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sible estimators for the one-sided testing of the shape parameter, it is
difficult to exhibit a better estimator than the usual p-value. For the
two-sided testing, although the usual p-value is generally inadmissible,
it is remained as an estimator for the two-sided testing of the shape
parameter.

AMS Subject Classification: 62F03; 62F15; 62C15

Keywords and Phrases:Admissibility, Bayes estimator, Decision the-
ory, Hypothesis testing, p-value.

Received: November 2020; Accepted:July 2021
∗Corresponding Author

1



2 M. BABADI, F. HORMOZINEJAD AND A. ZAHERZADEH

1 Introduction

The hypothesis testing usually involves data based decision making be-
tween two or more statistical hypotheses. In the significance test, the
p-value is very common used as a measure of evidence against the null
hypothesis. The p-value quantifies the consistency in the data with a
statistical hypothesis. The investigation of the p-value has been no-
ticed in many researches during the last decads. Although in these
researches there are many Bayesian criticisms leveled at the p-value (see
[3, 4, 5, 14]), some good properties of the p-value have been proved by
other authors (see also [7, 11, 17]). These criticisms are all based on
the fact that, the p-value may be much smaller than Bayesian criterion
(the posterior probability of H0) in the two-sided testing problem. In
the one-sided testing problem, however, these criticisms do not appear
and the p-value is a limit of Bayes rules.

A different view of hypothesis testing which is examined in this pa-
per, the hypothesis testing is as a decision-theoretic problem. Consider
the hypothesis H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1, based on observing
X = x with density function f(x|θ), where Θ0 and Θ1 are two disjoint
subsets of the natural parameter space Θ and Θ = Θ0 ∪Θ1. The viabil-
ity of the set specified by H0 is considered with estimating the indicator
function IΘ0(θ) by an estimator, say δ(x). To measure the accuracy of
the test, the performance of estimator δ(x) in terms of admissibility is
evaluated with a loss function. Among the loss functions, the squared
error loss function

L(θ, δ(x)) = (IΘ0(θ)− δ(x))2, (1)

is more favorable because it is common and proper, i.e, a Bayesian’s
best strategy is to tell the truth (see [15]). The estimator δ(x) has the
interpretation that its large values confirm H0 and small values confirm
H1, similar to a p-value and a posterior probability of H0. Therefore,
it can be applied by researcher in a same way. An estimator δ(x) is
admissible for estimating IΘ0(θ) if there does not exist an estimator
δ′(x) which dominates δ(x), that is, such that,

(i) R(θ, δ(x)) ≤ R(θ, δ′(x)) for all θ ∈ Θ,

(ii) R(θ, δ(x)) < R(θ, δ′(x)) for some θ ∈ Θ,
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where R(θ, δ(x)) = E[L(θ, δ(x))] =
∫
χ(IΘ0(θ) − δ(x))2f(x|θ) dx is the

risk function of δ(x) for estimating IΘ0(θ). The Bayes estimator φπ(x)
associated with a (proper or improper) prior distribution π(θ) and a
strictly convex loss function, is admissible if the Bayes risk

r(π, φπ(x)) =

∫
Θ
R(θ, φπ(x))π(θ) dθ,

is finite (see [16]). The investigation of the usual p-value behavior us-
ing loss functions was originated by Gutmann [10] and Schaafsma et
al. [17]. Thereafter, Hwang et al. [11] considered estimating the accu-
racy of hypothesis testing. They showed that the usual p-value for the
two-sided testing H0 : θ ∈ [θ0, θ1] against H1 : θ /∈ [θ0, θ1] under the
squared error loss function is generally inadmissible. For the one-sided
testing, Chou [8] showed that the usual p-value is admissible under the
squared error loss function in the Negative Binomial distribution. Wang
[19] investigated for the simple hypothesis against simple alternative hy-
pothesis testing. He demonstrated that the usual p-value derived by the
Neyman-Pearson approach is inadmissible under the squared error loss
function and also provided admissible estimators which dominate the
usual p-value. In many partical appilications, the parameter space is re-
stricted and the bounds are known. In this case, Woodroofe and Wang
[21] and Wang [20] proposed a modified p-value based on the bounds
of the parameter space. They showed that the modified p-value for the
one-sided testing under the squared error loss function is admissible in
the Poisson and Normal distributions.

