
Journal of Mathematical Extension
Vol. 16, No. 1, (2022) (6)1-14
URL: https://doi.org/10.30495/JME.2022.1814
ISSN: 1735-8299
Original Research Paper

On the Multiplication Operators and
Multipliers on Weighted Spaces of Holomorphic

Functions on the Upperhalfplane

M. A. Ardalani∗

University of Kurdistan

S. Haftbaradaran
University of Kurdistan

Abstract. In this paper, we find necessary and sufficient conditions
such that under these conditions a self map multiplication operator be-
tween weighted spaces of holomorphic functions is Fredholm or closed
range operator. We also obtain a characterization of multipliers for cer-
tain type of weights between weighted spaces of holomorphic functions
on the upper halfplane. Our results will remain valid for any simply
connected domain in the complex plane instead of the upper halfplane.

AMS Subject Classification: 46E15; 47B38
Keywords and Phrases: Weighted spaces, Holomorphic functions,
Multiplication operators, Upper halfplane.

1 Introduction

Let D = {z ∈ C :| z |< 1} and G = {ω ∈ C : Im ω > 0} be the open unit
disc and upper halfplane respectively. Also, let O be an open subset of
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C. By a weight we mean a continuous function υ : O −→ (0,∞). For a
holomorphic function f : O −→ C, we define the weighted sup-norm

‖f‖υ = sup
z∈O
| f(z) | υ(z)

and the weighted spaces

Hυ(O) = {f : O −→ C : f is holomorphic, ‖f‖υ <∞},

Hυ0(O) = {f ∈ Hυ(O) :| f(z) | υ(z) vanishes at infinity}.

Throughout this paper, we deal with the cases O = D or O = G. In
the case Hυ0(G), | f(z) | υ(z) vanishes at infinity if for any ε > 0
there is a compact subset K of G such that | f(z) | υ(z) < ε for all
z ∈ G \K. In Hυ0(D), | f(z) | υ(z) vanishes at infinity is equivalent to
lim|z|→1 | f(z) | υ(z) = 0 (uniform limit). It is wellknown that Hυ(O)
and Hυ0(O) are Banach spaces.
A weight υ : G −→ (0,∞) is called a standard weight on G if limr→0 υ(ir) =
0 and υ(ω1) ≤ υ(ω2) whenever Im ω1 ≤ Im ω2. We say a standard
weight υ on G satisfies condition (∗) if

sup
k∈Z

υ(2k+1i)

υ(2ki)
<∞.

A standard weight υ satisfies (∗∗) if

inf
n∈N

sup
k∈Z

υ(2ki)

υ(2k+ni)
< 1.

Condition (∗) is equivalent to υ(ti)
υ(si) ≤ C( ts)

β whenever 0 < s ≤ t for

some constants C > 0 and β > 0 and condition (∗∗) is equivalent to
υ(ti)
υ(si) ≥ d( ts)

γ whenever 0 < s ≤ t for some constants d, γ > 0. (see

Lemma 1.6 of [5]).
A weight υ : D −→ (0,∞) is called a standard weight on D if υ is radial
(i.e υ(z) = υ(| z |)) and lim|z|→1− υ(z) = 0. We say a standard weight υ

on D satisfies condition (∗)′ if

inf
n∈N

υ(1− 2−n−1)

υ(1− 2−n)
> 0.
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A standard weight υ on D satisfies condition (∗∗)′ if

inf
k∈N

lim sup
n→∞

υ(1− 2−n−k)

υ(1− 2−n)
< 1.

Remark 1.1. Note that the space Hυ(G) (and therefore Hυ0(G)) will
make sense whenever Hυ(G) 6= {0}. There is a result of Stanev [14]
which states that Hυ(G) 6= {0} if and only if there exist a, b > 0 such
that υ(it) ≤ aebt, t > 0. Therefore, throughout this paper we always
assume our weights satisfy Stanev condition. For example weights which
satisfy condition (∗), satisfy Stanev condition.

