
Journal of Mathematical Extension
Vol. 16, No. 10, (2022) (3)1-41
URL: https://doi.org/10.30495/JME.2022.1828
ISSN: 1735-8299
Original Research Paper

A Novel Approach for Analyzing System
Reliability Using Generalized Intuitionistic

Fuzzy Pareto Lifetime Distribution

Z. Roohanizadeh
Qaemshahr Branch, Islamic Azad University

E. Baloui Jamkhaneh∗

Qaemshahr Branch, Islamic Azad University

E. Deiri
Qaemshahr Branch, Islamic Azad University

Abstract. The present work concentrates on vagueness in the lifetime
parameter and the generalized intuitionistic fuzzy set are extended to
reliability characteristics. In order to satisfy this purpose, generalized
intuitionistic fuzzy numbers are applied to evaluate the reliability of dif-
ferent systems. The reliability characteristics of systems using Pareto
lifetime distribution are investigated where the lifetime scale parameter
is assumed to be a generalized intuitionistic fuzzy number. In general,
the generalized intuitionistic fuzzy reliability function, generalized intu-
itionistic fuzzy conditional reliability function, generalized intuitionistic
fuzzy hazard function, generalized intuitionistic fuzzy mean time to fail-
ure and their cut sets are discussed. The whole mentioned reliability
functions are discussed for generalized intuitionistic fuzzy Pareto life-
time systems. Furthermore, reliability analysis of the series and parallel
systems are performed and numerical example is illustrated based on
the proposed approach.
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1 Introduction

Reliability is an index to evaluate the performance of a system and prod-
uct quality that represents efficiency and probability that the systems
carry out the assigned tasks properly for a certain circumstances and
time period. The quantitative reliability characteristics can be used as
a decision-making system for lifetime data that needs to be calculated.
The classical reliability methods are based on crisp or precise information
on lifetime data and be inadequate to handle the uncertainty environ-
ments. However, in real situations, there are underlying systems whose
information may not be necessarily crisp but rather uncertain which
implies to the randomness, vagueness, ambiguity, and imprecision with
different and specific characteristics. A reliability analysis shall often
deal with the uncertainties associated with components, parameters,
phenomena and underlying assumptions. Due to obtain realistic results,
the estimation methods for reliability characteristics must be adjusted
to the fuzzy lifetimes, which can capture the uncertainty or imprecision
in the data. The fuzzy reliability of the system is the fuzzy probabil-
ity that the system properly accomplishes its task without failing until
attains the last state.

The fuzzy sets introduced by Zadeh [41] that considered as an ap-
propriate tool to represent and manipulate imprecise decision-making
problems. In a fuzzy set, any element can be defined by its membership
function or grade. The membership function represents the possibility
of occurrence of an object with a specified fuzzy set and possibility mea-
sure is an alternative to probability measures to account the uncertainty.
For detailed studies on possibility theory, we cite [15] and [42].

Singer [38] presented a fuzzy set approach for fault tree and relia-
bility analysis, afterwards fuzzy reliability has been introduced by [14].
Over the past decades, fuzzy set has received much attention to analyze
the system reliability by many researchers ([18], [20], [11], [29], [22], [32],
[34], [23], [30]).
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Aliev and Kara [2] proposed a general procedure to construct the mem-
bership function of the fuzzy reliability using fuzzy failure rate. Liu
et al. [28] expressed the fuzzy reliability analysis and mean time to
failure of series, parallel, series-parallel, parallel-series and cold standby
systems. Developing the system reliability evaluation problem, Baloui
Jamkhaneh [6] considered the exponential lifetimes with fuzzy parame-
ters. El-Damcese et al. [17] considered both series and parallel systems
which included both different and identical components and performed
the fuzzy reliability analysis and represented some characteristics based
on fuzzy triangular membership functions. Baloui Jamkhaneh [7] as-
sessed the fuzzy reliability with Weibull lifetime distribution and fuzzy
triangular number and investigated fuzzy reliability and mean time to
failure series and parallel system. Pak et al. [31] evaluated a Bayesian
approach to estimate the parameter and fuzzy reliability function of
Rayleigh distribution. The reliability of aero-engine blades with con-
sidering the fuzziness of the input variables and their limit states are
investigated by [32] and based on the entropy equivalence method, the
fuzzy variables were converted into stochastic variables and the fuzzy
reliability index and failure probability obtained. Recently, Shafiq et
al. [36] generalized fuzzy reliability characteristics estimation for the
three-parameter Weibull, Pareto and Gamma lifetime distribution.

In real lifetime data, the definition of possibility of a membership
degree may be encountered to hesitation or uncertainty, but fuzzy set
includes only the degree of acceptance. An appropriate approach is
to use intuitionistic fuzzy sets (IFS) defined by [5], which incorporated
the degree of hesitation called hesitation margin and characterized by
membership and non-membership functions. IFS is more appropriate to
deal with the uncertainty and vagueness than fuzzy sets.

Kumar et al. [25] developed the fuzzy set to IFS and analyzed IFS
reliability based on the profust reliability theory, where the failure rate
of the system is represented by a time-dependent triangular intuitionis-
tic fuzzy number. Also, the membership and non-membership functions
of fuzzy reliability of both series and parallel systems are represented.
Sharma et al. [37] computed the fuzzy reliability of the different system
using intuitionistic fuzzy set and implemented the intuitionistic triangu-
lar fuzzy number and its arithmetic operations. Kumar and Singh [24]
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evaluated the intuitionistic fuzzy reliability of the network system and
discussed the different fuzzy reliability of the various environmental sys-
tems using Weibull lifetime distribution. Bohra and Singh [12] presented
fuzzy system reliability using intuitionistic fuzzy lifetime distribution.
The intuitionistic fuzzy generalized probabilistic ordered weighted aver-
aging operator is introduced by [43], which integrated of the probability
and the ordered weighted averaging operator. Akbari and Hesamian [1]
represented a method for constructing time-dependent reliability sys-
tems by intuitionistic fuzzy random variable with exact parameters.

Baloui Jamkhane and Nadarajah [10] introduced new generalized
intuitionistic fuzzy sets (GIFSB) and introduced some operators over
GIFSB, which has been extensively used in subsequent researches. Sha-
bani and Baloui Jamkhaneh [35] introduced a new generalized intuition-
istic fuzzy number (GIFNB) based on the GIFSB. Thereafter, Baloui
Jamkhaneh [8] represented the values and ambiguities of the degree of
membership and the degree of non-membership of GIFSB and Baloui
Jamkhaneh [9] presented system reliability using generalized intuitionis-
tic fuzzy exponential lifetime distribution based on GIFSB. Ebrahimne-
jad and Baloui Jamkhaneh [16] considered system reliability of Rayleigh
lifetime distribution with GIFNB.

The power-law probability Pareto distribution, has been used often
to modeling reliability and heavy tailed lifetime data which was first
proposed as a model for the distribution of incomes at the extremities
and city populations. The Pareto distribution has many applications in
actuarial science, economics, life testing, hydrology, finance, physics and
engineering.
The heavy-tailed distributions such as Pareto are applicable for mod-
eling extreme loss, especially for the insecure types of insurance and
for financial applications, prepare information about the potential for
financial fiasco or financial ruin. Levy and Levy [27] used Pareto wealth
distribution for investigation of the market efficiency and investment
talent. Brazauskas and Serfling [13] consider Pareto distribution and in-
vestigated the performance of the generalized mean and trimmed mean
robust estimators on real data.
The hazard rate function of Pareto distribution is decreasing, which im-
plies that the survival function will decay more slowly to zero. For a
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thorough discussion on various properties and applications and different
forms of the Pareto distribution, see [4] and [21]. Some relevant research
on the Pareto distribution can be attained in [39], [40], [3], [19], [33] and
[26].

The main purpose of the present paper is to extend the reliability
characteristics by the generalized intuitionistic fuzzy set, which intro-
duced by [10] that represent more accurate and flexible results. Mo-
tivated by these, we consider Pareto lifetime distribution to evaluate
system reliability, which has the uncertainty in the lifetime parameter.
The scale parameter of the Pareto distribution function is taken as a
generalized intuitionistic fuzzy number. The vagueness in the reliability
characteristics of the system are represented perfectly by fuzzification
the parameter values into a GIFNB for the system to perform its func-
tion properly and the generalized intuitionistic fuzzy reliability modeling
is introduced via the generalized intuitionistic fuzzy probabilities. The
fuzzy reliability, conditional reliability, hazard and mean time to fail-
ure functions are obtained via generalized intuitionistic fuzzy parame-
ter. Fuzzy reliability of the series and parallel system has been evaluated
separately, where the parameter of each component is taken as a GIFNB.