In the present paper the admissibility of the p-value is discussed for
the testing of parameters in the Pareto distribution

f(x|α, β) =
αβα

xα+1
, x ≥ β, 0 < α, β <∞, (2)

where α and β are the shape and scale parameters, respectively. The
motivation for choosing this distribution is twofold. The Pareto distribu-
tion is a heavy-tailed distibution and belong to two important families,
the Exponential family (when β is fixed) and the Nonregular family
(when α is fixed). Also in many research areas such as economy, sociol-
ogy, geophysical and other types of observable phenomena, the Pareto
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distribution is employed to fit the observed data. The paper is orga-
nized in five Sections. In Section 2, we consider the one-sided testing of
the scale parameter, in two cases for the shape parameter, known and
unknown. In latter case, we use the generalized p-value rather than the
usual p-value. A similar approach is incorporated to the shape param-
eter in Section 3. Further, the one-point hypothesis against two-sided
alternative hypothesis testing of the shape parameter which is more at-
tractive and arguable than the one-sided testing is examined. Section
4, is devoted to simulation study carried out for the results of Section
3. Finally, in Section 5 the results obtained in the previous Sections are
discussed as well as the conclusion. Throughout the paper we consider
the squared error loss function.

2 The P-value as an Estimator for the Test of
the Scale Parameter

Let X1, X2, . . . , Xn be a random sample from (2). Suppose X(i) and
x(i), i = 1, 2, . . . , n are the ith ordinal random variable and its observed
value, respectively.

In this Section, we investigate the problem of estimating the accu-
racy of the one-sided testing for the scale parameter, i.e, the hypothesis
testing

H0 : β ≤ β0 against H1 : β > β0, (3)

where β0 is a specified value.

2.1 The Usual P-value

Suppose that in the density function (2), α is known and β is an unknown
parameter. For the one-sided testing (3), the statistic T (X) = X(1) is a
sufficient statistic of the parameter β which has the Pareto distribution
Pa(nα, β) and t(x) = x(1) is the observed value of it. The usual p-value
is given by

p(t) = PH0(T (X) ≥ t(x)) = PH0(X(1) ≥ t)

=

∫ +∞

t

nαβnα0

ynα+1
dy = (

β0

t
)nα, β0 < t.
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The theorem 1 shows that for the one-sided testing (3) with the loss
function (1), the usual p-value is a generalized Bayes estimator with the
finite Bayes risk and therefore an admissible estimator for I(0,β0](β).

Theorem 2.1. For n observations of random variable X with the den-
sity function (2), the usual p-value for the one-sided testing (3) and the
loss function (1) is admissible.

Proof. Choose the non-informative prior π(β) = 1
β . Clearly, it is an

improper prior distribution and one cannot choose another prior distri-
bution because the usual p-value is not a Bayes estimator. The posterior
density is as follows

π(β|t) =
f(t|β)π(β)∫ t

0 f(t|β)π(β) dβ
=
nαβnα−1

tnα
,

and form the Bayes estimator of I(0,β0](β) for this problem is

φπ(t) = E(I(0,β0](β)|T = t)

= P (β ≤ β0|T = t)

=

∫ β0

0

nαβnα−1

tnα
dβ = (

β0

t
)nα, β0 < t,

which is p(t). Then the usual p-value is a generalized Bayes estimator
and the theorem is proved if the Bayes risk is finite. Therefore, the
Bayes risk of the usual p-value is given by

r(π, p(t)) = E[R(β, p(t))]

=

∫ β0

0

∫ +∞

β0

[1− (
β0

t
)nα]2

nαβnα−1

tnα+1
dtdβ

+

∫ +∞

β0

∫ +∞

β
[
β0

t
]2nα

nαβnα−1

tnα+1
dt dβ

=

∫ β0

0

βnα−1

3βnα0

dβ +

∫ +∞

β0

β2nα
0

3β2nα+1
dβ

=
1

3nα
+

1

6nα
=

1

2nα
,

which is finite as long as n is finite. �
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The important question is that, whether the unknown of the param-
eter α influences on the obtained result in this Section? We follow this
question in the next Section.