In this paper, we intend to obtain some results concerning to the
self-map multiplication operator Mϕ : Hυ(G) −→ Hυ(G) defined by
Mϕ(f) = fϕ for each f ∈ Hυ(G) where ϕ : G −→ C is a nonconstant
holomorphic function. For this objective, we use wellknown results of
[7], conformal map α : D −→ G defined by α(z) = 1+z

1−z i, Some Lemmas
and proper arguments in order to transfer the results to the case of up-
per halfplane.

2 Preliminaries

In this section, we recall some definitions, notations and theorems which
are necessary in the rest of this paper. For more details, we will refer the
reader to the suitable references. We denote the space of all bounded
holomorphic functions on G by H∞(G). A sequence (ωn) in G is called
an interpolating sequence if for any bounded sequence (βn) there is an
f ∈ H∞(G) for which f(ωn) = βn for all n ∈ N. Equivalently, (ωn) is an
interpolating sequence if the bounded linear operator T : H∞(G) −→ `∞

defined by (Tf)(zj) = f(zj) is an onto operator.
The maximal ideal space of H∞(G) which is denoted by M(H∞(G)) is
the collection of all nonzero homeomorphisms of H∞(G) −→ C, when-
ever H∞(G) is endowed with weak* topology as a subset of H∞(G)∗.
The pseudohyperboilc distance between two pointsm and n inM(H∞(G))
is defined by

ρ(m,n) = sup{| f̂(n) |: f ∈ H∞(G), f̂(m) = 0, ‖f‖∞ ≤ 1}
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where ‖f‖∞ = sup{| f(ω) |: ω ∈ G} and f̂ is the Gelfand transform of
f . Also For α, ω ∈ G, ρ(ω, α) =| ϕα(ω) | where ϕα(ω) = α−ω

α−ω .
For the sake of simplicity, we denote the Gelfand transform of f by f
itself futher on. Let F be a family of complex valued functions on a set
X, a subset Γ of X is called a boundary for F if for each f ∈ F , there is
an x ∈ Γ such that | f(x) |= sup{| f(y) |: y ∈ X}. Shilov proved that if
A is a function algebra on a locally compact space X, then there exists
a unique minimal( intersection of all boundaries of A) closed boundary
for A. This minimal boundary is called the Shilov boundary.
The Gleason part of m ∈ M(H∞(G)) is defined by P (m) = {n ∈
M(H∞(G)) : ρ(m,n) < 1}. The set of trivial Gleason parts {m ∈
M(H∞(G)) : P (m) = {m}} is a closed subset of M(H∞(G)) that con-
tains properly the shilov boundary Γ(H∞(G)) of H∞(G). See [10].
A function F of the following form

F (ω) = eiγ exp(
1

πi

∫ ∞
−∞

(1 + tω) log g(t)

(t− ω)(1 + t2)
dt)

is an outer function in H∞(G). Here γ is a real number, g(t) ≥ 0 is a
measurable essentially bounded function in R (g ∈ L∞(R)) and∫ ∞

−∞

log g(t)

1 + t2
dt > −∞.

A compactification of a space X is an ordered pair (K,h) where K
is a compact Hausdorff space and h is an embedding of X as a dense
subset of K.
For a weight υ the function

υ̃(z) =
1

sup{| h(z) |: h ∈ Hυ(O), ‖h‖υ ≤ 1}

is called the associated weight. It is wellknown that (see [5]):
- ‖f‖υ = ‖f‖υ̃ for each f ∈ Hυ(O).
- For any z ∈ O, there is an h ∈ Hυ(O) with ‖h‖υ ≤ 1 such that
υ̃(z) = 1

|h(z)| .