This paper is organized as follows: In Section 2, we represent back-
ground and some basic concepts of GIFNB. The generalized intuition-
istic fuzzy probability is introduced in Section 3, where parameter is
the GIFNB. In Section 4, we obtain the generalized intuitionistic fuzzy
reliability characteristics which include the reliability, conditional relia-
bility, hazard and mean time to failure functions. Section 5, concentrate
on generalized intuitionistic fuzzy reliability for both series and paral-
lel system. Finally, in Section 6 the theoretical results are investigated
based on numerical example.

2 Preliminaries

Intuitionistic fuzzy set is characterized by a membership function and
a non-membership function which can take to account the hesitation
of the membership degree while fuzzy set only focused on the degree of
acceptance. Due to the flexibility of IFS, we concentrate on a generaliza-
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tion of intuitionistic fuzzy sets whose basic elements are generalization
intuitionistic fuzzy numbers. In the following, we briefly review several
definitions and terminologies regarding GIFNB which used throughout
the paper.

Definition 2.1. ([10]) Consider non-empty set X, a generalized intu-
itionistic fuzzy set (GIFSB) A in X, is defined as an object of the form
A = {〈x, µA(x), νA(x)〉 : x ∈ X} where the functions µA : X → [0, 1]
and νA : X → [0, 1], denote the degree of membership and degree of
non-membership functions of x in A, respectively, and 0 ≤ (µA(x))δ +
(νA(x))δ ≤ 1, ∀x ∈ X and δ = n or 1

n , n = 1, 2, . . . , N .

[10] showed that GIFSB is more applicable and flexible, since the
Atanassov’s intuitionistic fuzzy set, intuitionistic fuzzy sets of root type
and second type can be considered as special cases of GIFSB.

Definition 2.2. ([35]) Consider GIFSB of the real line R, a generalized
L-R type intuitionistic fuzzy number (GIFNB) A can be defined where
the membership function µA (x) and non-membership function νA (x) are
defined as follows

µA (x) =



fL(x), a ≤ x ≤ b

u, b ≤ x ≤ c

fR (x) , c ≤ x ≤ d

0, o.w

, νA (x) =



gL (x) , a1 ≤ x ≤ b

w, b ≤ x ≤ c

gR (x) , c ≤ x ≤ d1
1, o.w

,

with a1 ≤ a ≤ b ≤ c ≤ d ≤ d1 and 0 ≤ (µA(x))δ+(νA(x))δ ≤ 1, ∀x ∈ X.
The left and the right basis functions fL (x) , fR (x) , gL (x) and gR (x)
are continuous monotone membership and non-membership functions re-
spectively, where fL (x) , gR (x) are increasing and fR (x) , gL (x) are de-
creasing functions.

A especial class of generalized L-R type intuitionistic fuzzy number
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A defined as

µA (x) =



(x−ab−a )
1
δ , a ≤ x ≤ b

1, b ≤ x ≤ c

(d−xd−c )
1
δ , c ≤ x ≤ d

0, o.w

, νA (x) =



( b−xb−a1 )
1
δ , a1 ≤ x ≤ b

0, b ≤ x ≤ c

( x−cd1−c)
1
δ , c ≤ x ≤ d1

1, o.w

.

The GIFNB A is denoted as A = (a1, a, b, c, d, d1, δ).
The α-cut of a fuzzy set is the classical set that includes all the elements
of the set whose membership grades are greater than or equal to the
specified value of α. [8] introduced the (α1, α2)-cut of GIFNB, that is
briefly explained in Definition 2.3.

Definition 2.3. ([8]) Consider fixed numbers α1, α2 ∈ [0, 1] such that
0 ≤ αδ1+αδ2 ≤ 1, a set of (α1, α2)-cut generated by a GIFNB A is defined
by

A [α1, α2, δ] = {〈x, µA (x) ≥ α1, νA (x) ≤ α2〉 : x ∈ X} .

The α1-cut set of a GIFNB A is a crisp subset of R, which is defined as

Aµ [α1, δ] = {〈x, µA (x) ≥ α1〉 : x ∈ X} =
[
ALµ(α1), A

U
µ (α1)

]
, 0 ≤ α1 ≤ 1,

ALµ(α1) = a+ (b− a)αδ1, AUµ (α1) = d− (d− c)αδ1.

Similarity, the α2-cut set of a GIFNB A is a crisp subset of R, which is
defined as

Aν [α2, δ] = {〈x, νA (x) ≤ α2〉 : x ∈ X} =
[
ALν (α2), A

U
ν (α2)

]
, 0 ≤ α2 ≤ 1,

ALν (α2) = b
(

1− αδ2
)

+ a1α
δ
2, AUν (α2) = c

(
1− αδ2

)
+ d1α

δ
2.

Therefore the (α1, α2)-cut set of a GIFNB is given by

A [α1, α2, δ] =
{
x, x ∈

[
ALµ(α1), A

U
µ (α1)

]
∩
[
ALν (α2), A

U
ν (α2)

]}
.

The GIFNB based on the α1-cut and α2-cut sets are shown as

A (α1, α2, δ) = (Aµ [α1, δ] , Aν [α2, δ]).
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Definition 2.4. Let [a, b] and [c, d] be two α-cut sets, some relations
and operations on α-cut sets are defined as bellows

(i) [a, b] 4 [c, d]⇔ a ≤ c and b ≤ d,

(ii) If k > 0, then we have k ⊗ [a, b] = [ka, kb] and if k < 0, then
k ⊗ [a, b] = [kb, ka],

(iii) k ⊕ [a, b] = [k + a, k + b] and k 	 [a, b] = [k − b, k − a],

(iv) [a, b]⊕ [c, d] = [a+ c, b+ d] .

Definition 2.5. Suppose A (α1, α2, δ) and B (α1, α2, δ) be two GIFNBs,
the following relations and operations on GIFNBs are concluded

(i) A (α1, α2, δ)⊕ B (α1, α2, δ) =
(
Aµ [α1, δ]⊕ Bµ [α1, δ] , Aν [α2, δ]⊕

Bν [α2, δ]
)
,

(ii) k ⊗A (α1, α2, δ)⊕ b = (k ⊗Aµ [α1, δ]⊕ b, k ⊗Aν [α2, δ]⊕ b) ,

(iii) b	A (α1, α2, δ) = (b	Aµ [α1, δ] , b	Aν [α2, δ]),

(iv) A (α1, α2, δ) 4 B (α1, α2, δ), if and only if Aµ [α1, δ] 4 Bµ [α1, δ]
and Aν [α2, δ] 4 Bν [α2, δ],

(v) A (α1, α2, δ) = B(α1, α2, δ), if and only if Aµ [α1, δ] = Bµ [α1, δ]
and Aν [α2, δ] = Bν [α2, δ].

3 Generalized Intuitionistic Fuzzy Probability

Some lifetime data might be imprecise and the parameter of the model
must be represented in the form of fuzzy numbers. Thus, it is necessary
to generalize classical probability definition from real numbers to fuzzy
numbers. In this section, we introduce the fuzzy probability where its
parameter is generalized intuitionistic fuzzy number.
Consider X as a continuous random variable from a density function
f(x, θ̃) where θ̃ is a GIFNB. Its corresponding crisp PDF is f(x, θ). Then
a set of α1-cut of membership function and α2-cut set of non-membership
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function of generalized intuitionistic fuzzy probability density function
is defined as

fj(x, θ̃) =
{
f(x, θ)|θ ∈ θj [αi, δ]

}
=
[
fLj (x)[αi], f

U
j (x)[αi]

]
,

for all 0 ≤ α1 ≤ 1, 0 ≤ α2 ≤ 1 and 0 ≤ αδ1 + αδ2 ≤ 1, where fLj [αi] =

infθ∈θj [αi,δ] f(x), fUj [αi] = supθ∈θj [αi,δ] f(x) and (i, j) = (1, µ), (2, ν).

