖T (ω, φ(ω))− x‖ : x ∈ X},

where T = A + B. If additionally T (Ω × ∂X) ⊆ X then φ is a random
fixed point.

For a Banach space E, suppose that A ⊆ E be a subset of E and let
δ(A) denotes the diameter of A. Let α(A) = inf ε, where ε > 0 and
A can be covered by a finite number of subsets A1, A2, ...An of E with
δ(Ai) 6 ε, for each i. Then α(A) is called the Kuratowski’s measure
of noncompactness of A (see [9]). We recall that for arbitrary bounded
subsets B,B1, B2 of E we have the following properties.
i)α(A) = 0 if and only if B is relatively compact set.
ii)α(B1 ∪B2) = max{α(B1), α(B2)}.
iii)α(B) = α(B).
For a nonempty subset X ⊆ E, a random operator T : Ω×X −→ E is
called condensing if for each bounded subset A ⊆ X with α(A) > 0 and
each fixed ω ∈ Ω we have α(T (ω,A)) 6 α(A).

Lemma 2.3. ([14])Let X be a separable, closed and convex subset of a
Banach space E and T : Ω × X −→ X be a bounded, continuous and
condensing random operator. Then T has a random fixed point.

Theorem 2.4. (Krasnosel’skii) ([7]) Suppose A is a closed bounded con-
vex subset of a Banach space X. If T : A −→ X is a contraction, C :
A −→ X is compact and T (A) + C(A) = {̂T (x) + C(y), x, y ∈ A} ⊆ A,
then T + C has a fixed point in A.

Theorem 2.5. ([4]) Let K be a compact and star-shaped subset of a
topological linear space X. Then every decreasing chain of nonempty,
compact and star-shaped subsets of K has a nonempty intersection that
is compact and star-shaped.

Lemma 2.6. ([4]) Suppose that K is a compact star-shaped subset of
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a topological linear space X and A is the corresponding star-core of K.
Then A is compact convex subset of A.

3. Main Results

In pure and applied aspects of Fixed point Theory, there are useful
results such as Markov-kakutani and Krasnoselski theorems. In this sec-
tion, we try to prove the stochastic analogue of these theorems. Moreover
as their applications, we see some other interesting results.

Theorem 3.1. Let K be a compact convex subset of a Fréchet space E
and T : Ω ×K −→ K be a continuous affine random operator. Then T
has a random fixed point.

Proof. Suppose that ω ∈ Ω be given. If the theorem were false, the
intersection of the diagonal 4 = {(x, x) : x ∈ K} of K × K with the
graph of T (ω, .). i.e. Γ = {((ω, x), T (ω, x))} would be empty. But for
ω ∈ Ω, 4 and Γ are compact and convex subset of E × E. By applying
Han-Banach theorem there are continuous linear functionals Lω

1 and Lω
2

on E and scalars β < α such that

Lω
1 (x) + Lω

2 (x) 6 α < β 6 Lω
1 (y) + Lω

2 (y),

for all x, y ∈ K. Hence for x ∈ K we have

Lω
2 (T (ω, x))− Lω

2 (x) > β − α.

By iterating this equality we can deduce that

Lω
2 (Tn(ω, x))− Lω

2 (x) > n(β − α) −→∞,

for arbitrary x ∈ K so that the sequence {Lω
2 (Tn(ω, x))}n∈N is un-

bounded which contradicts the compactness of Lω
2 (K). �

Corollary 3.2. Let K be a compact convex subset of a Fréchet space
E. Suppose that A be a family of commutative, continuous and affine
random operators T : Ω×K −→ K. Then A has a random fixed point.
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Proof. Suppose that ω ∈ Ω be given, A = {Ti : i ∈ I} and Ki =
RF (Ti). According to theorem 3.1, Ki 6= ∅ and also Ki is convex and
compact. Since for each i, j ∈ I, Ti and Tj commute we conclude that
Ti(ω,Kj) ⊂ Kj . Hence Ti(ω, .)|Kj has a fixed point by theorem 3.1 so
that Ki ∩Kj 6= ∅. This means that the class {Ai : i ∈ I} has the finite
intersection property. So

⋂
i∈I Ki 6= ∅. �

If we regard the fixed points as the special cases of random fixed points,
also we have the following application.

Corollary 3.3. Let X be a nonempty, compact and convex subset of a
Fréchet space and let A be a commutating family of continuous affine
mappings. Then there exists an element x ∈ X such that f(x) = x, for
each f ∈ A.
Now we wish to weakened the conditions of theorem 3.1.