2.2 The Generalized P-value

In the hypothesis testing problem, the presence of nuisance parame-
ters in model is very common in practice. In this case, the classical
p-value is typically not available. Tsui and Weerahandi [18] introduced
the definition of the generalized p-value, called gp-value, but they could
not give a systematic approach to obtain it. Li et al. [13] provided a
general method to obtain the generalized p-value by fiducial inference.
In this paper, following Li et al. [13], the generalized p-value is for-
mulated by this fiducial method. Let X1, X2, . . . , Xn denote a random
sample of size n from the two-parameter Pareto distribution (2). For
the testing (3), it is known that T = (T1, T2) = (X(1),

∑n
i=1 ln( Xi

X(1)
)) is

the joint sufficient statistic for Θ = (α, β) and E1 = 2nα ln(
X(1)

β ) and

E2 = 2α
∑n

i=1 ln( Xi
X(1)

) are independently distributed with χ2
2 and χ2

2n−2,

respectively, where χ2
ν is the Chi-square distribution with ν degree of

freedom. We have T = (T1, T2) = (βe
E1
2nα , E2

2α ). Given an observation
t = (t1, t2) of T = (T1, T2) and e = (e1, e2) of E = (E1, E2). The

equation t = (t1, t2) = (βe
e1
2nα , e22α) has a unique solution

(α, β) = (
e2

2t2
, t1e

−t2e1
ne2 ), (4)

and the fiducial distribution for β is

FX(β) = P (t1e
−t2E1
nE2 ≤ β).
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Therefore, the generalized p-value, gp(t), with using the technique of
changing variable in the integration is given by

gp(t) = FX(β0) = P (t1e
−t2E1
nE2 ≤ β0)

= P (
E1

E2
≥ n

t2
ln(

t1
β0

))

=

∫ +∞

n(n−1)
t2

ln(
t1
β0

)

1

(1 + 1
n−1x)n

dx

= [
t2 + n ln( t1β0 )

t2
]1−n,

where (n−1)E1

E2
has the F-distribution with (2, 2n− 2) degree freedom.

Theorem 2.2. Let X1, X2, . . . , Xn be a random sample with the density
function (2) with α and β both are unknown. For the problem of testing
(3) under the loss function (1), gp(t) is inadmissible.

Proof. Taking π(α, β) = 1
αβ . Then the joint posterior probability of α

and β is

π(α, β|X = x) =
αn−1βnα−1e−(α+1)

∑n
i=1 lnxi∫ t1

0

∫ +∞
0 αn−1βnα−1e−(α+1)

∑n
i=1 lnxi dα dβ

,

hence, the marginal posterior probability of β is

π(β|X = x) =

∫ +∞
0 αn−1βnα−1e−(α+1)

∑n
i=1 lnxi dα∫ t1

0

∫ +∞
0 αn−1βnα−1e−(α+1)

∑n
i=1 lnxi dα dβ

.

Finally, the Bayes estimator under the loss function (1) is

φπ(x) = P (β ≤ β0|X = x)

=

∫ β0
0

∫ +∞
0 αn−1βnα−1e−(α+1)

∑n
i=1 lnxi dα dβ∫ t1

0

∫ +∞
0 αn−1βnα−1e−(α+1)

∑n
i=1 lnxi dα dβ

=
n(
∑n

i=1 ln(xit1 ))n−1

Γ(n− 1)

∫ β0

0

∫ +∞

0
αn−1βnα−1e−α

∑n
i=1 lnxi dα dβ

= [
t2∑n

i=1 ln( xiβ0 )
]n−1 = [

t2 + n ln( t1β0 )

t2
]1−n

= gp(t).



8 M. BABADI, F. HORMOZINEJAD AND A. ZAHERZADEH

Then gp(t) is a generalized Bayes estimator. The random variables T1 ∼
Pa(nα, β) and T2 ∼ Γ(n − 1, α) ≡ Gamma(n − 1, α) are independent
and the Bayes risk of gp(t) is given by

r(π, gp(t)) = E[R(β, gp(t))]

=

∫ +∞

0

∫ β0

0

∫ +∞

0

∫ +∞

β0

[1− gp(t)]2
nαn−1βnα−1

Γ(n− 1)tnα+1
1

tn−2
2 e−αt2 dt1 dt2 dβ dα

+

∫ +∞

0

∫ +∞

β0

∫ +∞

0

∫ +∞

β
[gp(t)]2

nαn−1βnα−1

Γ(n− 1)tnα+1
1

tn−2
2 e−αt2 dt1 dt2 dβ dα,

which is infinite. To show this, the first integral is divided into three
integrals. One of them is∫ +∞

0

∫ β0

0

∫ +∞

0

∫ +∞

β0

nαn−1βnα−1

Γ(n− 1)tnα+1
1

tn−2
2 e−αt2 dt1 dt2 dβ dα =

∫ +∞

0

1

nα2
dα = +∞.

Then the Bayes risk is infinite and the theorem is proved. �

Remark 2.3. Using the similar argument, it can be shown that the
obtained results are valid for the dual hypothesis of (3), i.e., H0 : β ≥ β0

against H1 : β < β0.