Then α1-cut set of membership and α2-cut set of non-membership
functions a generalized intuitionistic fuzzy probability (GIFP) of C is
defined as

Pj(C) [αi, δ] = {P (C)| θ ∈ θj [αi, δ]} =
[
PLj (C)[αi], P

U
j (C)[αi]

]
,

(i, j) = (1, µ) , (2, ν) ,

for all 0 ≤ α1 ≤ 1, 0 ≤ α2 ≤ 1, 0 ≤ αδ1 + αδ2 ≤ 1 where P (C) =∫
C f (x, θ) dx, PLj (C)[αi] = inf

θ∈θj [αi,δ]
P (C), PUj (C)[αi] = sup

θ∈θj [αi,δ]
P (C),

(i, j) = (1, µ) , (2, ν) .
Consequently, we have

P̃ (C) = P (C) (α1, α2, δ) = (Pµ (C) [α1, δ] , Pν(C) [α2, δ]) ,

that it is a generalized intuitionistic fuzzy number, and a set of (α1, α2)-
cut of generalized intuitionistic fuzzy probability of C is defined

P (C) [α1, α2, δ] = {w,w ∈ Pµ(C) [α1, δ] ∩ Pν(C) [α2, δ]} .

Corollary 3.1. Consider the generalized intuitionistic fuzzy probability
P (C),

(i) P (Cc) (α1, α2, δ) = 1	 P (C) (α1, α2, δ),

(ii) If C1 ⊂ C2 then P (C1) (α1, α2, δ) 4 P (C2) (α1, α2, δ).

Proof. (i) Due to the definition of generalized intuitionistic fuzzy prob-
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ability, we have

Pj (Cc) [αi, δ] = {1− P (C)| θ ∈ θj [αi, δ]} =
[
PLj (Cc) [αi], P

U
j (Cc) [αi]

]
=
[

inf
θ∈θj [αi,δ]

(1− P (C)) , sup
θ∈θj [αi,δ]

(1− P (C))
]

=
[
1− sup

θ∈θj [αi,δ]
P (C) , 1− inf

θ∈θj [αi,δ]
P (C)

]
= 1	

[
PLj (C) [αi] , P

U
j (C) [αi]

]
, (i, j) = (1, µ) , (2, ν),

which is verified by Definition 2.5-v.
(ii) Since P (C1) ≤ P (C2), for (i, j) = (1, µ) , (2, ν), so

Pj (C1) [αi, δ] =
[

inf
θ∈θj [αi,δ]

P (C1) , sup
θ∈θj [αi,δ]

P (C1)
]

4
[

inf
θ∈θj [αi,δ]

P (C2) , sup
θ∈θj [αi,δ]

P (C2)
]

= Pj (C2) [αi, δ] ,

and using Definition 2.5-iv, the proof is completed. �

By determination of GIFP, we can focus on fuzzification of some sta-
tistical concept such as expectation and variance.
A set of α1-cut of membership function and α2-cut set of non-membership
function of generalized intuitionistic fuzzy expectation Ẽ(g (X)) is de-
fined

Ej(g (X)) [αi, δ] = {E(g (X))| θ ∈ θj [αi, δ]}

=
[
ELj (g (X)) [αi], E

U
j (g (X))[αi]

]
,

for all 0 ≤ α1 ≤ 1, 0 ≤ α2 ≤ 1, 0 ≤ αδ1 + αδ2 ≤ 1, where E(g (X)) =∫
x g (x) f (x, θ) dx, ELj (g (X)) [αi] = inf

θ∈θj [αi,δ]
E(g (X)), EUj (g (X))[αi] =

sup
θ∈θj [αi,δ]

E(g (X)), (i, j) = (1, µ) , (2, ν). Therefore, we have

E(g (X)) (α1, α2, δ) = (Eµ(g (X)) [α1, δ] , Eυ(g (X)) [α2, δ]) ,
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and a set of (α1, α2)-cut of generalized intuitionistic fuzzy expectation
of g (X) is defined

E(g (X)) [α1, α2, δ] = Eµ(g (X)) [α1, δ] ∩ Eυ(g (X)) [α2, δ] .

Remark 3.1. Assumption g (X) = X and g (X) = (X − E (X))2 lead
to generalized intuitionistic fuzzy expectation of X(µ̃) and generalized
intuitionistic fuzzy variance of X(σ̃2), respectively.

Corollary 3.2. Consider a, b, c as constant numbers, then

(i) Ẽ (c) = c,

(ii) Ẽ (ag (X) + b) = a⊗ Ẽ(g(X))⊕ b,

(iii) σ̃2 (c) = 0,

(iv) σ̃2 (aX + b) = a2 ⊗ σ̃2 (X).

Proof. (i) and (iii) are obvious and the proofs are omitted. (ii) is
obtained as follows

inf
θ∈θj [αi,δ]

E (ag (X) + b) = a inf
θ∈θj [αi,δ]

E (g (X)) + b,

sup
θ∈θj [αi,δ]

E (ag (X) + b) = a sup
θ∈θj [αi,δ]

E (g (X)) + b, (i, j) = (1, µ) , (2, ν).

(iv) is concluded by

inf
θ∈θj [αi,δ]

σ2 (aX + b) = a2 inf
θ∈θj [αi,δ]

σ2 (X) ,

sup
θ∈θj [αi,δ]

σ2 (aX + b) = a2 sup
θ∈θj [αi,δ]

σ2 (X) , (i, j) = (1, µ) , (2, ν),

which completed the proof. �

4 Generalized Intuitionistic Fuzzy Reliability
Characteristics

The fuzzy reliability is a novel concept, since fuzzy set can easily cap-
ture subjective, uncertain, and ambiguous information. Therefore, to
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obtain more flexible information regarding the reliability of the system,
we propose the intuitionistic fuzzy approach for reliability parameter
descriptions.

Consider X as a lifetime variable of a component with a density
function f(x, θ̃) where θ̃ is a GIFNB and the generalized intuitionistic
fuzzy reliability characteristic (GIFRC) denoted by g̃ (t). A set of α1-cut
of membership and α2-cut set of non-membership functions of GIFRC
of the component is denoted by gj(t) [αi, δ] and represented as

gj(t) [αi, δ] = {g (t)| θ ∈ θj [αi, δ]} =
[
gLj (t) [αi], g

U
j (t)[αi]

]
,

(i, j) = (1, µ) , (2, ν),

for all 0 ≤ α1 ≤ 1, 0 ≤ α2 ≤ 1, 0 ≤ αδ1 + αδ2 ≤ 1, where gLj (t)[αi] =

infθ∈θj [αi,δ] g(t), gUj (t) [αi] = supθ∈θj [αi,δ] g(t), (i, j) = (1, µ) , (2, ν).
The function g(t) can be considered as reliability, conditional reliability,
hazard rate, cumulative risk and reverse hazard functions. It can be
shown that g (α1, α2, δ) = (gµ(t) [α1, δ] , gν(t) [α2, δ]) and a (α1, α2)-cut
set of GIFRC is defined as bellow

g(t) [α1, α2, δ] = {w,w ∈ gµ(t) [α1, δ] ∩ gν(t) [α2, δ]} .

In the following different reliability characteristics are discussed, com-
prehensively.

4.1 Generalized intuitionistic fuzzy reliability function

Reliability of the systems can be evaluated in different methods and
techniques, but fuzzy reliability measures the uncertainty of the possi-
ble membership and non-membership grade of the components. In this
section, a notion of the generalized intuitionistic fuzzy reliability (GIFR)
function, denoted by S̃ (t), is constructed based on the lifetime GIFNB

parameter, which is the generalized intuitionistic fuzzy probability that
a unit survives beyond time t.
A set of α1-cut of membership function and α2-cut set of non-membership
function of GIFR function of component is denoted by Sj(t) [αi, δ], are
obtained as

Sj(t) [αi, δ] = {S (t)| θ ∈ θj [αi, δ]} =
[
SLj (t) [αi], S

U
j (t)[αi]

]
,

(i, j) = (1, µ) , (2, ν),
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for all 0 ≤ α1 ≤ 1, 0 ≤ α2 ≤ 1, 0 ≤ αδ1 + α2
δ ≤ 1, where S(t) =∫∞

t f (x, θ) dx, SLj (t)[αi] = inf
θ∈θj [αi,δ]

S(t), SUj (t) [αi] = sup
θ∈θj [αi,δ]

S(t),

(i, j) = (1, µ) , (2, ν) and it can be shown as

S (α1, α2, δ) = (Sµ(t) [α1, δ] , Sν(t) [α2, δ]).

A set of (α1, α2)-cut of generalized intuitionistic fuzzy reliability is de-
fined

S(t) [α1, α2, δ] = {w,w ∈ Sµ(t) [α1, δ] ∩ Sν(t) [α2, δ]} ,

where Sj(t) [αi, δ] , (i, j) = (1, µ) , (2, ν) are two-variables functions in
terms of αi, i = 1, 2 and t. For t0, S̃ (t0) is a generalized intuitionistic
fuzzy number.
The GIFR curves are like bands whose width depends on the ambiguity
parameter. The more bandwidth implies less certainty and when the
crisp parameter is considered, the lower and upper bounds will become
equal, that leads to classic reliability analysis. The GIFR bands have
the following properties

(i) Sj (0) [αi0, δ] = [1, 1], i.e. no one starts off dead,

(ii) Sj (∞) [αi0, δ] = [0, 0], i.e. everyone dies eventually,

(iii) Sj (t1) [αi0, δ]⇔ Sj (t2) [αi0, δ]⇔ t1 ≤ t2, i.e. bands of Sj (t) [αi0, δ]
declines monotonically.