- υ̃(z) ≤ υ(z) for all z ∈ O.
A weight υ is called an essential weight if there exists a constant C > 0
such that υ̃(z) ≤ Cυ(z) for all z ∈ O.
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Let υ be a standard weight on G. In [4], it has been shown that υ̃(ω) =
υ̃(iIm ω) and υ̃(it) ≥ υ̃(is) whenever t ≥ s > 0.
We conclude this section by recalling the following definitions.
A Bounded linear operator T : X −→ Y (X and Y are normed spaces)
is called a Fredholm operator if it has closed range and dim ker(T ) and
dim Y

Im T < ∞. The Spectrum of a bounded linear operator T : X −→
X which is denoted by σ(T ) is defined as follows.

σ(T ) = {λ ∈ C : λI − T is not invertible}.

The essential spectrum of T which is denoted by σe(T ) is defined by

σe(T ) = {λ ∈ C : λI − T is not a Fredholm operator}.

3 Main results

In this section we recall theorems on the boundedness and invertiblity
of multiplication operators Mϕ between weighted spaces of holomorphic
functions on the upper halfplane. Then we characterize closed range and
Fredholm self map multiplication operators between weighted spaces of
holomorphic functions on the upper halfplane. Before that we prove
some lemmas which have a major role in the proof of the main results
of this paper. We recall that ∂∞G = ∂G ∪ {∞}.

Lemma 3.1. Let (ωn) be a sequence in G, which has no cluster point
in G. Then (ωn) has an interpolating subsequence in G.

Proof. Let (ωn) be a sequence in G which has no cluster point in G,
then (zn = α−1(ωn)) is a sequence in D such that | zn |→ 1. Now
Proposition 2.4 of [7] implies that (zn) has an interpolating subsequence
(znk) in D. Since (znk) is an interpolating sequence in D so for any
sequence (ak) ∈ `∞, there exists f ∈ H∞(D) such that f(znk) = ak.
Obviously f̃ = f ◦ α−1 ∈ H∞(G) and f̃(ωnk) = ak. Therefore, (ωnk) is
an interpolating subsequence of (ωn). �

Lemma 3.2. i) D is a compactification of G.
ii) H∞(G) is isometric isomorphic to H∞(D).
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Proof. i) Evidently, α−1 : G −→ D defined by α−1(ω) = ω−i
ω+i = z is

a homeomorphism from G onto D. So α−1(G) = D which is a compact
set. Hence, the pair (α−1,D) is a compactification of G.
ii) It is enough to define T : H∞(D) −→ H∞(G) by T (f) = f ◦ α−1.
Since α−1 is an onto map so

‖T (f)‖∞ = sup{| (f ◦α−1(ω) |: ω ∈ G} = sup{| f(z) |: z ∈ D} = ‖f‖∞.

�
Lemma 3.2 implies immediately the following two corollaries.

Corollary 3.3. G = G ∪ ∂∞G is homeomorphic with D.

Corollary 3.4. M(H∞(G)) is homeomorphic to M(H∞(D)). L∞(∂D)
is isomorphic to L∞(∂∞G). This is true for Shilov boundary, triv-
ial(nontrivial) Gleason parts of H∞(G) and H∞(D)

Also, the disc algebra A(D) is isomorphic to the A(G), the algebra
of all holomorphic functions on G and continuous on G.

Lemma 3.5. The Shilov boundary of H∞(G) is the maximal ideal space
of L∞(∂∞G).