3 The P-value as an Estimator for the Test of
the Shape Parameter

In this Section, the admissibility of the p-value as an estimator for the
testing of the shape parameter is examined.

3.1 The Estimation of the Accuracy in the One-sided Test

3.1.1 The Usual P-value

Suppose that X1, X2, . . . , Xn is a random sample from a population with
the density function (2), where α is unknown parameter and β is known.
Consider the problem of estimating the accuracy of the one-sided testing

H0 : α ≤ α0 against H1 : α > α0, (5)

where α0 is a specified value. The statistic T (X) =
∑n

i=1 ln(Xiβ ) is the
sufficient for the parameter α which has the Gamma distribution Γ(n, α)



THE ADMISSIBILITY OF THE P -VALUE ... 9

and t(x) =
∑n

i=1 ln(xiβ ) is the its observed value. The usual p-value with
using the technique of the integrating by parts is given by

p(t) = PH0(T (X) ≤ t(x))

=

∫ t

0

αn0
Γ(n)

yn−1e−α0y dy

=

∫ α0

0

tn

Γ(n)
αn−1e−αt dα

= 1−
n−1∑
j=0

e−α0t(α0t)
j

j!
. (6)

In the following theorem we prove that the usual p-value for the
one-sided testing (5) and the loss function (1) is inadmissible.

Theorem 3.1. Let X1, X2, . . . , Xn be a random sample with the den-
sity function (2). The usual p-value for the problem of estimating the
accuracy of the testing (5) under the loss function (1) is inadmissible.

Proof. Choose an improper prior π on the parameter space α = (0,+∞)
with π(α) = 1

αI(0,+∞)(α). Then the posterior density is

π(α|t) =
f(t|α)π(α)∫ +∞

0 f(t|α)π(α) dα
=

tn

Γ(n)
αn−1e−αt,

and the Bayes estimator of I(0,α0](α) is

φπ(t) = E(I(0,α0](α)|T = t)

= P (α ≤ α0|T = t)

=

∫ α0

0

tn

Γ(n)
αn−1e−αt dα

= 1−
n−1∑
j=0

e−α0t(α0t)
j

j!
= p(t).

Therefore, the usual p-value is a generalized Bayes estimator. Using (6),
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the Bayes risk of the usual p-value is given by

r(π, p(t)) = E[R(α, p(t))]

=

∫ +∞

0

∫ +∞

0

[I(0,α0](α)− p(t)]2f(t|α)π(α) dα dt

=

∫ +∞

0

∫ α0

0

[1− p(t)]2α
n−1

Γ(n)
tn−1e−αt dα dt

+

∫ +∞

0

∫ +∞

α0

[p(t)]2
αn−1

Γ(n)
tn−1e−αt dα dt

=

∫ +∞

0

p(t)[1− p(t)]
t

dt

=

∫ +∞

0

[1−
∑n−1
j=0

e−α0t(α0t)
j

j!
][
∑n−1
j=0

e−α0t(α0t)
j

j!
]

t
dt

=

∫ +∞

0

[1− · · · − e−α0t(α0t)
n−1

(n− 1)!
][
e−α0t

t
+ · · ·+ e−α0t(α0t)

n−1

(n− 1)!t
] dt

=

∫ +∞

0

e−α0t

t
dt+ · · · −

∫ +∞

0

e−2α0t(α0t)
2n−2

t[(n− 1)!]2
dt.

Some of these integrals, say
∫ +∞

0
e−α0t

t dt, are infinite. Because∫ +∞

0

e−α0t

t
dt =

∫ 1

0

e−α0t

t
dt+

∫ +∞

1

e−α0t

t
dt,

where the first integral
∫ 1

0
e−α0t

t dt =
∫ 1

0
1
t dt +

∑+∞
i=1

(−1)iαi0
ii! is infinite

(see [9]). Then the risk Bayes of the usual p-value is infinite and the
usual p-value is an inadmissible estimator for I(0,α0](α) and the theorem
is proved. �

Remark 3.2. It should be noted that the above obtained results are valid
for the loss function (1) and different results may be obtained with other
loss functions. In fact for the testing problem (5), suppose that d0 and
d1 are accepting and rejecting H0, respectively, for any loss function
L(α, di), i = 0, 1 that satisfies

(i) L(α, d1)− L(α, d0) ≥ 0 as α ≤ α0,

(ii) L(α, d1)− L(α, d0) ≤ 0 as α > α0, (7)

the usual p-value is admissible for IΘ0(α).
To prove this, note that f(x|α) has monotone likelihood ratio with − lnX
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and {x : f(x|α) > 0} is independent of α. Two loss functions that satisfy
in (7) are the 0-1 and absolute loss functions (see [2, 16] for more detail).