4.2 Generalized intuitionistic fuzzy conditional reliability
function

In reliability analysis, one of the most important character is the con-
ditional reliability, which is the probability that an item survives for a
time t, knowing that it has already survived until time τ .
Here, we extend the conditional reliability function to the uncertain case
by generalized intuitionistic fuzzy set. The generalized intuitionistic
fuzzy conditional reliability (GIFCR) function of component is denoted
by S̃ ( t| τ). A set of α1-cut of membership function and α2-cut set of



14 Z. ROOHANIZADEH, E. BALOUI JAMKHANEH AND E. DEIRI

non-membership function of S̃ ( t| τ) is given by

Sj( t| τ) [αi, δ] = {S( t| τ)| θ ∈ θj [αi, δ]} =
[
SLj ( t| τ) [αi], S

U
j ( t| τ)[αi]

]
,

(i, j) = (1, µ) , (2, ν)

for all 0 ≤ α1 ≤ 1, 0 ≤ α2 ≤ 1, 0 ≤ αδ1 +αδ2 ≤ 1, where S( t| τ) = S(t+τ)
S(τ) ,

SLj ( t| τ)[αi] = inf
θ∈θj [αi,δ]

S( t| τ), SUj ( t| τ) [αi] = sup
θ∈θj [αi,δ]

S( t| τ), (i, j) =

(1, µ) , (2, ν) and we have S (α1, α2, δ) = (Sµ( t| τ) [α1, δ] , Sν( t| τ) [α2, δ]).
A set of (α1, α2)-cut of GIFCR function is defined as

S(t |τ ) [α1, α2, δ] = {w,w ∈ Sµ(t |τ ) [α1, δ] ∩ Sν(t |τ ) [α2, δ]} ,

where Sj( t| τ) [αi, δ] , (i, j) = (1, µ) , (2, ν) are two-variables functions in
terms of αi, i = 1, 2 and t.

4.3 Generalized intuitionistic fuzzy hazard function

Another fuzzy character of the lifetime distribution is the fuzzy hazard
function, that is also known as the instantaneous failure rate at which a
component will fail under the condition that it has already survived. We
propose the concept of a generalized intuitionistic fuzzy hazard (GIFH)
function of component, which is denoted by h̃ (t) and it means the prob-
ability of a device failing at a time interval ∆t if it operates until t. A
set of α1-cut of membership function and α2-cut set of non-membership
function a GIFH function of the component is illustrated as follows

hj(t) [αi, δ] = {h(t)|θ ∈ θj [αi, δ]} =
[
hLj (t) [αi], h

U
j (t)[αi]

]
,

(i, j) = (1, µ) , (2, ν),

for all 0 ≤ α1 ≤ 1, 0 ≤ α2 ≤ 1, 0 ≤ αδ1 + αδ2 ≤ 1, where hLj (t)[αi] =

infθ∈θj [αi,δ] h(t), hUj (t) [αi] = supθ∈θj [αi,δ] h(t), (i, j) = (1, µ) , (2, ν),

h (t) = f(t)
S(t) .

It can be shown that h (α1, α2, δ) = (hµ(t) [α1, δ] , hν(t) [α2, δ]) and a set
of (α1, α2)-cut of GIFH function is defined by

h(t) [α1, α2, δ] = {w,w ∈ hµ(t) [α1, δ] ∩ hν(t) [α2, δ]} ,

where hj(t) [αi, δ] , (i, j) = (1, µ) , (2, ν) are two-variables functions in
terms of αi, i = 1, 2 and t.
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Remark 4.1. Same as the GIFR, for every especially α10 and α20, the
shapes of Sj(t|τ)[αi0, δ] and hj(t)[αi0, δ], (i, j) = (1, µ), (2, ν) are like
bands with upper and lower bounds and for every especially t0, S̃(t0|τ)
and h̃(t0) are generalized intuitionistic fuzzy numbers.

Remark 4.2. If δ = 1, then our method is named intuitionistic fuzzy
reliability evaluation, in addition, if α1 = 1 − α2, a = a1 and d = d1,
then it changes to fuzzy reliability evaluation, finally if assumption a =
b = c = d is added, it agree to classical reliability theory.

4.4 Generalized intuitionistic fuzzy reliability analysis for
Pareto lifetime distribution

Here, we consider Pareto lifetime distribution, which has the uncertainty
in the scale parameter and the vagueness are represented by fuzzifying
the parameter values into a GIFNB.
In this section, the generalized intuitionistic fuzzy reliability, conditional
reliability and hazard functions are discussed based on the Pareto distri-
bution. Consider the Pareto lifetime random variable X with general-
ized intuitionistic fuzzy lifetime scale parameter λ̃ = (a1, a, b, c, d, d1, δ),
which has the following probability density function

f (x, λ) =
λkλ

xλ+1
, x > k, k > 0.

The cut sets of GIFR function is obtained as follows

Sj (t) [αi, δ] =

{(
k

t

)λ
|λ ∈ λj [αi, δ], (i, j) = (1, µ) , (2, ν)

}
.

Since (kt )
λ is a monotonically decreasing function with respect to λ, the

reliability bands are given by

Sµ (t) [α1, δ] =

[(
k

t

)d−(d−c)αδ1
,

(
k

t

)a+(b−a)αδ1
]
,

Sν (t) [α2, δ] =

[(
k

t

)c(1−αδ2)+d1αδ2
,

(
k

t

)b(1−αδ2)+a1αδ2]
.
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For every especial t0, membership function and non-membership func-
tion of S̃ (t0) are represented as

µS(t0) (x) =



(d− lnx
ln( k

t0
)

d− c

) 1
δ
,

(
k
t0

)d ≤ x ≤ ( kt0 )c
1,

(
k
t0

)c
≤ x ≤

(
k
t0

)b
( lnx

ln( k
t0
)
− a

b− a

) 1
δ
,

(
k
t0

)b ≤ x ≤ ( kt0 )a
0, o.w.

,

νS(t0)(x) =



( lnx
ln( k

t0
)
− c

d1 − c

) 1
δ
,

(
k
t0

)d1 ≤ x ≤ ( kt0 )c
0,

(
k
t0

)c ≤ x ≤ ( kt0 )b
(b− lnx

ln( k
t0
)

b− a1

) 1
δ
,

(
k
t0

)b ≤ x ≤ ( kt0 )a1
1, o.w.

.

The cut sets of GIFCR function are shown by

Sj ( t| τ) [αi, δ] =
{( τ

t+ τ

)λ
|λ ∈ λj [αi, δ]

}
, (i, j) = (1, µ) , (2, ν).

Since
(
τ
t+τ

)λ
is a monotonically decreasing function with respect to λ,

the conditional reliability bands are obtained as

Sµ ( t| τ) [α1, δ] =

[( τ

t+ τ

)d−(d−c)αδ1
,
( τ

t+ τ

)a+(b−a)αδ1
]
,

Sν ( t| τ) [α2, δ] =

[(
τ

t+ τ

)c(1−αδ2)+d1αδ2
,

(
τ

t+ τ

)b(1−αδ2)+a1αδ2]
.
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For every especial t0, membership function and non-membership func-
tion of S̃ ( t0| τ) are as follows

µS( t0|τ) (x) =



(d− lnx

ln
(

τ
t0+τ

)
d− c

) 1
δ
,

(
τ

t0+τ

)d
≤ x ≤

(
τ

t0+τ

)c
1,

(
τ

t0+τ

)c
≤ x ≤

(
τ

t0+τ

)b
( lnx

ln
(

τ
t0+τ

) − a
b− a

) 1
δ
,

(
τ

t0+τ

)b
≤ x ≤

(
τ

t0+τ

)a
0, o.w.

,

νS( t0|τ)(x) =



( lnx

ln
(

τ
t0+τ

) − c
d1 − c

) 1
δ
,

(
τ

t0+τ

)d1
≤ x ≤

(
τ

t0+τ

)c
0,

(
τ

t0+τ

)c
≤ x ≤

(
τ

t0+τ

)b
(b− lnx

ln
(

τ
t0+τ

)
b− a1

) 1
δ
,

(
τ

t0+τ

)b
≤ x ≤

(
τ

t0+τ

)a1
1, o.w.