Proof. We know that G is homeomorphic to D. The map α : D −→ G
maps ∂D onto ∂∞G homeomorphically. Also, H∞(G) and H∞(D) are
isomorphic spaces and for a function f ∈ H∞(G), | f ◦α(z) | attains its
supremum through the points z ∈ D, tending to a point z0 ∈ ∂D if and
only if | f(ω) | attains its supremum thourgh the points ω = α(z) ∈ G
tending to a point ω0 = α(z0) ∈ ∂∞G and vice versa. So the shilov
boundaries of H∞(G) and H∞(D) are homeomorphic. By Corollary 3.4
L∞(∂D) and L∞(∂∞G) are isomorphic. From these facts and the result
which states that the Shilov boundary of H∞(D) is the maximal ideal
space of L∞(∂D) (see V.1.7 of [10] and page 169 of [11]) the lemma is
proved. �

Lemma 3.6. Let X be the maximal ideal space of L∞(∂∞G). As E
varies over the measurable subsets of the ∂∞G the open closed sets {φ ∈
X : χ̂E(φ) = 0} give a basis for the topology of X, where χ̂ is the
Gelfand transform of characteristic function. In particular X is totally
disconnected.
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Proof. By a similar lemma on L∞(∂D) (see page 169 of [11]) and
arguments similar to what has been done in Lemma 3.5 we have done.
�

Lemma 3.7. A function ϕ ∈ H∞(G) does not vanish at any point of
the Shilov boundary of H∞(G) if and only if | ϕ | is essentially bounded
away from zero on ∂∞G.

Proof. | ϕ | is essentially bounded away from zero means that for some
ε > 0, | ϕ(ω) |≥ ε a.e on ∂∞G. Now if ϕ is zero on any point of the shilov
boundary of H∞(G) by Lemma 3.6 it vanishes on a totally disconnected
open-closed set of positive Lebesgue measure. �

Remark 3.8. Indeed the maximal ideal space of L∞(∂∞G), X is a
closed subset of the maximal ideal space of H∞(G), M(H∞(G)) and
because of the injection H∞(G) ↪→ L∞(∂∞G), X is a Shilov boundary
of H∞(G). For more details see page 184 of [10] .

Now, we continue by recalling some results from [3] . For the sake
of completeness, here, we state a modified proof for Theorem 3.9 .

Theorem 3.9. Let υ be a weight on G. The following statements are
equivalent.
(a) Mϕ : Hυ(G) −→ Hυ(G) is bounded.
(b) ϕ ∈ H∞(G).
If Mϕ is bounded then ‖Mϕ‖ = ‖ϕ‖∞. Besides, theorem is also true for
Hυ0(G) instead of Hυ(G).

Proof. (b)⇒ (a): It is obvious, since for arbitrary f ∈ Hυ(G) we have

‖Mϕ(f)‖υ = sup{| f(ω) || ϕ(ω) | υ(ω) : ω ∈ G}
≤ sup{| f(ω) | υ(ω) : ω ∈ G} sup{| ϕ(ω) |: ω ∈ G}
≤ ‖f‖υ‖ϕ‖∞.

Hence, ‖Mϕ‖ ≤ ‖ϕ‖∞.
(a)⇒ (b): Mϕ : Hυ(G) −→ Hυ(G) is bounded. So the adjoint map
M∗ϕ : Hυ(G)∗ −→ Hυ(G)∗ is bounded too and ‖Mϕ‖υ = ‖M∗ϕ‖υ. Now let
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ω ∈ G be given. Evidently, the evaluational function δω : Hυ(G) −→ C
defined by δω(f) = f(ω) belongs to the dual space Hυ(G)∗. Note that

| ϕ(ω) |=
‖M∗ϕ(δω)‖
‖δω‖

≤ ‖M∗ϕ‖ = ‖Mϕ‖ <∞.

Therefore,

sup{| ϕ(ω) |: ω ∈ G} = ‖ϕ‖∞ ≤ ‖Mϕ‖ <∞.

Where by ‖Mϕ‖ and ‖M∗ϕ‖ we mean the operator norm of linear oper-
ators Mϕ and M∗ϕ. �

Remark 3.10. From now on we always assume ϕ ∈ H∞(G). Because
this assumption is equivalent to that Mϕ is welldefined.