Although the usual p-value has shown to be inadmissible for the
testing problem (5), the following theorem shows that there is a prior
distribution under which the Bayes estimator is admissible.

Theorem 3.3. Let X1, X2, . . . , Xn be a random sample with the density
function (2). For the one-sided testing (5), the Bayes estimator with
respect to the proper prior distribution π(α) = e−αI(0,+∞)(α) and the
loss function (1) is admissible.

Proof. For the proper prior distribution π(α) = e−αI(0,+∞)(α) and the

sufficient statistic T (X) =
∑n

i=1 ln(Xiβ ), the posterior density and the
Bayes esimator with using the technique of the integrating by parts are,
respectively,

π(α|t) =

αn

Γ(n) t
n−1e−α(t+1)∫ +∞

0
αn

Γ(n) t
n−1e−α(t+1) dα

=
(t+ 1)n+1

Γ(n+ 1)
αne−α(t+1),

and

φπ(t) = E(I(0,α0](α)|T = t)

= P (α ≤ α0|T = t)

=

∫ α0

0

(t+ 1)n+1

Γ(n+ 1)
αne−α(t+1) dα

= 1−
n∑
j=0

e−α0(t+1)[α0(t+ 1)]j

j!
. (8)

The Bayes risk with using (8) and the technique of changing variable in
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the integration is given by

r(π, φπ(t)) = E[R(α, φπ(t))]

=

∫ +∞

0

∫ α0

0
[1− φπ(t)]2

αn

Γ(n)
tn−1e−α(t+1) dα dt

+

∫ +∞

0

∫ +∞

α0

[φπ(t)]2
αn

Γ(n)
tn−1e−α(t+1) dα dt

=

∫ +∞

0

tn−1Γ(n+ 1)

(t+ 1)n+1Γ(n)
[1− φπ(t)]φπ(t) dt

≤
∫ +∞

0

tn−1Γ(n+ 1)

(t+ 1)n+1Γ(n)
dt

=

∫ +∞

1

n(t− 1)n−1

tn+1
dt <

∫ +∞

1

ntn−1

tn+1
dt

=

∫ +∞

1

n

t2
dt = n < +∞.

Therefore, the Bayes estimator (8) when considered as an estimator of
I(0,α0](α) is admissible. �

The risk functions of the usual p-value (6) and the Bayes estimator
(8) are compared in figures 1 and 2 for α0 = 1 and α0 = 2. For simplicity
n = 1 has been considered. The interesting point is that the Bayes
estimator (8) is admissible, but cannot dominate the usual p-value (6).
Because, if the null hypothesis is true, R(α, p(t)) will be bigger than
R(α, φπ(t)), otherwise R(α, p(t)) will be smaller than R(α, φπ(t)).
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Figure 1: The risk functions of p(t) (solid line) and φπ(t) (dashed line) for n = 1 and
α0 = 1.
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Figure 2: The risk functions of p(t) (solid line) and φπ(t) (dashed line) for n = 1 and
α0 = 2.

3.1.2 The Generalized P-value

Let X1, X2, . . . , Xn be a random sample from a variable with the density
function (2), where α and β are both unknown parameters. For the
problem of the one-sided testing (5), gp(t) using (4) and the fiducial
distribution for α, FX(α) = P (E2

2t2
≤ α), is given by

gp(t) = FX(α0)

= P (E2 ≤ 2α0t2)

=

∫ 2α0t2

0

1

2n−1Γ(n− 1)
yn−2e−

y
2 dy

=
tn−1
2

Γ(n− 1)

∫ α0

0
yn−2e−t2y dy

= 1−
n−2∑
j=0

e−α0t2(α0t2)j

j!
.
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Theorem 3.4. Let X1, X2, . . . , Xn be a random sample with the density
function (2) where α and β both are unknown. gp(t) for the problem of
estimating the accuracy of the testing (5) under the loss function (1) is
inadmissible.