Lemma 3.4. Suppose that K is a star-shaped subset of a Fréchet space X
and T : Ω×K −→ K be a surjective random operator that is affine. Then
the star-core of K is invariant under T.

Proof. Let C be the star-core of K and x0 ∈ C. We will show that for
each ω ∈ Ω, T (ω, x0) ∈ C. Let y ∈ K and 0 6 λ 6 1 be arbitrary. since
T is surjective for given ω ∈ Ω, there exists some x ∈ K such that
T (ω, x) = y. Since x0 is a star-point of K, we have λx0 + (1 − λ)x ∈
K. But T is affine and K is invariant under T . So

λT (ω, xo) + (1− λ)y = λT (ω, x0) + (1− λ)T (ω, x)
= T (ω, λx0 + (1− λ)x)
∈ T (ω,K) ⊆ K.

Thus T (ω, x0) is star-point of K and hence C is invariant under T . �

Theorem 3.5. Let X be a nonempty compact and star-shape subset of a
Fréchet space V, C be the star-core of X and A be a commutating family
of continuous random operators T : Ω × X −→ X such that for each
T ∈ A and ω ∈ Ω, F (T (ω, .)) ⊆ C. Also suppose that T is p-affine, for
each p ∈ C. Then

⋂
T∈ARF (T ) 6= ∅.

Proof. By applying Theorem 2.5 and Zorn’s lemma we can obtain a
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set M ⊆ X such that M is minimal with respect to being nonempty,
compact, star-shaped and invariant under each T ∈ A.We will show that
for each ω ∈ Ω and T ∈ A, we have T (ω,M) = M . Assume the contrary
and suppose that S ∈ A, be such that S(ω,M) ⊂ M , for some ω ∈ Ω.
Let S(ω,M) = N . Since S is p-affine then N is star-shaped. Also N is
nonempty and compact. Now suppose that (ω, x) ∈ N = S(ω,M). Then
there exists y ∈M such that (ω, x) = S(ω, y). Since A is commutative,
for given ω ∈ Ω and T ∈ A we have

T (ω, x) = T (S(ω, y)) = S(T (ω, y)) ∈ S(ω,M).

Consequently, for each T ∈ A and ω ∈ Ω, T (ω,N) ⊆ N . Thus N ⊂ M

is a nonempty, compact and star-shaped subset of K that is invariant
under each T ∈ A. But this is a contradiction to the minimality of M
and hence T (ω,M) = M , ω ∈ Ω and T ∈ A. Let C be the star-core of
M . Since C is nonempty, convex and compact subset of X, by lemma
3.4, we deduce that for each T ∈ A, C is invariant under C. Now by
applying corollary 3.2, A has a random fixed point. �

In the next step we wish to extend theorem 2.4. But first we extend the
lemma 2.3.

Lemma 3.6. Let (X, τ) be a separable Férechet space and M be a τ -
bounded subset of X. Then we have
i) (XB, ‖.‖B) is complete.
ii)If T : Ω×M −→ X is continuous, then it is continuous in (XB, ‖.‖B).
iii)If T is condensing and bounded with respect to τ then it is condensing
and bounded in (XB, ‖.‖B).

Proof. i) Let {xm} be a sequence in M such that xm −→ x and suppose
that τ is compatible with the family of seminorms {pn}. Then for each
ε > 0 there exists k0 ∈ N such that

pn(xm − x) < ε, ∀m > k0,

for all pn ∈ A∗(τ). Hence

sup
n
pn(

xm − x

λn
) 6 ε, ∀m > k0,
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and so
‖ xm − x ‖B6 ε, ∀m > k0.

The other parts can be similarly proved. �
According to the previous lemma we have the following extension of
Lemma 2.3.

Corollary 3.7. Let X be a separable, closed and convex subset of a
Férechet space E and T : Ω × X −→ X be a bounded, continuous and
condensing random operator. Then T has a random fixed point.
Now we are ready to extend the second result of this article (Theorem
3.9).

Definition 3.8. Let E be a Férechet space, K ⊆ E, compatible with the
family of seminorms {pn} and T : E × K −→ E be an operator. The
family {T (., y) : y ∈ K} is said to be equicontractive if there exists a
k ∈ [0, 1) such that

pn(T (x1, y)− T (x2, y) 6 kpn(x1 − x2),

for each pn and for all (x1, y), (x2, y) in the domain of T .