Theorem 3.11. (See [3]) Let υ be a weight on G. The following state-
ments are equivalent.
(a) Mϕ : Hυ(G) −→ Hυ(G) is invertible.
(b) 1

ϕ ∈ H
∞(G) (or, equivalently, there exists ε > 0 such that | ϕ(ω) |≥ ε

for all ω ∈ G).

Remark 3.12. Since ϕ ∈ H∞(G) then Mϕ : Hυ(G) −→ Hυ(G) is a
bounded linear operator. So σ(Mϕ) is defined.

Theorem 3.13. σ(Mϕ) = ϕ(G) = ϕ(M(H∞(G))).

Proof. Proof of the first equality can be found in [3]. For proving
the last equality note that ϕ̃(D) = ϕ̃(M(H∞(D))) (see pages 159-162 of
[11]). Here ϕ̃ = ϕ ◦ α. Now using Corollary 3.3 and Corollary 3.4 we
conclude that
ϕ(G) = ϕ̃(D) = ϕ̃(M(H∞(D))) = ϕ(M(H∞(G))). �

Corollary 3.14. (See [3]) Mϕ is not a compact operator.

In the next Theorem we state a necessary and sufficient condition
such that Mϕ be a Fredholm operator. Since proof is very similar to
the proof in [7], we do not repeat it again. we only explain necessary
changes in order to transfer the proof to the upper halfplane case. Note
that condition on ϕ in theorem 3.15 is completely different from the case
of unit disc since compact subsets of G have wide variety in comparison
with compact subsets of D.



ON THE MULTIPLICATION OPERATORS AND ... 9

Theorem 3.15. Let υ be a weight on G and ϕ ∈ H∞(G). The operator
Mϕ : Hυ(G) −→ Hυ(G) is Fredholm if and only if there exist ε > 0
and a compact subset K ⊂ G such that | ϕ(ω) |> ε for all ω ∈ G \K.
Consequently σe(Mϕ) = ϕ(M(H∞(G)))\G. The same holds for Hυ0(G)
instead of Hυ(G) whenever Hυ0(G) 6= {0}.

Proof. Firstly, suppose that Mϕ is Fredholm but there is a sequence
(ωn) ⊂ G such that | ϕ(ωn) |→ 0 whenever ωn → ∂∞G. By Lemma 3.1
we can assume that (ωn) is an interpolating sequence in H∞(G). Rest
of the proof is quite similar. Last assertion of the theorem follows from
Corollary 3.4 and equality σe(Mϕ) = ϕ(M(H∞(D)) \D) in [7]. �
With a similar proof as in [7] we have:

Theorem 3.16. Let ϕ ∈ H∞(G). If υ and w are two weights on G and
u := υ

w is equivalent to an essential weight, then every closed range map
Mϕ : Hυ(G) −→ Hυ(G) also has closed range as a map Mϕ : Hw(G) −→
Hw(G). An analogous result holds for Hυ0(G) and Hw0(G) 6= {0}.

Theorem 3.17. The map Mϕ : H∞(G) −→ H∞(G) has closed range
if and only if ϕ does not vanish at any point of the Shilov boundary
Γ(H∞(G)) of H∞(G).

Proof. Let ϕ∗ be the a.e limit of ϕ on ∂∞G. If | ϕ∗ |< ε on a subset
A ⊂ ∂∞G of positive measure and | ϕ∗ |≤ 1 elsewhere, then we take the
outer function

F (ω) = exp
1

πi

∫ ∞
−∞

1 + tz

(t− z)(t2 + 1)
log | F ∗(t) | dt

where | F ∗ |= 1 on A and | F ∗ |= ε on ∂∞G \ A to get ‖MϕF‖∞ ≤ ε.
Thus if | ϕ | is not essentially bounded from below then Mϕ is not
bounded from below and this is equivalent to Mϕ does not have closed
range. Conversely, suppose that ϕ does not vanish at any point of the
Shilov boundary. Hence, for some ε > 0, | ϕ(ω) |> ε almost everywhere
. Now if Mϕ is not of closed range then we can consider an f ∈ H∞(G)
with ‖f‖∞ = 1 and ‖Mϕf‖∞ → 0. Since | ϕ(ω) |> ε almost everywhere
so we must have | f(ω) |= 0 a.e on ∂∞G. But this is a contradiction
since f ∈ H∞(G) ⊂ N (Nevalinna class) and a function in the Nevalinna
class can not be zero on a subset of ∂∞G of positive Lebesgue measure
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(see Theorem 2.2 of [9]).
�
Here we recall the following theorem.