.

Finally, the cut sets of GIFH function are demonstrated as

hj (t) [αi, δ] =

{
λ

t
|λ ∈ λj [αi, δ]

}
=
[
hLj (t) [αi] , h

U
j (t) [αi]

]
,

(i, j) = (1, µ) , (2, ν),

for all 0 ≤ α1 ≤ 1, 0 ≤ α2 ≤ 1, 0 ≤ αδ1 + αδ2 ≤ 1, where

hLj (t) [αi] = inf
{λ
t
|λ ∈ λj [αi, δ]

}
,

hUj (t) [αi] = sup
{λ
t
|λ ∈ λj [αi, δ]

}
, (i, j) = (1, µ) , (2, ν) .
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Therefore,

hµ(t) [α1, δ] =
[a+ (b− a)αδ1

t
,
d− (d− c)αδ1

t

]
,

hν(t) [α2, δ] =
[b (1− αδ2)+ a1α

δ
2

t
,
c
(
1− αδ2

)
+ d1α

δ
2

t

]
.

As can be seen, the GIFH function for generalized intuitionistic fuzzy
Pareto distribution, is decreasing with respect to time. The membership
function and non-membership function of h̃ (t0) are as follows

µh(t0)(x) =



( t0x− a
b− a

) 1
δ
, a

t0
≤ x ≤ b

t0

1, b
t0
≤ x ≤ c

t0(d− t0x
d− c

) 1
δ
, c

t0
≤ x ≤ d

t0

0, o.w.

,

νh(t0)(x) =



(b− t0x
b− a1

) 1
δ
, a1

t0
≤ x ≤ b

t0

0, b
t0
≤ x ≤ c

t0( t0x− c
d1 − c

) 1
δ
, c

t0
≤ x ≤ d1

t0

1, o.w.

.

Corollary 4.1. If δ1 ≤ δ2 then we have

(i) Sµ(t) [α1, δ1] ⊂ Sµ(t) [α1, δ2] and Sν(t) [α2, δ2] ⊂ Sν(t) [α2, δ1],

(ii) Sµ( t| τ) [α1, δ1] ⊂ Sµ( t| τ) [α1, δ2] and
Sν( t| τ) [α2, δ2] ⊂ Sν( t| τ) [α2, δ1],

(iii) hµ(t) [α1, δ1] ⊂ hµ(t) [α1, δ2] and hν(t) [α2, δ2] ⊂ hν(t) [α2, δ1].

Corollary 4.2. For every δ,

S (t) [1, 0, δ] =

[(
k

t

)b
,

(
k

t

)c]
, h (t) [1, 0, δ] =

[
b

t
,
c

t

]
,
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S (t) [0, 1, δ] =

[(
k

t

)a
,

(
k

t

)d]
, h (t) [0, 1, δ] =

[
a

t
,
d

t

]
.

Corollary 4.3. Consider g (t0) [α1, α2, δ] as (α1, α2)-cut set of reliability
characteristics (GIFR or GIFCR or GIFH), then we have

(i) g (t0) [α1, α2, δ] =


[
gLν (t0) [α2] , g

U
ν (t0) [α2]

]
, η < min(z1, z2)[

gLµ (t0) [α1] , g
U
µ (t0) [α1]

]
, η ≥ max(z1, z2)

,

(ii) if η = 1 (i.e. αδ2 = 1− αδ1), then
g (t0) [α1, α2, δ] =

[
gLµ (t0) [α1] , g

U
µ (t0) [α1]

]
,

(iii) if z1 = z2 = η then gµ (t0) [α1, δ] = gν (t0) [α2, δ] = g (t0) [α1, α2, δ],

where η =
αδ2

1−αδ1
, z1 = b−a

b−a1 and z2 = d−c
d1−c .

Corollary 4.4. Consider the generalized intuitionistic fuzzy Pareto life-
time random variable, if µg(t0) (x) = νg(t0)(x) and z1 = z2 = z, then we
have

(i) S (t0) [α1, α2, δ] = Sµ (t0) [α1, δ] = Sν (t0) [α2, δ] = [
(
k
t0

)ζ , ( kt0

)ξ
],

(ii) h (t0) [α1, α2, δ] = hµ (t0) [α1, δ] = hν (t0) [α2, δ] =
[ ζ
t0

, ξ
t0

]
,

(iii) S ( t0| τ) [α1, α2, δ] = Sµ ( t0| τ) [α1, δ] = Sν ( t0| τ) [α2, δ]

=
[(

τ
t0+τ

)ζ
,
(

τ
t0+τ

)ξ]
,

(iv) α1 = α2 =
( z

1 + z

) 1
δ
,

Where ζ = d+cz
1+z and ξ = a+bz

1+z .

Theorem 4.1. Suppose the lifetime variables T1 and T2 have generalized
intuitionistic fuzzy density function f̃1(x, θ) and f̃2(x, θ), respectively. If
for every t > 0 relation h̃1(t) ≤ h̃2(t), is electric, it can be concluded
that S̃1(t) ≥ S̃2(t).
Proof. By using h̃1 (t) (α1, α2, δ) 4 h̃2 (t) (α1, α2, δ) it can be shown
that (

h1µ (t) [α1, δ] , h1ν (t) [α2, δ]
)
4
(
h2µ(t) [α1, δ] , h2ν (t) [α2, δ]

)
,
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that induces to

h1µ (t) [α1, δ] 4 h2µ (t) [α1, δ] , h1ν (t) [α2, δ] 4 h2ν (t) [α2, δ] .

Therefore, for every γ = L,U we have

hγ1µ(t)[α1, δ] ≤ hγ2µ(t)[α1, δ], hγ1ν(t)[α2, δ] ≤ hγ2ν(t)[α2, δ],

consequently, ∫ t

0
hγ1µ(x)[α1, δ]dx ≤

∫ t

0
hγ2µ(x)[α1, δ]dx,∫ t

0
hγ1ν(x)[α2, δ]dx ≤

∫ t

0
hγ2ν(x)[α2, δ]dx,

therefore, based on the definition of hazard rate function, we have∫ t

0

fγ1µ (x) [α1, δ]

1− F (x)γ1µ (x) [α1, δ]
dx ≤

∫ t

0

fγ2µ (x) [α1, δ]

1− F (x)γ2µ(x) [α1, δ]
dx,

∫ t

0

fγ1ν(x)[α2, δ]

1− F (x)γ1ν(x)[α2, δ]
dx ≤

∫ t

0

fγ2ν(x) [α2, δ]

1− F (x)γ2ν(x)[α2, δ]
dx,

hence

− ln
(
1− F (t)γ1µ (x) [α1, δ]

)
≤ − ln

(
1− F (t)γ2µ (x) [α1, δ]

)
,

− ln
(
1− F (t)γ1ν (x) [α2, δ]

)
≤ − ln

(
1− F (t)γ2ν (x) [α2, δ]

)
,

then we have (
1− F (t)γ1µ [α1, δ]

)
≥
(

1− F (t)γ2µ [α1, δ]
)
,

(1− F (t)γ1ν [α2, δ]) ≥ (1− F (t)γ2ν [α2, δ]) ,

therefore,(
S1µ (t) [α1, δ] , S1ν (t) [α2, δ]

)
<
(
S2µ (t) [α1, δ] , S2ν (t) [α2, δ]

)
and

S1(t)(α1, α2, δ) < S2(t)(α1, α2, δ) and S̃1(t) < S̃2(t).

which complete the proof. �
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Theorem 4.2. The decreasing condition on the S̃(x|t) function is a
necessary and sufficient condition for f(x, θ̃) to belong to a class of dis-
tribution with an increasing failure rate (IFR).
Proof. Suppose for every t1 < t2 we have

S̃(x|t1) < S̃(x|t2) and S̃(x|t1)(α1, α2, δ) < S̃(x|t2)(α1, α2, δ),

we conclude that(
S1µ (x |t1 ) [α1, δ] , S1ν (x |t1 ) [α2, δ]

)
<
(
S2µ (x |t2 ) [α1, δ] , S2ν (x |t2 ) [α2, δ]

)
,

then
S1µ (x | t1) [α1, δ] < S2µ (x | t2) [α1, δ] ,

and
S1ν (x | t1) [α2, δ] < S2ν (x|t2) [α2, δ] .

For every γ = L,U we have

Sγ1µ (x|t1) [α1, δ] ≥ Sγ2µ (x | t2) [α1, δ] ,

and
Sγ1ν (x | t1) [α2, δ] ≥ Sγ2ν (x | t2) [α2, δ] .