Theorem 3.9. Suppose that A is a closed convex bounded subset of the
Férechet space X and C : Ω×A −→ X a compact random operator. Also
suppose that T : Ω×A×C(A) −→ A is a random operator such that for
each ω ∈ Ω, the family {T (ω, ., y) : y ∈ C(A)} is equicontractive and for
each x ∈ A and ω ∈ Ω, the map T (ω, x, .) is uniformly continuous. If
T (ω,A,C(A)) ⊆ A, the random operator S(ω, x) = T (ω, x, C(x)), for
each x ∈ A, has a random fixed point.

Proof. Consider a set B ⊆ A, ω ∈ Ω and let ε > 0 be given. The
uniformly continuity guarantees that there exists a δ(ε) > 0 such that for
all x ∈ A and y1, y2 ∈ C(A), pn(T (ω, x, y1)− T (ω, x, y2)) < ε, whenever
we have pn(y1, y2) < δ(ε) and for each pn. According to the definition
of Kuratowski’s measure of noncompactness, see [9], there exists a finite
family of sets B1, ..., Bn such that B =

⋃n
i=1Bi and diam(Bi) 6 α(B)+

ε, i = 1, 2, ..., n.
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Also C(ω,B) is precompact. Thus we have α(C(ω,B)) = α(C(ω,B)) =
0 and hence there exists a finite family of sets V1, ..., Vm such that
C(ω,B) =

⋃m
j=1 Vj and diam(Vj) 6 δ(ε), j = 1, 2, ...m. Hence B ⊆⋃m

j=1C
−1(ω, Vj) and therefore

B = (
n⋃

i=1

Bi) ∩ (
m⋃

j=1

C−1(Vj)) =
n⋃

i=1

m⋃
j=1

(Bi ∩ C−1(Vj)).

This gives that

S(ω,B) =
n⋃

i=1

m⋃
j=1

S(ω,Bi ∩ C−1(Vj)).

Fix two indices i, j, take points x1, x2 ∈ Bi ∩ C−1(Vj). Hence for each
pn, we have

pn(x1 − x2) 6 diam(Bi) 6 α(B) + ε,

and
pn(C(ω, x1)− C(ω, x1)) 6 diam(Vj) 6 δ(ε).

Hence
pn(T (ω, x1, C(ω, x1))− T (ω, x2, C(ω, x2))) 6 ε,

and therefore we get

pn(S(ω, x1)− S(ω, x2)) 6 pn(T (ω, x1, C(ω, x1))− T (ω, x2, C(ω, x2)))
+ pn(T (ω, x2, C(ω, x1))− T (ω, x2, C(ω, x2)))
6 kα(B) + kε+ ε.

But this means that diamS(ω,Bi ∩ C−1(Vj)) 6 kα(B) + kε + ε and so
we have

α(S(ω,B)) = max{diamS(ω,Bi ∩ C−1(ω, Vj)) :
i = 1, 2, ..., n, j = 1, 2, ...,m}
6 kα(B) + kε+ ε.

Since ε is arbitrary it implies that α(S(ω,B)) 6 kα(B). Now by Corol-
lary 3.7 the proof is complete. �
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Corollary 3.10. A simple observation shows that the Theorems 2.5 and
the second part of Theorem 2.4 are the special cases of the above theorem.
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nonexponsive operators in Fréchet spaces, J. Korean. Math. Soc., 39
(2002), 51-60.

[6] G. Kothe, Topological Vector Spaces-I, Springer-verlag, New York, (1969).

[7] M. A. Krasnosel’skii, Some Problems of Nonlinear Analysis, Amer. math.
soc. transl., 2 (10), Providence, R. I., 1958.

[8] P. Kumam and S. Plubting, Some random fixed point theorems for non-
self nonexponsive random operators, Turk. J. Math., 30 (2006), 359-372.

[9] K. Kuratowski, Topologie, Warszawa, 1952.

[10] R. N. Mukherjee, Some random fixed point theorems for multivalued and
single-valued mappings, Indian. J. Pure. Appl. Math., 13 (1982), 429-432.

[11] H. K. Nashine, Common random fixed point and random best approxi-
mation, Thai. J. Math, 3 (2005), 63-70.

[12] N. S. Papagergiou, Random fixed point theorems for measurable multi-
functions in Banach spaces, Proc. Amer. Math. Soc., 97 (1986), 507-514.

[13] N. S. Papagergiou, Random fixed points and random differential inclu-
sions, Internat. J. Math. Sci., 11 (1988), 551-560.



RANDOM FIXED POINT THEOREMS IN FRÉCHET ... 81
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