Theorem 3.18. (See [7]) For any weight υ on D (not necessarily radial)
there is a closed set Aυ, Γ(H∞(D)) ⊂ Aυ ⊂ M(H∞(D)) \ D, such that
Mϕ : Hυ(D) −→ Hυ(D) has closed range if and only if ϕ does not vanish
on Aυ.

Now we Prove Theorem 3.18 for the upper halfplane.

Theorem 3.19. For any weight υ on G there is a closed set Aυ, Γ(H∞(G)) ⊂
Aυ ⊂M(H∞(G))\G, such that Mϕ : Hυ(G) −→ Hυ(G) has closed range
if and only if ϕ does not vanish on Aυ.

Proof. Let υ be a weight on G. then u = υ ◦ α is a weight on D and
T : Hυ(G) −→ Hu(D) defined by Tg = g◦α is an isometric isomorphism
since

‖Tg‖u = sup
z∈D
| (g ◦ α)(z) | (υ ◦ α)(z) = sup

ω∈G
| g(ω) | υ(ω) = ‖g‖υ

Now consider the following diagram.

Mϕ : Hυ(G) −→ Hυ(G)
↓ T ↓ T

Mϕ̃ : Hu(D) −→ Hu(D)

where ϕ̃ = ϕ ◦ α. For any g ∈ Hυ(G)
(T−1 ◦Mϕ̃ ◦ T )(g) = (T−1 ◦Mϕ̃)(g ◦ α) = T−1((ϕ ◦ α)(g ◦ α)) = [(ϕ ◦
α) ◦ α−1][(g ◦ α) ◦ α−1] = ϕg = Mϕ(g).
Thus the diagram is commutataive. Therefore Mϕ has closed range
on Hυ(G) if and only if Mϕ̃ has closed range on Hu(D). Now let Mϕ

be of closed range. Since Mϕ̃ has closed range, Theorem 3.18 implies
that ϕ̃ does not vanish on a closed subset Au=υ◦α of D and this implies
that ϕ does not vanish on a closed subset Aυ of G ( an isomorhic map
takes a closed set to a closed set). Au satisfies Γ(H∞(D)) ⊂ Au ⊂
M(H∞(D)) \ D. Now Lemma 3.2 and Corollary 3.4 imply that Aυ
satisfies Γ(H∞(G)) ⊂ Aυ ⊂M(H∞(G)) \G.
Conversely if ϕ does not vanish on a set Aυ in G, Γ(H∞(G)) ⊂ Aυ ⊂



ON THE MULTIPLICATION OPERATORS AND ... 11

M(H∞(G)) \ G then ϕ̃ does not vanish on a homeomorphic set Au =
Aυ◦α in D and Γ(H∞(D)) ⊂ Au ⊂ M(H∞(D)) \ D. Again by Theorem
3.18 Mϕ̃ has closed range and equivalently Mϕ has closed range. �

Remark 3.20. It is worth to be mentioned that all of our results hold
in every simply connected domain in the complex plane and can be ob-
tained by methods which we have used here, since all of simply connected
domains are homeomorphic. (see Chap. 13 of [12]). For example the
strip {z ∈ C : z = x + iy, −π

2 < x < π
2 } and C \ {(x, 0) : x ≥ 0}.

Nevertheless the simply connected domain G is of special interest, since
it is frequently easier to handle .