Proof. If π(α, β) = 1
αβ , then the Bayes estimator with using the loss

function (1) is

φπ(x) = P (α ≤ α0|X = x)

=

∫ α0

0
π(α|X = x) dα

=

∫ α0

0

∫ t1

0
π(α, β|X = x) dβ dα

=

∫ α0

0

∫ t1
0 αn−1βnα−1e−(α+1)

∑n
i=1 lnxi dβ dα∫ +∞

0

∫ t1
0 αn−1βnα−1e−(α+1)

∑n
i=1 lnxi dβ dα

=
tn−1
2

Γ(n− 1)

∫ α0

0
αn−2e−αt2 dα

=
αn−1

0

Γ(n− 1)

∫ t2

0
yn−2e−α0y dy

= 1−
n−2∑
j=0

e−α0t2(α0t2)j

j!
= gp(t), (9)

i.e, gp(t) is a generalized Bayes estimator. Since T1 ∼ Pa(nα, β) and
T2 ∼ Γ(n−1, α) are independent random variables. Using (9) the Bayes
risk of gp(t) is given by

r(π, gp(t)) = E[R(α, gp(t))]

=

∫ +∞

0

∫ +∞

β

∫ α0

0

∫ t1

0

[1− gp(t)]2
nαn−1βnα−1

Γ(n− 1)tnα+1
1

tn−2
2 e−αt2 dβ dαdt1 dt2

+

∫ +∞

0

∫ +∞

β

∫ +∞

α0

∫ t1

0

[gp(t)]2
nαn−1βnα−1

Γ(n− 1)tnα+1
1

tn−2
2 e−αt2 dβ dα dt1 dt2

=

∫ +∞

0

∫ +∞

β

gp(t)[1− gp(t)]
t1t2

dt1 dt2

=

∫ +∞

0

∫ +∞

β

e−α0t2

t1t2
dt1 dt2 + · · · −

∫ +∞

0

∫ +∞

β

e−2α0t2 (α0t2)2n−4

t1t2[(n− 1)!]2
dt1 dt2.

Since some of these integrals are infinite, gp(t) is an inadmissible esti-
mator for I(0,α0](α) and the theorem is proved. �
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Remark 3.5. By a similar argument, it can be shown that the obtained
results for the hypothesis testing H0 : α ≥ α0 against H1 : α < α0

are valid.

3.2 The Estimation of the Accuracy in the Two-sided
Test

The usual p-value is most routinely used as the standard measure of
uncertainly in the statistical testing in the one-sided and two-sided hy-
potheses. However, in the one-point hypothesis against two-sided al-
ternative hypothesis testing, the usual p-value can be very misleading
impression as the validity of H0 (see [4]). To investigate the admissibility
of the usual p-value in this case, we examine

H0 : α = α0 against H1 : α 6= α0, (10)

in the Pareto distribution when β is considered to have a known value.
For this test, the statistic T (X) =

∑n
i=1 ln(Xiβ ) is a appropriate statis-

tic which has the Gamma distribution Γ(n, α). This statistic is a suf-
ficient statistic for α and its extreme values are against H0. If x =
(x1, x2, . . . , xn) is an observed vector of X = (X1, X2, . . . , Xn), the
likelihood ratio test with size p, using equal tails, rejects H0 when
T (x) < 1

2α0
χ2

(2n)(1 −
p
2) and T (x) > 1

2α0
χ2

(2n)(
p
2) where χ2

(ν)(q) denotes
the qth fractile of a Chi-square distribution with ν degree of freedom.
Under H0,

2α0T (X) = 2α0

n∑
i=1

ln(
Xi

β
) ∼ χ2

2n.

Therefore, the distribution of 2α0T (X) under H0 is not symmetric and
the usual p-value is given by

p(t) = 2min{Pα=α0(T (X) ≤ t(x)), Pα=α0(T (X) ≥ t(x))}

=

{
2PH0(χ2

2n ≥ 2α0t(x)) t(x) > n
α0
,

2PH0(χ2
2n ≤ 2α0t(x)) t(x) ≤ n

α0
,

(11)

where t(x) is the observed value of the test statistic. The Bayes estima-
tors for this problem is

φπ(t) = P (H0|T = t) =
π0f(t|α0)

π0f(t|α0) + π1

∫
α 6=α0

f(t|α)π(α) dα
, (12)
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where f(t|α) has the density function Gamma with parameters n and
α. Amounts π0 and π1 = 1 − π0 are the primary probability of H0

and H1, respectively. π0 is usually assumed to be 1
2 in the calculation.

This choice of π0 is necessary since it reflects the assumption of equal
believable of H0 and H1.