Therefore, Sγµ and Sγν are decreasing functions and by using definition of GIFCR
function, we have

Sγj (x | t) [αi, δ] =
Sγj (x+ t) [αi, δ]

Sγj (t) [αi, δ]
, (i, j) = (1, µ) , (2, ν) ,

∂Sγj (x | t) [αi, δ]

∂t
=
−fγj (x+ t) [αi, δ]S

γ
j (t) [αi, δ]

Sγj (t) [αi, δ]
2

+
fγj (t) [αi, δ]S

γ
j (x+ t) [αi, δ]

Sγj (t) [αi, δ]
2 .

According to that Sγj is a decreasing function, so it result that

∂Sγj (x | t) [αi, δ]

∂t
≤ 0

and hence

fγj (t) [αi, δ]S
γ
j (x+ t) [αi, δ] ≤ fγj (x+ t) [αi, δ]S

γ
j (t) [αi, δ] ,
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so,
hγj (t) [αi, δ] ≤ hγj (x+ t) [αi, δ] ,

we conclude that

hγµ(t) [αi, δ] ≤ hγµ (x+ t) [αi, δ] , hγν(t) [αi, δ] ≤ hγν(x+ t) [αi, δ] ,

hµ(t)[α1, δ] 4 hµ(x+ t)[α1, δ], hν(t)[α2, δ] 4 hν(x+ t)[α2, δ].

Finally, we have

h(t)(α1, α2, δ) 4 h(x+ t)(α1, α2, δ) and h̃(t) 4 h̃(x+ t),

which complete the proof. �

Corollary 4.5. The increasing condition on the S̃(x|t) function is a
necessary and sufficient condition for f(x, θ̃) to belong to a class of dis-
tribution with an decreasing failure rate (DFR).

4.5 Generalized intuitionistic fuzzy mean time to failure
for Pareto distribution

Mean time to failure (MTTF) is a reliability measure that represents
the length of time a non-repairable system can be expected to perform.
MTTF can be used to evaluate the reliability and to improve mainte-
nance and system management strategy. Generalized intuitionistic fuzzy
mean time to failure (GIFMTTF) of component is the expected time to

failure of fuzzy system and denoted by MT̃TF. In this section the gen-
eralized intuitionistic fuzzy of MTTF function under the Pareto lifetime
distribution is demonstrated.
GIFMTTF of any component with generalized intuitionistic fuzzy Pareto
distribution defined as follows

GIFMTTF j [αi] =

{∫ ∞
0

s(x)dx |λ ∈ λj [αi, δ]
}

=

{
kλ

λ− 1
|λ ∈ λj [αi, δ]

}
,

λ > 1, (i, j) = (1, µ), (2, ν)

then

GIFMTTFj [α1] =

[
k
(
d− (d− c)αδ1

)(
d− (d− c)αδ1

)
− 1

,
k
(
a+ (b− a)αδ1

)(
a+ (b− a)αδ1

)
− 1

]
,

GIFMTTFj [α2] =

[
k
(
c
(
1− αδ2

)
+ d1α

δ
2

)(
c
(
1− αδ2

)
+ d1αδ2

)
− 1

,
k
(
b
(
1− αδ2

)
+ a1α

δ
2

)(
b
(
1− αδ2

)
+ a1αδ2

)
− 1

]
,
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where membership function and non-membership function of GIFMTTF are
as follows

µG(x) =



(d− x
x−k

d− c

) 1
δ

, kd
d−1 ≤ x ≤

kc
c−1

1, kc
c−1 ≤ x ≤

kb
b−1( x

x−k − a
b− a

) 1
δ

, kb
b−1 ≤ x ≤

ka
a−1

0, o.w.

,

νG(x) =



( x
x−k − c
d1 − c

) 1
δ

, kd1
d1−1 ≤ x ≤

kc
c−1

0, kc
c−1 ≤ x ≤

kb
b−1(b− x

x−k
b− a1

) 1
δ

, kb
b−1 ≤ x ≤

ka1
a1−1

1, o.w.

.

5 GIFR Function of Series and Parallel System

In series system, the reliability of whole system depends on each component
and system fails even if an individual component fails. In contrary, for parallel
situation system works even if a single component works. In this section, we
focus on the GIFR of series system and parallel system, such that failure of
any component does not depend on any other component.

5.1 Series system

If n-components are connected in series, then the αi-cut (i = 1, 2) of GIFR
with generalized intuitionistic fuzzy distribution is given by

Sj(t) [αi, δ] = {P (Y1 > t)| θ ∈ θj [αi, δ]} = {S(t)
n| θ ∈ θj [αi, δ]}

=
[
SLj (t) [αi], S

U
j (t)[αi]

]
, (i, j) = (1, µ) , (2, ν)

for all 0 ≤ α1 ≤ 1, 0 ≤ α2 ≤ 1, 0 ≤ αδ1 + αδ2 ≤ 1, where SLj (t)[αi] =

infθ∈θj [αi,δ] S(t)n, SUj (t) [αi] = supθ∈θj [αi,δ] S(t)n, (i, j) = (1, µ) , (2, ν). The
αi-cut (i = 1, 2) of GIFR with generalized intuitionistic fuzzy Pareto distribu-
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tion is given by

Sj (t) [αi, δ] =
{(k

t

)nλ |λ ∈ λj [αi, δ]
}
, i = 1, 2

Sµ (t) [α1, δ] =
[(k
t

)n(d−(d−c)αδ1), (k
t

)n(a+(b−a)αδ1)]
,

Sν (t) [α2, δ] =
[(k
t

)n(c(1−αδ2)+d1αδ2), (k
t

)n(b(1−αδ2)+a1αδ2)].
For t0, the membership function and non-membership function of GIFR S̃ (t0)
are obtained as follows

µS(t0)(x) =



(d− ln x

n ln( kt0 )

d− c

) 1
δ

,
(
k
t0

)nd ≤ x ≤ ( kt0 )nc
1,

(
k
t0

)nc ≤ x ≤ ( kt0 )nb
( ln x

n ln( kt0 )
− a

b− a

) 1
δ

,
(
k
t0

)nb ≤ x ≤ ( kt0 )na
0, o.w.

,

νS(t0)(x) =



( ln x

n ln( kt0 )
− c

d1 − c

) 1
δ

,
(
k
t0

)nd1 ≤ x ≤ ( kt0 )nc
0,

(
k
t0

)nc
≤ x ≤

(
k
t0

)nb
(b− ln x

n ln( kt0 )

b− a1

) 1
δ

,
(
k
t0

)nb ≤ x ≤ ( kt0 )na1
1, o.w.

.

5.2 Parallel system

If n-components are connected in parallel, then the αi-cut (i = 1, 2) of GIFR
with generalized intuitionistic fuzzy distribution is given by

Sj(t) [αi, δ] = {P (Yn > t)| θ ∈ θj [αi, δ]} = {1− (1− S (t))
n| θ ∈ θj [αi, δ]}

=
[
SLj (t) [αi], S

U
j (t)[αi]

]
, (i, j) = (1, µ) , (2, ν)

for all 0 ≤ α1 ≤ 1, 0 ≤ α2 ≤ 1, 0 ≤ αδ1 + αδ2 ≤ 1, where

SLj (t)[αi] = inf
θ∈θj [αi,δ]

(1− (1− S (t))
n
), SUj (t) [αi] = sup

θ∈θj [αi,δ]
(1− (1− S (t))

n
).
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The αi-cut (i = 1, 2) of GIFR with generalized intuitionistic fuzzy Pareto
distribution is given by

Sj(t) [αi, δ] =
{

1−
(
1− (

k

t
)λ
)n |λ ∈ λj [αi, δ]}, i = 1, 2,

Sµ (t) [α1, δ] =

[
1−

(
1−

(k
t

)(d−(d−c)αδ1))n, 1− (1−
(k
t

)(a+(b−a)αδ1)
)n]

,

Sν (t) [α2, δ] =

[
1−

(
1−

(k
t

)(c(1−αδ2)+d1αδ2))n, 1− (1−
(k
t

)(b(1−αδ2)+a1αδ2))n] .
For t0, the membership function and non-membership function of S̃ (t0) are
obtained as follows

µS(t0)(x) =



(d− ln(1−(1−x)
1
n )

ln( kt0 )

d− c

) 1
δ

, 1− (1− ( kt0 )d)n ≤ x ≤ 1− (1− ( kt0 )c)n

1, 1− (1− ( kt0 )c)n ≤ x ≤ 1− (1− ( kt0 )b)n

( ln(1−(1−x)
1
n )

ln( kt0 )
− a

b− a

) 1
δ

, 1− (1− ( kt0 )b)n ≤ x ≤ 1− (1− ( kt0 )a)n

0, o.w.