4 Multipliers

In this section we characterize multipliers of Hυ(G) for certain type of
weights on the upper half-plane. We recall that a sequence {λn} is a
multiplier of a sequence space A if {λnan} ∈ A for each {an} ∈ A. Since
an analytic function has a unique Talyor coefficients in its expansion ,
so any space of holomorphic functions can be regarded as a sequence
space, particularly, Hυ(D). Shields and Williams proved the following
characterization for multipliers of Hυ(D) whenever υ is a normal weight
i.e υ is a standard weight on D such that there are ε, k > 0 such that
0 < ε < k, υ(r)

(1−r)k ↗∞ as r → 1− and υ(r)
(1−r)ε ↘ 0 as r → 1−.

Theorem 4.1. (See [13]) Let υ be a normal weight on D. The sequence
{λn} is a multiplier of Hυ(D) if and only if
(i) The power series h(z) = Σ∞n=1λnz

n converges for | z |< 1 and
(ii) M1(h

′, r) = O( 1
1−r ).

Where M1(h, r) = 1
2π

∫∞
0 | h(reiθ) | dθ and (ii) means M1(h

′, r)(1 − r)
is bounded.

We intend to obtain a result similar to Theorem 4.1 for Hυ(G) for
a special kind of weights on G. We recall the Definition 1.2 of [2]. We
say a weight υ on G is of type(II) if υ(ω) = υ1(ω) (| ω |≤ 1 and υ1
is a standard weight on G) and there is a constant C > 0 such that
υ(ω)

υ(− 1
ω
)
≤ C. An example of a type(II) weight is υ(ω) = (

Im ω

max(| ω |2, 1)
)β
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for some β > 0. For more examples of type(II) weights we refer the
reader to the Example 1.3 of [2].

Lemma 4.2. (See Lemma 3.1 of [2]) Let υ be a type(II) weight satisfying
(∗). Put υ̃(z) = υ(α(− | z |)). Then υ̃(z) is a radial weight on D.
Moreover, the map T defined by (Tf)(z) = f(α(z)) is an isomorphism
from Hυ(G) on to Hυ̃(D).

Note that the proof of 4.2 reveals that weights υ◦α and υ̃ are equiva-
lent. Before stating the main result of this section we need the following
lemmas.

Lemma 4.3. If f : G −→ C is a holomorphic function, then there
are αk ∈ C such that f(ω) = Σ∞k=0αk(

ω−i
ω+i)

k, where the series converges
uniformly on compact subsets of G.

Proof. Clearly f ◦ α : D −→ C is analytic. So (f ◦ α)(z) = Σ∞k=0αkz
k

for some αk and series converges uniformly on the compact subsets of
D. Put α(z) = ω then z = α−1(ω) = ω−i

ω+i . This completes the proof.
�

Lemma 4.4. (See Theorem 2.2.3 of [1]) Let υ be a type(II) weight on
G satisfying (∗) and (∗∗). Then υ̃(υ̃ is as in Lemma 4.2) satisfies (∗)′
and (∗∗)′ respectively.

Remark 4.5. Lemma 4.3 enables us to regard Hυ(G) as a sequence
space. Also it is easy to see that a weight υ is normal if and only if it
satisfies (∗)′ and (∗∗)′. See also section three of [7].

What we have obtained in this section can be summarized in the
following theorem.

Theorem 4.6. Let υ be a type (II) weight on G satisfying (∗) and (∗∗).
Then (λn) is a multiplier on Hυ(G) if and only if
(i) The power series h(ω) = Σ∞n=1λn(ω−iω+i)

n converges on G and

(ii) M1(h̃
′, r) = O( 1

1−r ),

where h̃ = h ◦ α.

Proof. Only note that since α is an onto map so h(ω) = h ◦ α(z) =
h̃(z) (ω ∈ G, z ∈ D) again can be considered as an element of Hυ̃(D).
�
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