Theorem 3.6. Let X1, X2, . . . , Xn be a random sample from the density
function (2). For the testing problem (10), the usual p-value under the
loss function (1) cannot be dominated by the Bayes estimators with π0 =
1
2 .

Proof. See Appendix. �
Thus, in the two-sided testing problem, the usual p-value remains

as a frequently used estimator of the accuracy, although is inadmissible
and is not within in the range of Bayesian’s rule.

4 Simulation

In this Section, we conduct a simulation study to compare the usual
p-value and the Bayes estimator for the testing of the shape parame-
ter in the previous Section. This simulation is based on real-data, the
Norwegian fire claims data set which is taken from Beirlant et al. [1].
It represents the total damage done by 142 fires in Norway for the year
1975, for claims above 500000 Norwegian krones. The losses are recorded
in 1000’s of Norwegian krones. Brazauskas and Serfling [6] fitted the
Pareto distribution with α = 1.218 and β = 500000 to the data.

First, we compare the usual p-value (6) and the Bayes estimator
(8) as measures of evidence against the null hypothesis in the one-sided
testing (5). Table 1 shows the ratios of the usual p-value (6) and the
Bayes estimator (8) less than 0.05 and 0.01 based on 1000 samples n = 10
corresponding with values of α0 ranging from 1.206 to 1.230 and β =
500000. The results of simulation in Table 1 show that when α0 is larger
than 1.218, which means H0 : α ≤ α0 is true, the number of the Bayes
estimator less than 0.05 and 0.01 are less than that of the usual p-value.
When α0 is less than 1.218, the number of the usual p-value less than
0.05 and 0.01 are more than that of the Bayes estimator. They reveal
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Table 1: The ratios of the usual p-value and the Bayes estimator (the posterior probability
of H0) less than 0.05 and 0.01 for the testing (5) based on 1000 replicates.

α0 H0 true or false p(t) < 0.05 φπ(t) < 0.05 p(t) < 0.01 φπ(t) < 0.01

1.206 false 0.067 0.044 0.020 0.008
1.209 false 0.044 0.023 0.003 0.002
1.212 false 0.055 0.038 0.018 0.005
1.215 false 0.051 0.030 0.017 0.009
1.217 false 0.059 0.028 0.012 0.004
1.219 true 0.052 0.031 0.010 0.004
1.221 true 0.038 0.022 0.008 0.005
1.224 true 0.051 0.034 0.010 0.001
1.227 true 0.044 0.026 0.010 0.004
1.230 true 0.053 0.028 0.008 0.002

that the usual p-value (6) is not dominated by the Bayes estimator (8)
which is an admissible estimator for I(0,α0](α).

Table 2: The ratios of the usual p-value and the Bayes estimator (the posterior probability
of H0) less than 0.05 and 0.01 for the testing (10) based on 1000 replicates.

α0 H0 true or false p(t) < 0.05 φπ(t) < 0.05 p(t) < 0.01 φπ(t) < 0.01

1.206 false 0.046 0.032 0.009 0.007
1.210 false 0.064 0.036 0.017 0.011
1.213 false 0.042 0.017 0.008 0.003
1.216 false 0.057 0.034 0.012 0.007
1.218 true 0.059 0.028 0.013 0.009
1.220 false 0.044 0.026 0.012 0.006
1.223 false 0.054 0.030 0.013 0.006
1.226 false 0.047 0.021 0.010 0.005
1.230 false 0.056 0.028 0.005 0.002

Second, we consider the usual p-value (11) and the Bayes estimator
(12) with π(α) = 1 and π0 = 1

2 for the two-sided testing (10). Table 2
shows the ratios of the usual p-value (11) and the Bayes estimator (12)
less than 0.05 and 0.01 based on 1000 samples n = 10 corresponding with
values of α0 ranging from 1.206 to 1.230 and β = 500000. As can be
seen from Table 2, when α0 is equal to 1.218, which means H0 : α = α0

is true, the number of the Bayes estimator less than 0.05 and 0.01 are
less than the number of the usual p-value less than 0.05 and 0.01. When
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α0 is not equal to 1.218, in most situations, the number of the usual
p-value less than 0.05 and 0.01 are more than the number of the Bayes
estimator less than 0.05 and 0.01. Therefore, the usual p-value (11) is
not dominated by the Bayes estimator (12), although the usual p-value
(11) is inadmissible.

The simalution results in Tables 1 and 2 confirm the obtained re-
sults in the previous Section. Thus, the usual p-value can remain as an
estimator of the accuracy in the one-sided and two-sided testing of the
shape parameter, although it is an inadmissible estimator.