,

νS(t0)(x) =



( ln(1−(1−x)
1
n )

ln( kt0 )
− c

d1 − c

) 1
δ

, 1− (1− ( kt0 )d1)n ≤ x ≤ 1− (1− ( kt0 )c)n

0, 1− (1− ( kt0 )c)n ≤ x ≤ 1− (1− ( kt0 )b)n

(b− ln(1−(1−x)
1
n )

ln( kt0 )

b− a1

) 1
δ

, 1− (1− ( kt0 )b)n ≤ x ≤ 1− (1− ( kt0 )a1)n

1, o.w.

.

6 Numerical Example

Let lifetime of electronic component is modeled by a Pareto distribution with
generalized intuitionistic fuzzy parameter λ̃ = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 2) and
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k = 1. Then cut sets of GIFP of X ≤ 2 is obtained as follows

Pj (X ≤ 2) [αi, 2] = {1−
(1

2

)λ |λ ∈ λj [αi, 2]}, i = 1, 2,

Pµ (X ≤ 2) [α1, 2] = [1−
(1

2

)0.2+0.1α2
1 , 1−

(1

2

)0.5−0.1α2
1 ],

Pν (X ≤ 2) [α2, 2] = [1−
(1

2

)0.3−0.2α2
2 , 1−

(1

2

)0.4+0.2α2
2 ].

The membership function and non-membership function of P̃ (X ≤ 2) are given
by

µP (x) =



( ln(1− x)

0.1 ln 0.5
− 2
) 1

2

, 1−
(
1
2

)0.2 ≤ x ≤ 1−
(
1
2

)0.3
1, 1−

(
1
2

)0.3 ≤ x ≤ 1−
(
1
2

)0.4
(

5− ln(1− x)

0.1 ln 0.5

) 1
2

, 1−
(
1
2

)0.4 ≤ x ≤ 1−
(
1
2

)0.5
0, o.w.

,

νP (x) =



(
1.5− ln(1− x)

0.2 ln 0.5

) 1
2

, 1−
(
1
2

)0.1 ≤ x ≤ 1−
(
1
2

)0.3
0, 1−

(
1
2

)0.3 ≤ x ≤ 1−
(
1
2

)0.4
( ln (1− x)

0.2 ln 0.5
− 2
) 1

2

, 1−
(
1
2

)0.4 ≤ x ≤ 1−
(
1
2

)0.6
1, o.w.

.

The membership and non-membership functions of the generalized intuitionis-
tic fuzzy probability are represented in Figure 1 and for different values of α1

and α2 the membership and non-membership bands of GIFP and the bands of
GIFP are obtained in Table 1, respectively.
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Figure 1: The black line (−) membership and red line (−) non-membership

functions of GIFP.

Table 1: Different cut sets of GIFP function.

(α1, α2) Pµ(x)[α1, 2] Pν(x)[α2, 2] P (x)[α1, α2, 2]
(0,1) [0.1294,0.2928] [0.0669,0.3402] [0.1294,0.2928]

(0.3,0.8) [0.1384,0.2884] [0.1123,0.3064] [0.1384,0.2884]

(0.4,0.7) [0.1390,0.2850] [0.1305,0.2919] [0.1390,0.2850]

(0.5,0.5) [0.1444,0.2805] [0.1591,0.2679] [0.1591,0.2679]

(0.7,0.4) [0.1585,0.2684] [0.1695,0.2587] [0.1695,0.2587]

(1,0) [0.1877,0.2421] [0.1877,0.2421] [0.1877,0.2421]

With respect to Table 1, it can be concluded that with increasing α1 and
decreasing α2, ambiguity decreases in membership and non-membership bands
of GIFP and the bands of GIFP. The cut sets of GIFR are given by

Sµ(t) [α1, 2] =
[(1

t

)0.5−0.1α2
1 ,
(1

t

)0.2+0.1α2
1

]
,

Sν(t) [α2, 2] =
[(1

t

)0.4+0.2α2
2 ,

(
1

t

)0.3−0.2α2
2 ]
.
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Figure 2: Surfaces of generalized intuitionistic fuzzy reliability.

Figure 2 shows surfaces of GIFR from different angles. The bands for
α1 = 0 and α2 = 1 are given by

Sµ(t) [0, 2] =
[(1

t

)0.5
,
(1

t

)0.2]
, Sν (t) [1, 2] =

[(1

t

)0.6
,
(1

t

)0.1]
.

The generalized intuitionistic fuzzy reliability bands for α1 = 0 and α2 = 1
are plotted in Figure 3. As can be seen, by increasing time t, the bandwidth
of membership and non-membership functions are increased, which indicate
increase in ambiguity.
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Figure 3: Generalized intuitionistic fuzzy reliability bands for α1 = 0 and

α2 = 1.
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If set t = 2, then cut sets of GIFR are computed as

Sµ(2) [α1, 2] =

[(1

2

)0.5−0.1α2
1 ,
(1

2

)0.2+0.1α2
1

]
,

Sν(2) [α2, 2] =

[(1

2

)0.4+0.2α2
2 ,
(1

2

)0.3−0.2α2
2

]
.

The membership function and non-membership function of S̃ (2) are as follows

µS(2) (x) =



(
5 +

lnx

0.1 ln 2

) 1
2

, ( 1
2 )0.5 ≤ x ≤ ( 1

2 )0.4

1, ( 1
2 )0.4 ≤ x ≤ ( 1

2 )0.3( lnx

−0.1 ln 2
− 2
) 1

2

, ( 1
2 )0.3 ≤ x ≤ ( 1

2 )0.2

0, o.w.

,

νS(2)(x) =



( lnx

−0.2 ln 2
− 2
) 1

2

, ( 1
2 )0.6 ≤ x ≤ ( 1

2 )0.4

0, ( 1
2 )0.4 ≤ x ≤ ( 1

2 )0.3(
1.5 +

lnx

0.2 ln 2

) 1
2

, ( 1
2 )0.3 ≤ x ≤ ( 1

2 )0.1

1, o.w.

.

In Figure 4, membership and non-membership functions of GIFR and in Table
2, the membership and non-membership bands of GIFR and bands of GIFR
for different cuts α1 and α2 are prepared.
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Figure 4: The black line (−) membership and red line (−) non-membership

functions of GIFR.

Table 2: Different cut sets of GIFR function.

(α1, α2) Sµ (t) [α1, 2] Sν (t) [α2, 2] S (t) [α1, α2, 2]

(0,1) [t−0.5, t−0.2] [t−0.6, t−0.1] [t−0.5, t−0.2]

(0.3,0.8) [t−0.491, t−0.209] [t−0.528, t−0.172] [t−0.491, t−0.209]

(0.4,0.7) [t−0.432, t−0.268] [t−0.498, t−0.201] [t−0.432, t−0.268]

(0.5,0.5) [t−0.475, t−0.225] [t−0.45, t−0.25] [t−0.45, t−0.25]

(0.7,0.4) [t−0.451, t−0.249] [t−0.432, t−0.268] [t−0.432, t−0.268]

(1,0) [t−0.4, t−0.3] [t−0.4, t−0.3] [t−0.4, t−0.3]

Based on Table 2, by increasing α1 and decreasing α2, the vagueness in
membership and non-membership bands of GIFR and bands of GIFR are de-
creased.
The cut sets of GIFR are obtained in the following

Sµ (t) [α1, δ] =
[(1

t

)0.5−0.1αδ1
,
(1

t

)0.2+0.1αδ1]
,

Sν (t) [α2, δ] =
[(1

t

)0.4+0.2αδ2
,
(1

t

)0.3−0.2αδ2]
,

S (t) [α1, α2, δ] = Sµ (t) [α1, δ] ∩ Sν (t) [α2, δ] .
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The Reliability bands for the different values of δ and cut sets (α1, α2) are rep-
resented in Figure 5, which confirmed the result of Table 2, which by increasing
α1 and decreasing α2, the uncertainty in reliability bands are reduced. Also,
by increasing t, the uncertainty in GIFR is increased.
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Figure 5: (a) Reliability bands of S(t)[0.3, 0.2, δ], (b) reliability bands of

S(t)[α1, α2, 1].

The αi-cuts of GIFCR for i = 1, 2 are given by

Sµ ( t| τ) [α1, 2] =
[( τ

t+ τ

)0.5−(0.1)α2
1 ,
( τ

t+ τ

)0.2+(0.1)α2
1
]
,

Sν ( t| τ) [α2, 2] =
[( τ

t+ τ

)0.4(1−α2
2)+0.6α2

2 ,
( τ

t+ τ

)0.3(1−α2
2)+0.1α2

2

]
.