5 Conclusions

In this paper the problem of hypothesis testing is considered as an es-
timation in the decision-theoretic framework. The accuracy of the test
for the parameters of the Pareto distribution is examined. The usual p-
value for the one-sided testing of the scale parameter is admissible when
the shape parameter is fixed. When the shape parameter considered as
nuisance parameter, the generalized p-value is inadmissible.
The usual p-value and the generalized p-value are inadmissible for the
one-sided testing of the shape parameter. It should be noted that find-
ing an estimator which dominates the p-value for these cases is difficult.
So, it can be a new task for further researches. In the case of one-point
hypoyhesis against two-sided alternative hypothesis testing of the shape
parameter, the usual p-value is inadmissible but it is not so bad to be
dominated by the Bayes estimators. The loss function used in this paper
is the squared loss function which is a proper loss function. Therefore,
the results may be contradicted when the loss function is changed. For
example, in the testing problem H0 : α ≤ α0 against H1 : α > α0, or vice
versa, the usual p-value is usually admissible for the loss functions under
which the accepting H0(H1) is not larger than the rejecting H0(H1) for
α ∈ Θ0(Θ1). Two important common used loss functions are the 0-1
loss and the absolute loss (see [2, 12] for more detail).
One restriction which is proved and is not mentioned in this paper, for
saving in writing, is that the admissibility of the usual p-value is depend
on whole parameter space for the testing of shape parameter. When the
parameter space is restricted the results are changed. One way to get
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rid of this problem is the modification of the usual p-value, similar to
Wang [20] and Woodroofe and Wang [21].
The generalization of these results to other distributions or to the family
of distributions, require a further study.

Appendix

The Proof of Theorem 3.6. Without loss of generality, assume
that α0 = 1. For the proof, we show that as α → +∞, R(α, p(t)) <
R(α, φπ(t)). Consider two cases:
case 1: t ≤ n

α0
. In this case for 0 < a < t ≤ n

α0
, is φπ(t) > p(t). This

follows from the fact that

φπ(t) ≥ f(t|α0)

f(t|α0) + f(t|α̂)
> p(t), (13)

where α̂ = n
t(x) is the maximum likelihood estimator of α. For α 6= 1,

the difference in risks two estimators is equal with

R(α, φπ(t))−R(α, p(t)) = Eα(φπ(T )2 − p(T )2).

From (13), by continuity, there exists an ε > 0 such that for all a < t <
a+ ε, is φπ(T )2 − p(T )2 > ε. Hence

Eα(φπ(T )2 − p(T )2) =

∫ a+ε

a
(φπ(t)2 − p(t)2) dp

+

∫ n
α0

a+ε
(φπ(t)2 − p(t)2) dp

≥ εPα(a < T < a+ ε)− Pα(a+ ε < T <
n

α0
).

This lower bound for large α is positive. Since with using L’Hopital’s
rule as α→ +∞,

εPα(a < T < a+ ε)

Pα(a+ ε < T < n
α0

)
=

ε
∫ a+ε
a

αn

Γ(n) t
n−1e−αt dt∫ n

α0
a+ε

αn

Γ(n) t
n−1e−αt dt

=
ε
∫ α(a+ε)
αa tn−1e−t dt∫ α( n
α0

)

α(a+ε) t
n−1e−t dt

→ +∞.
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case 2: t > n
α0

. In this case for t > a > n
α0

, similar to case 1, we
have φπ(t) > p(t). For α 6= 1, the difference in risks two estimators is
equal with R(α, φπ(t)) − R(α, p(t)) = Eα(φπ(T )2 − p(T )2). Then, by
continuity, there exists an ε > 0 such that for all a < t < a + ε, is
φπ(T )2 − p(T )2 > ε. Hence

Eα(φπ(T )2 − p(T )2) ≥ εPα(a < T < a+ ε)− Pα(a+ ε < T ).

This lower bound is also positive. Since as α→ +∞,

εPα(a < T < a+ ε)

Pα(a+ ε < T )
=

ε
∫ a+ε
a

αn

Γ(n) t
n−1e−αt dt∫ +∞

a+ε
αn

Γ(n) t
n−1e−αt dt

=
ε
∫ α(a+ε)
αa tn−1e−t dt∫ +∞
α(a+ε) t

n−1e−t dt
→ +∞,

by L’Hopital’s rule. From cases 1 and 2, we deduce that the difference in
risks for large α is strictly positive and φπ(t) cannot dominate p(t).
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