Figure 6 shows surfaces of GIFCR from different angles. The GIFCR bands
with τ = 1 for α1 = 0 and α2 = 1 are expressed as

Sµ (t|τ) [0, 2] =
[( 1

t+ 1

)0.5
,
( 1

t+ 1

)0.2]
,

Sν (t|τ) [1, 2] =
[( 1

t+ 1

)0.6
,
( 1

t+ 1

)0.1]
.
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Figure 6: Surfaces of generalized intuitionistic fuzzy condition reliability

with τ = 1.
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Figure 7: Generalized intuitionistic fuzzy condition reliability bands for α1 =

0 and α2 = 1.

The GIFCR bands for α1 = 0 and α2 = 1 are depicted in Figure 7, which
indicate that increase in t leads to increase in the length of the band which
means increase in uncertainty.
Let t0 = 2, τ = 1, the membership function and non-membership function of



A NOVEL APPROACH FOR ANALYZING SYSTEM... 33

S̃ ( t0| τ) are obtained as follows

µS( t0|τ) (x) =



( lnx

0.1 ln 3
+ 5
) 1

2

,
(
1
3

)0.5 ≤ x ≤ ( 13)0.4
1,

(
1
3

)0.4 ≤ x ≤ ( 13)0.3( lnx

−0.1 ln 3
− 2
) 1

2

,
(
1
3

)0.3 ≤ x ≤ ( 13)0.2
0, o.w.

,

νS( t0|τ)(x) =



( lnx

−0.2 ln 3
− 2
) 1

2

,
(
1
3

)0.6 ≤ x ≤ ( 13)0.4
0,

(
1
3

)0.4 ≤ x ≤ ( 13)0.3( lnx

0.2 ln 3
+ 1.5

) 1
2

,
(
1
3

)0.3 ≤ x ≤ ( 13)0.1
1, o.w.

.

The (1, 0)-cut set of S̃ (t|τ) are given by

Sµ (t|τ) [1, 2] =
[( τ

τ + t

)0.4
,
( τ

τ + t

)0.3]
,

Sν (t|τ) [0, 2] =
[( τ

τ + t

)0.4
,
( τ

τ + t

)0.3]
,

S (t|τ) [1, 0, 2] = Sµ (t|τ) [1, 2] ∩ Sν (t|τ) [0, 2] =
[( τ

τ + t

)0.4
,
( τ

τ + t

)0.3]
.

The membership function and non-membership function of GIFCR are repre-
sented in Figure 8 and the membership and non-membership bands of GIFCR
and bands of GIFCR for different values of cus sets (α1, α2) are assembled in
Table 3. Based on Table 3, the more accurate bands of membership and non-
membership of GIFCR and bands of GIFCR are attained by the maximum
value of α1 and minimum of α2.
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Figure 8: The black line (−) membership and red line (−) non-membership

functions of GIFCR.

Table 3: Different cut sets of GIFCR function.

(α1, α2) Sµ( t| τ) [α1, 2] Sν( t| τ) [α2, 2] S(t | τ)[α1, α2, 2]

(0,1) [( τ
t+τ

)0.5, ( τ
t+τ

)0.2] [( τ
t+τ

)0.6, ( τ
t+τ

)0.1] [( τ
t+τ

)0.5, ( τ
t+τ

)0.2]

(0.3,0.8) [( τ
t+τ

)0.491, ( τ
t+τ

)0.209] [( τ
t+τ

)0.528, ( τ
t+τ

)0.172] [( τ
t+τ

)0.491, ( τ
t+τ

)0.209]

(0.4,0.7) [( τ
t+τ

)0.484, ( τ
t+τ

)0.251] [( τ
t+τ

)0.498, ( τ
t+τ

)0.202] [( τ
t+τ

)0.484, ( τ
t+τ

)0.251]

(0.5,0.5) [( τ
t+τ

)0.475, ( τ
t+τ

)0.225] [( τ
t+τ

)0.450, ( τ
t+τ

)0.249] [( τ
t+τ

)0.450, ( τ
t+τ

)0.249]

(0.7,0.4) [( τ
t+τ

)0.451, ( τ
t+τ

)0.249] [( τ
t+τ

)0.432, ( τ
t+τ

)0.268] [( τ
t+τ

)0.432, ( τ
t+τ

)0.268]

(1,0) [( τ
t+τ

)0.4, ( τ
t+τ

)0.3] [( τ
t+τ

)0.4, ( τ
t+τ

)0.3] [( τ
t+τ

)0.4, ( τ
t+τ

)0.3]

The αi-cuts of GIFH function for i = 1, 2 are given by

hµ (t) [α1, 2] =
[0.2 + 0.1α2

1

t
,

0.5− 0.1α2
1

t

]
,

hν (t) [α2, 2] =
[0.3− 0.2α2

2

t
,

0.4 + 0.2α2
2

t

]
.
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Figure 9: Surfaces of generalized intuitionistic fuzzy hazard.

Figure 9 shows the surfaces of GIFH function from different angles. The
GIFH bands for α1 = 0 and α2 = 1 are computed as

hµ (t) [0, 2] =
[0.2

t
,

0.5

t

]
, hν (t) [1, 2] =

[0.1

t
,

0.6

t

]
.

The GIFH bands of membership and non-membership functions for α1 = 0 and
α2 = 1 are exhibited in Figure 10. Analogously, increasing t parameter cause
the more accuracy in GIFH.
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Figure 10: Generalized intuitionistic fuzzy hazard bands for α1 = 0 and

α2 = 1.

The membership function and non-membership function of h̃ (2) are given
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as follows

µh(t0) (x) =



(20x− 2)
1
2 , 0.2

2 ≤ x ≤
0.3
2

1, 0.3
2 ≤ x ≤

0.4
2

(5− 20x)
1
2 , 0.4

2 ≤ x ≤
0.5
2

0, o.w.

,

νh(t0)(x) =



(1.5− 10x)
1
2 , 0.1

2 ≤ x ≤
0.3
2

0, 0.3
2 ≤ x ≤

0.4
2

(10x− 2)
1
2 , 0.4

2 ≤ x ≤
0.6
2

1, o.w.

.

The membership and non-membership functions and bands of GIFH for differ-
ent cut sets are displayed in Figure 11 and Table 4, respectively.
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Figure 11: The black line (−) membership and red line (−) non-membership

functions of GIFH.
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Table 4: Different cut sets of GIFH function.

(α1, α2) hµ (t) [α1, 2] hν (t) [α2, 2] h (t) [α1, α2, 2]

(0,1) [ 0.2t ,
0.5
t ] [ 0.1t ,

0.6
t ] [ 0.2t ,

0.5
t ]

(0.3,0.8) [ 0.209t , 0.491t ] [ 0.172t , 0.528t ] [ 0.209t , 0.491t ]

(0.4,0.7) [ 0.216t , 0.484t ] [ 0.2t ,
0.5
t ] [ 0.216t , 0.484t ]

(0.5,0.5) [ 0.225t , 0.475t ] [ 0.249t , 0.450t ] [ 0.249t , 0.450t ]

(0.7,0.4) [ 0.249t , 0.451t ] [ 0.268t , 0.432t ] [ 0.268t , 0.432t ]

(1,0) [ 0.3t ,
0.4
t ] [ 0.3t ,

0.4
t ] [ 0.3t ,

0.4
t ]

By Table 4 and the other tables we conclude that by increasing α1 and
decreasing α2 ambiguity decreases in GIFR, GIFCR and GIFH bands. In
addition, based on Figures 3, 7 and 10, as we expected, GIFR, GIFCR and
GIFH are decreasing functions with respect to t.

Conclusion

In the present paper, the reliability characteristics is developed by the gener-
alized intuitionistic fuzzy set and the GIFNB is extended to analyzing system
reliability for different types of systems using Pareto lifetime distribution. The
scale parameter of the Pareto lifetime distribution is considered as GIFNB and
based on this assumption, various reliability functions are obtained. The relia-
bility characteristics are represented through band, which attained their most
precise bands for large value of cut set of the membership function and small
value of cut set of the non-membership function. The numerical approach is
extensively performed to examine the results. In this context, our study gen-
eralizes the various works of the literature.
Some of the topic of future research are as follows:

System reliability analysis using generalized intuitionistic fuzzy multi-
parameters distributions.

Inference for the lifetime distributions based on generalized intuitionistic
fuzzy data.
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